

ibm.com/redbooks

Understanding LDAP
Design and Implementation

Steven Tuttle
Ami Ehlenberger

Ramakrishna Gorthi
Jay Leiserson

Richard Macbeth
Nathan Owen

Sunil Ranahandola
Michael Storrs
Chunhui Yang

LDAP concepts and architecture

Designing and maintaining
LDAP

Step-by-step approach
for directory

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Understanding LDAP Design and Implementation

June 2004

International Technical Support Organization

SG24-4986-01

© Copyright International Business Machines Corporation 1998, 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (June 2004)

This edition applies to Version 5, Release 2 of IBM Tivoli Directory Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xv.

Contents

Notices . xv
Trademarks . xvi

Preface . xvii
The team that wrote this redbook. xvii
Become a published author . xix
Comments welcome. xx

Summary of changes . xxi
June 2004, Second Edition . xxi

Part 1. Directories and LDAP . 1

Chapter 1. Introduction to LDAP . 3
1.1 Directories . 5

1.1.1 Directory versus database . 5
1.1.2 LDAP: Protocol or directory. 7
1.1.3 Directory clients and servers. 8
1.1.4 Distributed directories . 9

1.2 Advantages of using a directory . 10
1.3 LDAP history and standards . 12

1.3.1 OSI and the Internet . 12
1.3.2 X.500 the Directory Server Standard . 13
1.3.3 Lightweight Access to X.500 . 14
1.3.4 Beyond LDAPv3 . 15

1.4 Directory components . 16
1.5 LDAP standards . 20
1.6 IBM’s Directory-enabled offerings . 21
1.7 Directory resources on the Web . 23

Chapter 2. LDAP concepts and architecture. 27
2.1 Overview of LDAP architecture . 28
2.2 The informational model . 32

2.2.1 LDIF . 35
2.2.2 LDAP schema . 37

2.3 The naming model. 42
2.3.1 LDAP distinguished name syntax (DNs) . 43
2.3.2 String form. 46
2.3.3 URL form. 47
© Copyright IBM Corp. 1998, 2004. All rights reserved. iii

2.4 Functional model . 47
2.4.1 Query . 48
2.4.2 Referrals and continuation references . 49
2.4.3 Search filter syntax . 50
2.4.4 Compare . 51
2.4.5 Update operations. 51
2.4.6 Authentication operations . 52
2.4.7 Controls and extended operations . 52

2.5 Security model. 53
2.6 Directory security. 53

2.6.1 No authentication . 54
2.6.2 Basic authentication . 54
2.6.3 SASL . 55
2.6.4 SSL and TLS. 55

Chapter 3. Planning your directory . 57
3.1 Defining the directory content . 60

3.1.1 Defining directory requirements . 60
3.2 Data design . 60

3.2.1 Sources for data . 61
3.2.2 Characteristics of data elements. 62
3.2.3 Related data . 62

3.3 Organizing your directory . 63
3.3.1 Schema design . 63
3.3.2 Namespace design . 64
3.3.3 Naming style . 67

3.4 Securing directory entries . 68
3.4.1 Purpose. 68
3.4.2 Analysis of security requirements . 68
3.4.3 Design overview . 68
3.4.4 Authentication design . 69
3.4.5 Authorization design . 70
3.4.6 Non-directory security considerations . 71

3.5 Designing your server and network infrastructure. 72
3.5.1 Availability, scalability, and manageability requirements 72
3.5.2 Topology design . 73
3.5.3 Replication design. 75
3.5.4 Administration . 79

Part 2. IBM Tivoli Directory Server overview and installation . 81

Chapter 4. IBM Tivoli Directory Server overview . 83
4.1 Definition of ITDS . 84
4.2 ITDS 5.2 . 87
iv Understanding LDAP Design and Implementation

4.3 Resources on ITDS . 92
4.4 Summary of ITDS-related chapters. 92

Chapter 5. ITDS installation and basic configuration - Windows 95
5.1 Installable components . 97
5.2 Installation and configuration checklist . 98
5.3 System and software requirements. 99

5.3.1 ITDS Client . 99
5.3.2 ITDS Server (including client) . 100
5.3.3 Web Administration Tool . 101

5.4 Installing the server . 102
5.4.1 Create a user ID for ITDS . 102
5.4.2 Installing ITDS with the Installshield GUI . 103
5.4.3 Configuring the Administrator DN and password 106
5.4.4 Configuring the database . 108
5.4.5 Adding a suffix. 115
5.4.6 Removing or reconfiguring a database . 117
5.4.7 Enabling and disabling the change log . 118

5.5 Starting ITDS. 120

Chapter 6. ITDS installation and basic configuration - AIX 125
6.1 Installable components . 127
6.2 Installation and configuration checklist . 128
6.3 System and software requirements. 129

6.3.1 ITDS Client . 129
6.3.2 ITDS Server (including client) . 130
6.3.3 Web Administration Tool . 132

6.4 Installing the server . 133
6.4.1 Create a user ID for ITDS . 133
6.4.2 Installing ITDS with the Installshield GUI . 134
6.4.3 Configuring the Administrator DN and password 137
6.4.4 Configuring the database . 138
6.4.5 Adding a suffix. 145
6.4.6 Removing or reconfiguring a database . 147
6.4.7 Enabling and disabling the change log . 148

6.5 Starting ITDS. 150
6.6 Uninstalling ITDS. 153

Chapter 7. ITDS installation and basic configuration on Intel Linux . . . 155
7.1 Installable components . 157
7.2 Installation and configuration checklist . 158
7.3 System and software requirements. 159

7.3.1 ITDS Client . 159
7.3.2 ITDS Server (including client) . 160
 Contents v

7.3.3 Web Administration Tool . 161
7.4 Installing the server . 162

7.4.1 Create a user ID for ITDS . 162
7.4.2 Installing ITDS with the Installshield GUI . 164
7.4.3 Configuring the Administrator DN and password 166
7.4.4 Configuring the database . 167
7.4.5 Adding a suffix. 173
7.4.6 Removing or reconfiguring a database . 174
7.4.7 Enabling and disabling the change log . 176

7.5 Starting ITDS. 177
7.6 Quick installation of ITDS 5.2 on Intel (minimal GUI) 180
7.7 Uninstalling ITDS. 183
7.8 Removing all vestiges of an ITDS 5.2 Install on Intel Linux 183

Chapter 8. IBM Tivoli Directory Server installation - IBM zSeries. 185
8.1 Installing LDAP on z/OS . 186

8.1.1 Using the ldapcnf utility . 186
8.1.2 Running the MVS jobs . 186
8.1.3 Loading the schema . 187
8.1.4 Enabling Native Authentication . 187

8.2 Migrating data to LDAP on z/OS . 188
8.2.1 Migrating LDAP server contents to z/OS . 188
8.2.2 Moving RACF users to the TDBM space . 189

Part 3. In-depth configuration and tuning . 191

Chapter 9. IBM Tivoli Directory Server Distributed Administration 193
9.1 Web Administration Tool graphical user interface. 194
9.2 Starting the Web Administration Tool . 195
9.3 Logging on to the console as the console administrator 196
9.4 Logging on to the console as the server administrator 197
9.5 Logging on as member of administrative group or as LDAP user. 198
9.6 Logging off the console . 198
9.7 Starting and stopping the server . 198

9.7.1 Using Web Administration. 199
9.7.2 Using the command line or Windows Services icon 200

9.8 Console layout. 200
9.9 Configuration only mode . 201

9.9.1 Minimum requirements for configuration-only mode 202
9.9.2 Starting LDAP in configuration-only mode 202
9.9.3 Verifying the server is in configuration-only mode 202

9.10 Setting up the console. 203
9.10.1 Managing the console . 203
9.10.2 Creating an administrative group . 208
vi Understanding LDAP Design and Implementation

9.10.3 Enabling and disabling the administrative group. 209
9.10.4 Adding members to the administrative group 210
9.10.5 Modifying an administrative group member 211
9.10.6 Removing a member from the administrative group 213

9.11 ibmslapd command parameters . 214
9.12 Directory administration daemon. 216

9.12.1 The ibmdiradm command . 216
9.12.2 Starting the directory administration daemon 217
9.12.3 Stopping the directory administration daemon 218
9.12.4 Administration daemon error log . 218

9.13 The ibmdirctl command . 227
9.14 Manual installation of IBM WAS - Express . 230

9.14.1 Manually installing the Web Administration Tool. 230
9.14.2 Manually uninstalling the Web Administration Tool. 231
9.14.3 Default ports used by IBM WAS - Express 232

9.15 Installing in WebSphere Version 5.0 or later . 234

Chapter 10. Client tools . 237
10.1 The ldapchangepwd command . 239

10.1.1 Synopsis . 239
10.1.2 Options . 239
10.1.3 Examples . 242
10.1.4 SSL, TLS notes . 248
10.1.5 Diagnostics . 249

10.2 The ldapdelete command . 249
10.2.1 Synopsis . 249
10.2.2 Description . 249
10.2.3 Options . 250
10.2.4 Examples . 250
10.2.5 SSL, TLS notes . 253
10.2.6 Diagnostics . 253

10.3 The ldapexop command . 253
10.3.1 Synopsis . 253
10.3.2 Description . 253
10.3.3 Options . 254

10.4 The ldapmodify and ldapadd commands . 265
10.4.1 Synopsis . 266
10.4.2 Description . 266
10.4.3 Options . 266
10.4.4 Examples . 267
10.4.5 SSL, TLS notes . 269
10.4.6 Diagnostics . 270

10.5 The ldapmodrdn command . 270
 Contents vii

10.5.1 Synopsis . 270
10.5.2 Description . 270
10.5.3 Options . 270
10.5.4 Examples . 271
10.5.5 SSL, TLS notes . 272
10.5.6 Diagnostics . 272

10.6 The ldapsearch command. 272
10.6.1 Synopsis . 272
10.6.2 Description . 272
10.6.3 Options . 273
10.6.4 Examples . 279
10.6.5 SSL, TLS notes . 286
10.6.6 Diagnostics . 286

10.7 Summary . 286

Chapter 11. Schema management . 287
11.1 What is the schema. 288

11.1.1 Available schema files. 290
11.1.2 Schema support . 291
11.1.3 OID . 291
11.1.4 Inheritance . 292

11.2 Modifying the schema . 292
11.2.1 IBMAttributetypes . 292
11.2.2 Working with objectclasses . 293
11.2.3 Working with attributes . 294
11.2.4 Disallowed schema changes. 296

11.3 Indexing. 297
11.4 Migrating the schema . 298

11.4.1 Exporting the schema . 298
11.4.2 Importing the schema . 299

11.5 Dynamic schema. 299

Chapter 12. Group and role management . 301
12.1 Groups. 302

12.1.1 Static groups . 302
12.1.2 Dynamic groups . 306
12.1.3 Nested groups. 310
12.1.4 Hybrid groups . 311
12.1.5 Determining group membership . 312
12.1.6 Group object classes. 316
12.1.7 Group attribute types. 316

12.2 Roles . 317
12.3 Summary . 318
viii Understanding LDAP Design and Implementation

Chapter 13. Replication . 319
13.1 General replication concepts. 320

13.1.1 Terminology . 320
13.1.2 How replication functions . 322

13.2 Major replication topologies. 324
13.2.1 Simple master-replica topology. 324
13.2.2 Master-forwarder-replica topology (ITDS 5.2 and later) 324
13.2.3 GateWay Replication Topology (ITDS 5.2 and later) 325
13.2.4 Peer replication . 326

13.3 Replication agreements. 342
13.4 Configuring replication topologies . 343

13.4.1 Simple master-replica topology. 343
13.4.2 Using the command line . 361
13.4.3 Promoting a replica to peer/master . 364
13.4.4 Command line for a complex replication . 372

13.5 Web administration tasks for managing replication. 377
13.5.1 Managing topology . 377
13.5.2 Modifying replication properties . 380
13.5.3 Creating replication schedules . 381
13.5.4 Managing queues . 384

13.6 Repairing replication differences between replicas 385
13.6.1 The ldapdiff command tool . 385

Chapter 14. Access control . 395
14.1 Overview . 396
14.2 ACL model. 397

14.2.1 EntryOwner information . 397
14.2.2 Access Control information . 397

14.3 Access control attribute syntax . 401
14.3.1 Subject . 402
14.3.2 Pseudo DNs . 402
14.3.3 Object filter . 405
14.3.4 Rights . 405
14.3.5 Propagation. 409
14.3.6 Access evaluation . 412
14.3.7 Working with ACLs . 415

14.4 Summary . 429

Chapter 15. Securing the directory . 431
15.1 Directory security. 432
15.2 Authentication . 432

15.2.1 Anonymous authentication . 433
15.2.2 Basic authentication . 433
 Contents ix

15.2.3 Authentication using SASL . 434
15.2.4 Kerberos . 436

15.3 Password policy enforcement . 437
15.3.1 Overview . 438

15.4 Password encryption . 451
15.5 SSL/TLS support . 455

15.5.1 Overview of TLS . 455
15.5.2 Overview of SSL . 456
15.5.3 SSL utilities . 458
15.5.4 Configuring SSL security. 460

15.6 Protection against DoS attacks . 468
15.6.1 Non-blocking sockets . 468
15.6.2 Extended operation for killing connections 468
15.6.3 Emergency thread. 469
15.6.4 Connection reaping . 470
15.6.5 Allow anonymous bind . 470

15.7 Access control . 472
15.8 Summary . 472

Chapter 16. Performance Tuning . 475
16.1 ITDS application components . 477
16.2 ITDS LDAP caches . 477

16.2.1 LDAP caches . 478
16.2.2 LDAP filter cache . 479
16.2.3 Filter cache bypass limits . 479
16.2.4 LDAP entry cache . 480
16.2.5 Measuring filter and entry cache sizes . 481
16.2.6 LDAP ACL Cache . 482
16.2.7 Setting other LDAP cache configuration variables 482
16.2.8 LDAP Attribute Cache (only on 5.2 and later) 484
16.2.9 Configuring attribute caching . 485

16.3 Transaction and Event Notification . 487
16.4 Additional slapd and ibmslapd settings . 488

16.4.1 Tune the IBM Directory Server configuration file 488
16.4.2 Suffixes . 489
16.4.3 Recycle the IBM Directory Server . 490
16.4.4 Verify suffix order . 490

16.5 DB2 tuning. 491
16.5.1 Warning when IBM Directory Server is running 492
16.5.2 DB2 buffer pool tuning . 493
16.5.3 LDAPBP buffer pool size. 494
16.5.4 IBMDEFAULTBP buffer pool size . 494
16.5.5 Setting buffer pool sizes . 495
x Understanding LDAP Design and Implementation

16.5.6 Warnings about buffer pool memory usage 495
16.5.7 Other DB2 configuration parameters . 496
16.5.8 Warning about MINCOMMIT. 496
16.5.9 More DB2 configuration settings . 496
16.5.10 Configuration script . 515

16.6 Directory size. 516
16.7 Optimization and organization. 516

16.7.1 Optimization . 516
16.7.2 reorgchk and reorg . 517
16.7.3 Indexes . 521
16.7.4 Distributing the database across multiple physical disks 522
16.7.5 Create file systems and directories on the target disks. 524
16.7.6 Backing up the existing database . 525
16.7.7 Perform a redirected restore of the database 525

16.8 DB2 backup and restore . 527
16.9 Concurrent updates on Symmetric Multi-Processor systems 529
16.10 AIX operating system tuning . 529

16.10.1 Enabling large files . 529
16.10.2 Tuning process memory size limits . 530
16.10.3 AIX-specific process size limits . 531
16.10.4 AIX data segments and LDAP process DB2 connections. 532
16.10.5 Verifying process data segment usage . 532

16.11 Adding memory after installation on Solaris systems 532
16.12 SLAPD_OCHANDLERS variable on Windows 533
16.13 IBM Directory Change and Audit Log . 533

16.13.1 When to configure the LDAP change log 533
16.13.2 When to configure the LDAP audit log . 534

16.14 Hardware tuning . 535
16.14.1 Disk speed improvements. 535

16.15 Monitoring performance . 535
16.15.1 ldapsearch with "cn=monitor" . 535
16.15.2 Monitor examples . 541

16.16 Troubleshooting error files. 543

Chapter 17. Monitoring IBM Tivoli Directory Server 547
17.1 Overview . 548
17.2 Monitoring tools . 549

17.2.1 Viewing server state . 549
17.2.2 Viewing status of worker threads . 551
17.2.3 Viewing connections information. 553
17.2.4 Viewing other general information about the directory server 556
17.2.5 Analyzing changelog . 566
17.2.6 Analyzing log files . 567
 Contents xi

17.3 Operating system commands for monitoring ITDS 582
17.4 Summary . 585

Part 4. Developing directory-enabled applications . 587

Chapter 18. Debugging IBM Tivoli Directory Server related issues 589
18.1 Overview . 590
18.2 Debugging problems . 590

18.2.1 Debugging configuration problems . 590
18.2.2 Debugging directory server related errors using log files 592
18.2.3 Using server debug modes . 592
18.2.4 DB2 error log file . 600

18.3 Summary . 601

Chapter 19. Developing C-based applications . 603
19.1 Overview . 604
19.2 Typical API usage . 605
19.3 API flow when searching a directory . 606

19.3.1 ldap_init() . 606
19.3.2 ldap_simple_bind_s() . 607
19.3.3 ldap_search_s() . 607
19.3.4 ldap_first_entry() . 607
19.3.5 ldap_first_attribute() . 608
19.3.6 ldap_get_values() . 608
19.3.7 ldap_next_attribute() . 608
19.3.8 ldap_get_values() . 608
19.3.9 ldap_next_entry() . 609
19.3.10 ldap_unbind_s() . 609

19.4 Sample code to search a directory . 609
19.5 API flow when updating a directory entry . 612

19.5.1 ldap_init() . 613
19.5.2 ldap_simple_bind_s() . 613
19.5.3 ldap_modify_s(). 614
19.5.4 ldap_unbind_s() . 615

19.6 Sample code to update a directory entry. 615

Chapter 20. Developing JNDI-based applications 619
20.1 The JNDI . 621
20.2 Searching the directory . 623

20.2.1 Creating the directory context . 625
20.2.2 Performing the search. 626
20.2.3 Processing the search results . 627

20.3 Changing a directory entry . 628
20.3.1 Creating the directory context . 630
xii Understanding LDAP Design and Implementation

20.3.2 Performing the modification . 630

Part 5. Appendixes . 633

Appendix A. DSML Version 2 . 635
DSML Version 2 Introduction . 636

DSML . 636
DSML Version 1.0 . 636
DSML Version 2.0 . 636
Difference between DSML v1 and DSML v2. 637
Difference between DSML v2 and LDAP . 637
Typical DSML Transaction . 638

DSML Version 2 - IBM implementation . 638
ITDS DSML Version 2 support . 638
IBM DSML Version 2 top-level structure . 640
IBM DSML LDAP Operations . 646
Bindings . 655
DSML communication between ITDI and ITDS . 657

ITDS DSML Service Deployment . 657
Installation . 658
Configuration. 666
Execution . 668
Troubleshooting . 672

Java programming examples on DSML . 674
JNDI introduction. 674
Program examples . 675

References to the DSML official specifications . 679

Appendix B. Directory Integration - IBM Tivoli Directory Integrator . . . 681
Why Directory Integration is important . 683
Directory Integration Services . 684
User provisioning applications . 685
Directory Integration technologies . 686

Metadirectories and virtual directories . 690
Virtual directories vs. metadirectory technology. 691
Overview of IBM Tivoli Directory Integrator . 692
Configuration of ITDI assembly lines . 698
Configuration of an ITDI Event Handler . 700
ITDI solution example. 703
ITDI solution design . 705

HR System Extract . 705
Active Directory . 706
Domino . 706
XYZ Company ITDS Directory Information Tree. 707
 Contents xiii

User and group containers . 707
Application container. 708
LDAP Schema. 709

Solution components . 710
Summary . 714

Appendix C. Moving RACF users to TBDM. 715
Sample programs to move RACF users to TBDM . 716

Appendix D. Schema changes that are not allowed 721
Operational attributes . 722
Restricted attributes . 723
Root DSE attributes . 723
Schema definition attributes . 723
Configuration attributes . 724
User Application attributes . 726

Abbreviations and acronyms . 727

Related publications . 731
IBM Redbooks . 731
Online resources . 731
How to get IBM Redbooks . 733
Help from IBM . 733

Index . 735
xiv Understanding LDAP Design and Implementation

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 1998, 2004. All rights reserved. xv

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Cloudscape™
DB2 Universal Database™
DB2®
Domino®
IBM®
ibm.com®
iSeries™
Lotus Notes®
Lotus®

MVS™
Notes®
OS/390®
OS/400®
pSeries®
RACF®
RDN™
Redbooks (logo) ™
Redbooks™
Sametime®

SecureWay®
SP2®
Tivoli Enterprise™
Tivoli®
WebSphere®
World Registry™
xSeries®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.
xvi Understanding LDAP Design and Implementation

Preface

Lightweight Directory Access Protocol (LDAP) is a fast growing technology for
accessing common directory information. LDAP has been embraced and
implemented in most network-oriented middleware. As an open, vendor-neutral
standard, LDAP provides an extendable architecture for centralized storage and
management of information that needs to be available for today’s distributed
systems and services.

After a fast start, it can be assumed that LDAP has become the de facto access
method for directory information, much the same as the Domain Name System
(DNS) is used for IP address look-up on almost any system on an intranet and on
the Internet. LDAP is currently supported in most network operating systems,
groupware and even shrink-wrapped network applications.

This book was written for those readers who need to understand the basic
principles and concepts of LDAP. Some background knowledge about
heterogeneous, distributed systems is assumed and highly beneficial when
reading this book. This book is not meant to be an LDAP implementation guide,
nor does it contain product-related or vendor-specific information other than as
used in examples.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Austin Center.

Steven Tuttle is a Project Leader for the International Technical Support
Organization (ITSO), Austin Center. He has 13 years of experience in the IT
industry. He has worked at IBM® for 10 years, with five years of experience with
IBM security products. He holds a degree in Computer Science from Clarkson
University in Potsdam, New York, with concentrations in Mathematics and
Psychology. His areas of expertise include the IBM Tivoli® Enterprise™ products
and the IBM Tivoli Security products. Before joining the ITSO, he worked for IBM
Tivoli Services in the Security Practice as an enterprise security solution
designer using IBM Tivoli software products.

Ami Ehlenberger has been with IBM for the past five years. Her career has
included working in OS/390® development, z/OS® Integration Test, and the
zSeries® Custom Technology Center. Her technical concentration is Internet
security, designing solutions that focus on WebSphere®, LDAP, and Tivoli
© Copyright IBM Corp. 1998, 2004. All rights reserved. xvii

security products. Ami has a BS in Computer Science from Indiana University of
Pennsylvania and an MBA in e-Business from the University of Phoenix. Ami
currently manages the IBM Server and Technology Group's zSeries Services
Team. The team specializes in Web enablement and solution design,
concentrating on the zSeries platform.

Ramakrishna Gorthi is a developer for the IBM Tivoli Directory Server, Pune
Center in India. He has worked at IBM for two and a half years, with one year of
Level 2 Customer Support for the various versions of the IBM Tivoli Directory
Server. He holds a degree in Computer Engineering from Pune Institute of
Computer Technology, Pune (India). His areas of expertise include the IBM Tivoli
Directory Server from the Tivoli Security Products. Apart from the immense
experience gained as a Customer Support Representative, he has also earned a
good reputation in the different phases of the product life cycle for the IBM Tivoli
Directory Server, like development and testing.

Jay Leiserson is a Solution Architect for Tivoli Security products. He has
twenty-five years of experience in systems analysis, solution design, and
software development. He has worked at IBM for 24 years and has an extensive
and varied background that includes directory design and integration, identity
management solution design, Internet security, and application and operating
system development for distributed systems. He holds a degree in Economics
from Antioch College in Yellow Springs, Ohio.

Richard Macbeth is an IBM Directory Services Architect for Tivoli Services,
Americas Security Practice. He has been with IBM for 25 years in the
computer/IT field with 12 years of experience in the LDAP Directory field. He has
current certifications with Novell as a Certified Directory Engineer, Certified
Novell Instructor, Certified Novell Engineer, and Sun One Directory 5 Engineer.
He has worked on a number of versions of SecureWay®/IBM Directory Server on
most platforms. He also has four years of experience with Tivoli Access Manager
and one year of experience with IBM Directory Integrator. He also held a CCNP
Certification with Cisco and had over 10 years of experience as a Senior Network
IT Specialist.

Nathan Owen is a Identity Management Architect within IBM Software Group.
Nathan has worked in the Identity Management space for over eight years with a
particular focus on directory service related technologies such as X.500/LDAP
directories, Meta-directories, and Virtual Directories. He took a three year pause
from IBM in 1999 and co-founded virtual directory vendor Octet String Inc.,
before returning to IBM late in 2002. He holds Political Science degree from
Central Michigan University in Mt. Pleasant, Michigan. His areas of expertise
include IBM Tivoli Directory Server (ITDS), IBM Tivoli Directory Integrator (ITDI),
as well as the other the products in the Tivoli Identity Management portfolio.
xviii Understanding LDAP Design and Implementation

Sunil Ranahandola is a Software Engineer for the IBM Global Services (IGSI),
India Center. He started his career with IBM in March 2001 and has been
working with IBM since then. He has almost three years of experience in the IT
industry. He holds a degree in Computer Science from University College of
Engineering, Burla, Orissa, India. His areas of expertise include the IBM Tivoli
Directory Services.

Michael Storrs is an IT Specialist for the Tivoli Security Group. He has seven
years of experience in the IT industry, and has worked with enterprise access
and identity management products for the last five years. He holds a degree in
Electrical Engineering from the University of Virginia. His areas of expertise
include the Tivoli Security Products, IBM Tivoli Directory Integrator, directory
servers, and application development.

Chunhui Yang is a Metadata Architect and Directory Consultant in IBM Software
Group, RTP. She has direct experience with the full project lifecycle of
information systems for Microsoft®, Dow Jones, Reuters, and IBM, and is
recognized as a chief contributor with National awards to many projects in areas
of system architecture design, development and deployment on Directory
solutions and n-tier Web-based application solutions.

Thanks to the following people for their contributions to this project:

Tony Bhe, Tamikia Barrow, Linda Robinson, Margaret Ticknor
International Technical Support Organization, Austin Center

Julie Czubik
International Technical Support Organization, Poughkeepsie Center

Chris Ehrsam
IBM Directory Solutions Architect

John McGarvey
IBM Directory Solutions Architect/Security Integration

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.
 Preface xix

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
xx Understanding LDAP Design and Implementation

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes
for SG24-4986-01
for Understanding LDAP
as created or updated on July 18, 2006.

June 2004, Second Edition
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� IBM Tivoli Directory Integrator information
� Information on zSeries and Intel® Linux

Changed information
� Updated information to latest release of products
© Copyright IBM Corp. 1998, 2004. All rights reserved. xxi

xxii Understanding LDAP Design and Implementation

Part 1 Directories and LDAP

In this part we introduce directories and LDAP. Specifically, we provide an
introduction to LDAP, cover LDAP concepts and architecture, and provide some
information on how to plan for a directory deployment in your environment.

Part 1
© Copyright IBM Corp. 1998, 2004. All rights reserved. 1

2 Understanding LDAP Design and Implementation

Chapter 1. Introduction to LDAP

Today people and businesses rely on networked computer systems to support
distributed applications. These distributed applications might interact with
computers on the same local area network, within a corporate intranet, within
extranets linking up partners and suppliers, or anywhere on the worldwide
Internet. To improve functionality and ease-of-use, and to enable cost-effective
administration of distributed applications, information about the services,
resources, users, and other objects accessible from the applications needs to be
organized in a clear and consistent manner. Much of this information can be
shared among many applications, but it must also be protected in order to
prevent unauthorized modification or the disclosure of private information.

Information describing the various users, applications, files, printers, and other
resources accessible from a network is often collected into a special database
that is sometimes called a directory. As the number of different networks and
applications has grown, the number of specialized directories of information has
also grown, resulting in islands of information that are difficult to share and
manage. If all of this information could be maintained and accessed in a
consistent and controlled manner, it would provide a focal point for integrating a
distributed environment into a consistent and seamless system.

The Lightweight Directory Access Protocol (LDAP) is an open industry standard
that has evolved to meet these needs. LDAP defines a standard method for
accessing and updating information in a directory. LDAP has gained wide
acceptance as the directory access method of the Internet and is therefore also

1

© Copyright IBM Corp. 1998, 2004. All rights reserved. 3

becoming strategic within corporate intranets. It is being supported by a growing
number of software vendors and is being incorporated into a growing number of
applications. For example, the two most popular Web browsers, Netscape
Navigator/Communicator and Microsoft Internet Explorer, as well as application
middleware, such as the IBM WebSphere Application Server or the IBM HTTP
server, support LDAP functionality as a base feature.

This chapter introduces the fundamentals of directories and the most commonly
used protocol to access directories, the LDAP protocol. You will also learn about
the various components that make up a directory.

Part of the information covered in this chapter and further information on LDAP
directory concepts and implementations can be found in the following
publications:

� Implementation and Practical Use of LDAP on the IBM iSeries™ Server,
SG24-6193

� Using LDAP for Directory Integration, SG24-6163

Another book that contains good information about directory concepts and
architecture is e-Directories Enterprise Software, Solutions, and Services, ISBN
0-201-70039-5.
4 Understanding LDAP Design and Implementation

1.1 Directories
A directory is a listing of information about objects arranged in some order that
gives details about each object. Common examples are a city telephone
directory and a library card catalog. For a telephone directory, the objects listed
are people; the names are arranged alphabetically, and the details given about
each person are address and telephone number. Books in a library card catalog
are ordered by author or by title, and information such as the ISBN number of the
book and other publication information is given.

In computer terms, a directory is a specialized database, also called a data
repository, that stores typed and ordered information about objects. A particular
directory might list information about printers (the objects) consisting of typed
information such as location (a formatted character string), speed in pages per
minute (numeric), print streams supported (for example PostScript or ASCII), and
so on.

Directories allow users or applications to find resources that have the
characteristics needed for a particular task. For example, a directory of users can
be used to look up a person's e-mail address or fax number. A directory could be
searched to find a nearby PostScript color printer. Or a directory of application
servers could be searched to find a server that can access customer billing
information.

The terms white pages and yellow pages are sometimes used to describe how a
directory is used. If the name of an object (person, printer) is known, its
characteristics (phone number, pages per minute) can be retrieved. This is
similar to looking up a name in the white pages of a telephone directory. If the
name of a particular individual object is not known, the directory can be searched
for a list of objects that meet a certain requirement. This is like looking up a listing
of hairdressers in the yellow pages of a telephone directory. However, directories
stored on a computer are much more flexible than the yellow pages of a
telephone directory because they can usually be searched by specific criteria,
not just by a predefined set of categories.

1.1.1 Directory versus database
A directory is often described as a database, but it is a specialized database that
has characteristics that set it apart from general-purpose relational databases.
One special characteristic of directories is that they are accessed (read or
searched) much more often than they are updated (written). Hundreds of people
might look up an individual's phone number, or thousands of print clients might
look up the characteristics of a particular printer, but the phone number or printer
characteristics rarely change.
 Chapter 1. Introduction to LDAP 5

Because directories must be able to support high volumes of read requests, they
are typically optimized for read access. Write access might be limited to system
administrators or to the owner of each piece of information. A general-purpose
relational database, on the other hand, needs to support applications, such as
airline reservations and banking applications, with relatively high-update
volumes.

Because directories are meant to store relatively static information and are
optimized for that purpose, they are not appropriate for storing information that
changes rapidly. For example, the number of jobs currently in a print queue
probably should not be stored in the directory entry for a printer because that
information would have to be updated frequently to be accurate. Instead, the
directory entry for the printer can contain the network address of a print server.
The print server can be queried to get the current queue length if desired. The
information in the directory (the print server address) is static, whereas the
number of jobs in the print queue is dynamic.

Another difference between directories and general-purpose relational
databases is that most directory implementations still do not support
transactions. However, transactions are supported in LDAP and are limited to
transactions within the LDAP directory, and do not include other transactions (for
example, database operations). Transactions are all-or-nothing operations that
must be completed in total or not at all. For example, when transferring money
from one bank account to another, the money must be debited from one account
and credited to the other account in a single transaction. If only half of this
transaction completes or someone accesses the accounts while the money is in
transit, the accounts will not balance. General-purpose relational databases
usually support such transactions, which complicates their implementation.

Because general-purpose relational databases must support arbitrary
applications such as banking and inventory control, they allow arbitrary
collections of data to be stored. Directories may be limited in the type of data
they allow to be stored (although the architecture does not impose such a
limitation). For example, a directory specialized for customer contact information
might be limited to storing only personal information such as names, addresses,
and phone numbers. If a directory is extensible, it can be configured to store a
variety of types of information making it more useful to a variety of programs.

Another important difference between a directory and a general-purpose
relational database is in the way information can be accessed. Most databases
support a standardized, very powerful access method called Structured Query
Language (SQL). SQL allows complex update and query functions at the cost of
program size and application complexity. Directories, such as an LDAP directory,
on the other hand, use a simplified and optimized access protocol that can be
used in slim and relatively simple applications.
6 Understanding LDAP Design and Implementation

Because directories are not intended to provide as many functions as
general-purpose relational databases, they can be optimized to economically
provide more applications with rapid access to directory data in large distributed
environments. If your intended use of the directory is to be read, mostly in a
non-transactional environment, both the directory client and directory server can
be simplified and optimized.

A request is typically performed by the directory client, and the process that looks
up information in the directory is called the directory server. In general, servers
provide a specific service to clients. Sometimes a server might become the client
of other servers in order to gather the information necessary to process a
request.

A directory service is only one type of service that might be available in a
client/server environment. Other common examples of services are file services,
mail services, print services, Web page services, and so on. The client and
server processes may or may not be on the same machine. A server is capable
of serving many clients. Some servers can process client requests in parallel.
Other servers queue incoming client requests for serial processing if they are
currently busy processing another client's request.

An API defines the programming interface a particular programming language
uses to access a service. The format and contents of the messages exchanged
between client and server must adhere to an agreed-upon protocol.

1.1.2 LDAP: Protocol or directory
The Lightweight Directory Access Protocol (LDAP) defines a message protocol
used by directory clients and directory servers.The LDAP protocol uses different
messages. For example, a bindRequest may be sent from the client to the LDAP
server at the beginning of a connection. A searchRequest is used to search for a
specific entry in the directory.

There are also associated LDAP APIs for the C language and ways to access
LDAP from within a Java™ application. Additionally, within the Microsoft
development environment, you can access LDAP directories through its Active
Directory Service Interface (ADSI) In general with LDAP, the client is not
dependent upon a particular implementation of the server, and the server can
implement the directory however it chooses.

LDAP is an open industry standard that defines a standard method for accessing
and updating information in a directory. LDAP has gained wide acceptance as
the directory access method of the Internet and is therefore also becoming
strategic within corporate intranets. It is being supported by a growing number of
 Chapter 1. Introduction to LDAP 7

software vendors and is being incorporated into a growing number of
applications.

LDAP defines a communication protocol. That is, it defines the transport and
format of messages used by a client to access data in an X.500-like directory.
LDAP does not define the directory service itself. When people talk about the
LDAP directory, that is the information that is stored and can be retrieved by the
LDAP protocol.

All modern LDAP directory servers are based on LDAP Version 3. You can use a
Version 2 client with a Version 3 server. However, you cannot use a Version 3
client with a Version 2 server unless you bind as a Version 2 client and use only
Version 2 APIs.

All LDAP servers share many basic characteristics since they are based on the
industry standard Request for Comments (RFCs). However, due to
implementation differences, they are not all completely compatible with each
other when there is not a standard defined.

1.1.3 Directory clients and servers
Directories are usually accessed using the client/server model of communication.
An application that wants to read or write information in a directory does not
access the directory directly. Instead, it calls a function or application
programming interface (API) that causes a message to be sent to another
process. This second process accesses the information in the directory on behalf
of the requesting application via TCP/IP. The default TCP/IP ports are 636 for
secure communications and 389 for unencrypted communications. The results of
the read or write action are then returned to the requesting application, as shown
in Figure 4-1 on page 84.

The request is performed by the directory client, and the process that maintains
and looks up information in the directory is called the directory server. In general,
servers provide a specific service to clients. Sometimes, a server might become
the client of other servers in order to gather the information necessary to process
a request.

The client and server processes may or may not be on the same machine. A
server is capable of serving many clients. Some servers can process client
requests in parallel. Other servers queue incoming client requests for serial
processing if they are currently busy processing another client’s request.

An API defines the programming interface that a particular programming
language uses to access a service. The format and contents of the messages
exchanged between client and server must adhere to an agreed-upon protocol.
8 Understanding LDAP Design and Implementation

LDAP defines a message protocol used by directory clients and directory
servers. There are also associated LDAP APIs for C and Java languages, and
ways to access the directory from a Java application using Java Naming and
Directory Interface (JNDI). The client is not dependent on a particular
implementation of the server, and the server can implement the directory
however it chooses.

1.1.4 Distributed directories
The terms local, global, centralized, and distributed are often used to describe a
directory. These terms mean different things in different contexts. In this section,
we explain how these terms apply to directories.

In general, local means nearby, and global means that something is spread
across the universe of interest. The universe of interest might be a company, a
country, or the Earth. Local and global are two ends of a continuum. That is,
something may be more or less global or local than something else. Centralized
means that something is in one place, and distributed means that something is in
more than one place. As with local and global, something can be distributed to a
greater or lesser extent.

The information stored in a directory can be simultaneously local and global in
scope. For example, a directory that stores local information might consist of the
names, e-mail addresses and so on of members of a department or workgroup.
A directory that stores global information might store information for an entire
company. Here, the universe of interest is the company.

The clients that access information in the directory can be local or remote. Local
clients may all be located in the same building or on the same LAN. Remote
clients might be distributed across the continent or planet.

The directory itself can be centralized or distributed. If a directory is centralized,
there may be one directory server at one location or a directory server that hosts
data from distributed systems. If the directory is distributed, there are multiple
servers, usually geographically dispersed, that provide access to the directory.

When a directory is distributed, the information stored in the directory can be
partitioned or replicated. When information is partitioned, each directory server
stores a unique and non-overlapping subset of the information. That is, each
directory entry is stored by one and only one server. One of the techniques to
partition the directory is to use LDAP referrals. LDAP referrals enable users to
refer LDAP requests to a different server. When information is replicated, the
same directory entry is stored by more than one server. In a distributed directory,
some information may be partitioned while some may be replicated.
 Chapter 1. Introduction to LDAP 9

The three dimensions of a directory (scope of information, location of clients, and
distribution of servers) are independent of each other. For example, clients
scattered across the globe can access a directory containing only information
about a single department, and that directory can be replicated at many directory
servers. Or, clients in a single location can access a directory containing
information about everybody in the world that is stored by a single directory
server.

The scope of information to be stored in a directory is often given as an
application requirement. The distribution of directory servers and the way in
which data is partitioned or replicated often can be controlled to affect the
performance and availability of the directory.

1.2 Advantages of using a directory
An application-specific directory stores only the information needed by a
particular application and is not accessible by other applications. Because a
full-function directory service is complex to build, application-specific directories
are typically very limited. They probably store only a specific type of information,
do not have general search capabilities, do not support replication and
partitioning, and probably do not have a full set of administration tools. An
application-specific directory could be as simple as a set of editable text files, or it
could be stored and accessed in an undocumented, proprietary manner.

In such an environment, each application creates and manages its own
application-specific directory, which quickly becomes an administrative
nightmare. The same e-mail address stored by the calendar application might
also be stored by a mail application and by an application that notifies system
operators of equipment problems. Keeping multiple copies of information
up-to-date and synchronized is difficult, especially when different user interfaces
and even different system administrators are involved.

What is needed is a common, application-independent directory. If application
developers could be assured of the existence of a directory service, then
application-specific directories would not be necessary. However, a common
directory must address the problems mentioned above. It must be based on an
open standard that is supported by many vendors on many platforms. It must be
accessible through a standard API. It must be extensible so that it can hold the
types of data needed by arbitrary applications, and it must provide full
functionality without requiring excessive resources on smaller systems. Since
more users and applications will access and depend on the common directory, it
must also be robust, secure, and scalable.
10 Understanding LDAP Design and Implementation

When such a directory infrastructure is in place, application developers can
devote their time to developing applications instead of application-specific
directories. In the same way that developers rely on the communications
infrastructure of TCP/IP and remote procedure call (RPC) to free them from
low-level communication issues, they will be able to rely on powerful, full-function
directory services. LDAP is the protocol to be used to access this common
directory infrastructure. Like HTTP (hypertext transfer protocol) and FTP (file
transfer protocol), LDAP has become an indispensable part of the Internet's
protocol suite.

When applications access a standard common directory that is designed in a
proper way, rather than using application-specific directories, redundant and
costly administration can be eliminated, and security risks are more controllable.
For example, the telephone directory, mail, and Web application as shown in
Figure 1-1 can all access the same directory to retrieve an e-mail address or
other information stored in a single directory entry. The advantage is that the data
is kept and maintained in one place. Various applications can use individual
attributes of an entry for different purposes permitting that the they have the
correct authority. New uses for directory information will be realized, and a
synergy will develop as more applications take advantage of the common
directory.

Figure 1-1 Several applications using attributes of the same entry

WebSphere
Application
Server A

Directory
Objects

O=IBM

CN=John

CN=Wendy

CN=Wolfgang
sn (surname): Eckert
telephoneNumber=2022
givenName (Firstname): Wolfgang
uid (UserID): weckert
userPassword: ********
mail (e-mail): wolf@iseries.ibm.com

CN=Tom

e-Mail
Application

Telephone
Directory

Application

WebSphere
Application
Server B

HTTP Web
Server
 Chapter 1. Introduction to LDAP 11

Storing data in a directory and sharing it amongst applications saves you time
and money by keeping administration effort and system resources down. Many
IBM applications also utilize directories to centrally store and share information.
The number of applications that support LDAP directories is constantly
increasing. For example, LDAP directory support, such as for authentication and
configuration management, is provided in various IBM operating systems, IBM
WebSphere Application Server, IBM WebSphere Portal Server, IBM Tivoli
Access Manager, IBM Tivoli Directory Server, IBM HTTP server, IBM Lotus®
Domino®, and so forth.

1.3 LDAP history and standards
In the 1970s, the integration of communications and computing technologies led
to the development of new communication technologies. Many of the proprietary
systems that were developed were incompatible with other systems. It became
apparent that standards were needed to allow equipment and systems from
different vendors to interoperate. Two independent major standardizations efforts
developed to define such standards.

1.3.1 OSI and the Internet
One standards drive was lead by the CCITT (Comite Consultatif International
Telephonique et Telegraphique, or International Consultative Committee on
Telephony and Telegraphy), and the ISO (International Standards Organization).
The CCITT has since become the ITU-T (International Telecommunications
Union - Telecommunication Standardization Sector). This effort resulted in the
OSI (Open Systems Interconnect) Reference Model (ISO 7498), which defined a
seven-layer model of data communication with physical transport at the lower
layer and application protocols at the upper layers.

The other standards drive grew up around the Internet and developed from
research sponsored by DARPA (the Defense Advanced Research Projects
Agency) in the United States. The Internet Architecture Board (IAB) and its
subsidiary, the Internet Engineering Task Force (IETF), develop standards for
the Internet in the form of documents called Request for Comments (RFCs),
which after being approved, implemented, and used for a period of time,
eventually become standards (STDs). Before a proposal becomes an RFC, it is
called an Internet Draft.

The two standards processes approach standardization from two different
perspectives. The OSI approach started from a clean slate and defined
standards using a formal committee process without requiring implementations.
The Internet uses a less formal engineering approach, where anybody can
12 Understanding LDAP Design and Implementation

propose and comment on RFCs, and implementations are required to verify
feasibility.

The OSI protocols developed slowly, and because running the full protocol stack,
is resource intensive, they have not been widely deployed, especially in the
desktop and small computer market. In the meantime, TCP/IP and the Internet
were developing rapidly and being put into use. Also, some network vendors
developed proprietary network protocols and products.

1.3.2 X.500 the Directory Server Standard
However, the OSI protocols did address issues important in large distributed
systems that were developing in an ad hoc manner in the desktop and Internet
marketplace. One such important area was directory services. The CCITT
created the X.500 standard in 1988, which became ISO 9594, Data
Communications Network Directory, Recommendations X.500-X.521 in 1990,
though it is still commonly referred to as X.500.

X.500 organizes directory entries in a hierarchal name space capable of
supporting large amounts of information. It also defines powerful search
capabilities to make retrieving information easier. Because of its functionality and
scalability, X.500 is often used together with add-on modules for interoperation
between incompatible directory services.

X.500 specifies that communication between the directory client and the
directory server uses the directory access protocol (DAP). However, as an
application layer protocol, the DAP requires the entire OSI protocol stack to
operate. Supporting the OSI protocol stack requires more resources than are
available in many small environments. Therefore, an interface to an X.500
directory server using a less resource-intensive or lightweight protocol was
desired.

Note: An excellent online resource on X.500 is the book, Understanding
X.500 - The Directory. While dated (1996), this book, which is now out of print
(but available online) is considered one of the original “gospels” of the
directory world. It describes and defines the X.500 directory model in great
detail. Much of the material is still very much relevant in today’s current family
of LDAP directory servers. It can be found here:

http://www.isi.salford.ac.uk/staff/dwc/X500.htm
 Chapter 1. Introduction to LDAP 13

http://www.isi.salford.ac.uk/staff/dwc/X500.htm

1.3.3 Lightweight Access to X.500
LDAP was developed as a lightweight alternative to DAP. LDAP requires the
lighter weight and more popular TCP/IP protocol stack rather than the OSI
protocol stack. LDAP also simplifies some X.500 operations and omits some
esoteric features.

Two precursors to LDAP appeared as RFCs issued by the IETF, Directory
Assistance Service (RFC 1202) and DIXIE Protocol Specification (RFC 1249).
These were both informational RFCs which were not proposed as standards.
The directory assistance service (DAS) defined a method by which a directory
client could communicate to a proxy on a OSI-capable host which issued X.500
requests on the client’s behalf. DIXIE is similar to DAS, but provides a more
direct translation of the DAP.

The first version of LDAP was defined in X.500 Lightweight Access Protocol
(RFC 1487), which was replaced by Lightweight Directory Access Protocol (RFC
1777). LDAP further refines the ideas and protocols of DAS and DIXIE. It is more
implementation neutral and reduces the complexity of clients to encourage the
deployment of directory-enabled applications. Much of the work on DIXIE and
LDAP was carried out at the University of Michigan, which provides reference
implementations of LDAP and maintains LDAP-related Web pages and mailing
lists.

RFC 1777 defines the LDAP protocol itself. RFC 1777, along with:

� The String Representation of Standard Attribute Syntaxes (RFC 1778)

� A String Representation of Distinguished Names (RFC 1779)

� An LDAP URL Format (RFC 1959)

� A String Representation of LDAP Search Filters (RFC 1960)

Define the original LDAPv2 version of the language.

LDAP Version 2 has reached the status of draft standard in the IETF
standardization process, one step from being a standard. All of today’s directory
server implementations are based on the LDAPv3 specification.

LDAP Version 3 is defined by Lightweight Directory Access Protocol (v3) (RFC
2251). Related RFCs that are new or updated for LDAP Version 3 are:

� Lightweight Directory Access Protocol (v3): Attribute Syntax Definitions (RFC
2252)

� Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names (RFC 2253)

� The String Representation of LDAP Search Filters (RFC 2254)
14 Understanding LDAP Design and Implementation

� The LDAP URL Format (RFC 2255)

� A Summary of the X.500(96) User Schema for use with LDAPv3 (RFC 2256)

� Authentication Methods for LDAP (RFC 2829)

� LDAPv3: Extension for Transport Layer Security (RFC 2830)

� Lightweight Directory Access Protocol (v3): Technical Specification (RFC
3377)

RFC 2251 is a proposed standard, one step below a draft standard. LDAP V3
extended LDAP V2 in the following areas:

� Referrals: A server that does not store the requested data can refer the client
to another server.

� Security: Extensible authentication using Simple Authentication and Security
Layer (SASL) mechanism.

� Internationalization: UTF-8 support for international characters.

� Extensibility: New object types and operations can be dynamically defined
and schema published in a standard manner.

In this book, the term LDAP refers to LDAP Version 3 unless LDAP Version 2 is
specifically stated. Differences between LDAP Version 2 and LDAP Version 3
are noted when necessary.

1.3.4 Beyond LDAPv3
Recently, the push for encapsulating LDAP operations within XML for use within
Web Services has spawned a new language called the Directory Services
Markup Language (DSML). The most recent of the specification is DSMLv2.
DSML is an XML schema for representing directory information, it's a generic
import / export format for directory information. Directory information in DSML
can be shared between DSML-aware applications without exposing the LDAP
protocol.

XML provides an effective way to present and transfer data; Directory services
allow you to share and manage data, and are thus a necessary prerequisite for
conducting online business; DSML is designed to make directory service more
dynamic by employing XML. DSML is an XML schema for working with
directories, it is defined using a Document Content Description (DCD). Thus,
DSML allows XML programmers to access LDAP-enabled directories without
having to write to the LDAP interface or use proprietary directory-access APIs,
and provides one consistent way to work with multiple dissimilar directories

More information on DSML can be found in Appendix A, “DSML Version 2” on
page 635.
 Chapter 1. Introduction to LDAP 15

Various directory integration technologies have emerged in recent years that
utilize LDAP and directory concepts to centralize and/or sychronize data
between disparate directories as well as other disparate non-directory data
sources. Two of the more prominent technologies in this directory integration
space are Meta-Directories and Virtual Directories. These technologies are
covered in greater detail in Appendix B, “Directory Integration - IBM Tivoli
Directory Integrator” on page 681.

1.4 Directory components
A directory contains a collection of objects organized in a tree structure. The
LDAP naming model defines how entries are identified and organized. Entries
are organized in a tree-like structure called the Directory Information Tree (DIT).
Entries are arranged within the DIT based on their distinguished name (DN). A
DN is a unique name that unambiguously identifies a single entry. DNs are made
up of a sequence of relative distinguished names (RDNs). Each RDN™ in a DN
corresponds to a branch in the DIT leading from the root of the DIT to the
directory entry. A DN is composed of a sequence of RDNs separated by
commas, such as cn=thomas,ou=itso,o=ibm.

You can organize entries, for example, after organizations and within a single
organization you can further split the tree into organizational units, and so forth.
You can define your DIT based on your organizational needs as shown in
Figure 1-2 on page 17. If you have, for example, one company with different
divisions, you may want to start with your company name under the root as the
organization (o) and then branch into organizational units (ou) for the individual
divisions. In case you store data for multiple organizations within a country, you
may want to start with a country (c) and then branch into organizations. For more
information on planning a DIT, refer to Chapter 3, “Planning your directory” on
page 57.
16 Understanding LDAP Design and Implementation

Figure 1-2 Example of a Directory Information Tree (DIT)

Each object also referred to as an entry in a directory belonging to one or more
object classes. An object class describes the content and purpose of the object.
It also contains a list of attributes, such as a telephone number or surname, that
can be defined in an object of that class. You can publish entries of different
object classes under another object as shown in Figure 1-2 where an ePrinter
object and a Person object is published under the organization ACMESupply.

ou=Marketing ou=Support o=ACMESupply o=iSeriesShop

o=IBM c=us

Directory Root (Top)

cn=mbarlen
 objectClass=Person
 objectClass-ePerson
 mail=marion@ibm.com
 sn=Barlen
 givenName=Marion
 telephoneNumber=112

cn=Klaus
 objectClass=Person
 objectClass=ePerson
 mail=Ktebbe@ibm.com
 sn=Tebbe

cn=tbarlen
 objectClass=Person
 objectClass=ePerson
 mail=thomas@acme.com
 sn=Barlen

deviceID=PrinterSales
 objectClass=cimPrinter
 objectClass=ePrinter
 location=Printer room 3rd floor
 owner=John Doe
 Queuename=lsprt01
 maxCopies=10
 Chapter 1. Introduction to LDAP 17

Figure 1-3 ePrinter object class

The object class also defines which of the attributes must be defined (required)
when creating an object of this class and which attributes are optional. As shown
in Figure 1-3, the object class with the name ePrinter has a required attribute
deviceID and three optional attributes that may or may not be filled in when
creating an ePrinter object. Object classes can also inherit characteristics, such
as attributes from other object classes. In the example of the ePrinter, the class
inherits all the attributes that are defined in class cimPrinter. That means, when
you create an ePrinter object you have to define the deviceID and optionally
you can specify the location, owner, and queuePtr attribute of ePerson and all
attributes of cimPrinter.

Also attributes themselves have certain characteristics as shown in Figure 1-4 on
page 19. The surname attribute name, for example, is defined as sn and surName,
and describes a person's family name. The attribute definition specifies also the
syntax rules for the attribute value. A telephone number may only contain
numbers and hyphens while the surname consists of alpha characters. Other
specifications include whether this attribute can contain only one or many values,
the matching rules, the Object Identifier (OID), and so forth. The IBM Tivoli
Directory Server (ITDS) product also includes some IBM proprietary extensions
to each attribute. Other manufactures, such as Microsoft, have similar
extensions. The IBM extensions include also an access class, which is used in
combination with access control lists (ACLs) to control who can perform a certain
action on the attribute value, such as read, write, search, or compare operations.
18 Understanding LDAP Design and Implementation

All the objects and attributes with their characteristics are defined in schemas.
The schema specifies what can be stored in the directory. Schema-checking
ensures that all required attributes for an entry are present before an entry is
stored. Schema-checking also ensures that attributes not in the schema are not
stored in the entry. Optional attributes can be filled in at any time. A schema also
defines the inheritance and subclassing of objects and where in the DIT structure
(hierarchy) objects may appear. Information about the ITDS schema can be
found at:

http://publib.boulder.ibm.com/tividd/td/IBMDS/IDSschema52/en_US/HTML/sc
hema.html

Figure 1-4 Attribute definition example

As you have seen in Figure 1-3 on page 18 and Figure 1-4, object classes and
attributes including their specifications are defined as OIDs in an ASN.1 notation
format. All these OIDs are registered with a public organization, such as the
ANSI organization (http://www.ansi.org) for the United States. The number
notation refers to a hierarchy. For example, the OID 2.5.4.4 resolves into a
surName attribute as shown in Figure 1-5 on page 20.
 Chapter 1. Introduction to LDAP 19

http://publib.boulder.ibm.com/tividd/td/IBMDS/IDSschema52/en_US/HTML/schema.html
http://www.ansi.org

Figure 1-5 Example of object identifiers as defined by the ANSI organization

1.5 LDAP standards
Several standards in the form of IETF RFCs exist for LDAP. The following is a
brief list of RFCs that apply for LDAP Version 2 and Version 3:

� RFC 1274 The COSINE and Internet X.500 Schema

� RFC 1777 Lightweight Directory Access Protocol (V2)

� RFC 1778 String Representation of Standard Attribute Syntaxes

� RFC 1779 String Representation of Distinguished Names

� RFC 1823 LDAP Application Program Interface (V2)

� RFC 2052 A DNS RR for Specifying the Location of Services (DNS SRV)

� RFC 2219 Use of DNS Aliases for Network Services

� RFC 2222 Simple Authentication and Security Layer (SASL)

� RFC 2247 Using Domains in LDAP/X.500 Distinguished Names

� RFC 2251 Lightweight Directory Access Protocol (V3)

� RFC 2252 Lightweight Directory Access Protocol (V3): Attribute Syntax
Definitions

� RFC 2253 Lightweight Directory Access Protocol (V3): UTF-8 String
Representation of Distinguished Names

� RFC 2254 The String Representation of LDAP Search Filters

� RFC 2255 The LDAP URL Format

� RFC 2256 A Summary of the X.500(96) User Schema for use with LDAPv3

� RFC 2596 Use of Language code in LDAP

� RFC 2696 LDAP Control Extension for Simple Paged Results Manipulation

� RFC 2829 Authentication Methods for LDAP
20 Understanding LDAP Design and Implementation

� RFC 2849 The LDAP Data Interchange Format (LDIF) - Technical
Specification

� RFC 2891 LDAP Control Extension for Server Side Sorting of Search Results

� The Open Group schema for liPerson and liOrganization (NAC/LIPS)

� Oasis Directory Services Markup Language (DSML) 2.

1.6 IBM’s Directory-enabled offerings
Many of IBM’s products are directory enabled in one way or another. Some
products have their own LDAP server component (that is, they can respond to
queries from LDAP clients), some products require that an LDAP directory exist
for them to work at all, and finally some products optionally can take advantage
of a LDAP based directory service.

IBM Tivoli Directory Server (ITDS)
ITDS is IBM’s LDAPv3 Directory offering. ITDS implements the Internet
Engineering Task Force (IETF) LDAP V3 specifications. It also includes
enhancements added by IBM in functional and performance areas. This version
uses IBM DB2® as the backing store to provide per LDAP operation transaction
integrity, high performance operations, and on-line backup and restore
capability. ITDS interoperates with the IETF LDAP V3 based clients. Please refer
to Chapter 4, “IBM Tivoli Directory Server overview” on page 83, for a more
detailed overview of ITDS.

IBM Lotus Domino
IBM Lotus Domino is an enterprise-class messaging and collaboration system,
designed to take full advantage of the e-business revolution. It runs on a variety
of different hardware platforms and operating systems. IBM Lotus Domino server
supports industry standards like Simple Mail Transfer Protocol (SMTP),
Multipurpose Internet Mail Extensions (MIME), Post Office Protocol (POP3),
LDAP, and SSL.

IBM Lotus Domino is designed to simplify integration into a multi-directory
environment. With IBM Lotus Domino (Domino) 6 (or later), you have the option
of moving from a distributed directory architecture and making Domino the
central directory. This allows you to take advantage of a centralized directory
configuration that provides added control and less overhead and is easier to
manage. Domino Server comes with the Domino Upgrade Services tool. This
tool is used to import users from a server-based foreign directory and register
those users in the Domino Directory. Domino Upgrade Services migrates data
from many different systems, some of which include LDAP Data Interchange
 Chapter 1. Introduction to LDAP 21

Format (LDIF) files, LDAP-compliant foreign directories (such as IBM Tivoli
Directory Server), Microsoft Windows® NT Server, and Microsoft Active
Directory.

IBM Lotus Domino 6.5 also has enhanced the implementation of LDAP
capabilities and improved the performance of LDAP directory access. A new
Domino LDAP Schema database allows you to maintain and extend the schema.

Other directory schemas can be imported via LDIF files.

Other Domino R6 features include:

� Support for X.500 naming conventions, including hierarchical naming and
extensible attributes, for maximum flexibility in configuring the namespace.

� LDAP protocol support in both the client and the server providing lookup
(read), add, delete, and modify (write) support for non-Notes clients (for
example Web browsers) and servers.

� Rule-based domain relationships for faster lookups across large
namespaces.

� Hierarchical naming and trust between domains to support the relationship of
entries across domains.

� Support for a Public Key Infrastructure.

� A dynamically extensible directory schema ideal for customizing the directory
to meet specific business requirements.

� Multi-master replication, a key element for reliable directory synchronization
and maximum availability.

� The LDAP service schema support for LDAP RFCs 2252, 2256, 2798, 2247,
2739, 2079, 1274; the new Domino LDAP Schema database (SCHEMA.NSF)
used as a tool for maintaining and extending the schema; an automatic
schema maintenance process, true object class inheritance; faster schema
loading; and support for the namingContext operational attribute defined in
LDAP standard RFC 2251.

� An open architecture that can easily incorporate support for emerging
standards.

IBM Tivoli Directory Integrator (ITDI)
With the Version 5.2 release of ITDI, ITDI now has the capability, via its LDAP
Event Handler, to act as a pseudo LDAP directory server and handle LDAP
transactions from various LDAP enabled clients. While ITDI is primarily a
meta-directory data synchronization product, the ability to act as an LDAP server
can be very useful in many integration scenarios.
22 Understanding LDAP Design and Implementation

ITDI synchronizes identity data residing in directories, databases, collaborative
systems, applications used for human resources (HR), customer relationship
management (CRM), and Enterprise Resource Planning (ERP), and other
corporate applications.

By serving as a flexible, synchronization layer between a company's identity
structure and the application sources of identity data, ITDI eliminates the need
for a centralized datastore. For those enterprises who do choose to deploy an
enterprise directory solution, ITDI can help ease the process by connecting to the
identity data from the various repositories throughout the organization.

Please refer to Appendix B, “Directory Integration - IBM Tivoli Directory
Integrator” on page 681, for more information about ITDI.

IBM software products that require a directory
These are:

� IBM Tivoli Access Manager

� IBM Tivoli Identity Manager

� IBM Tivoli Privacy Manager

� IBM WebSphere Portal Server

� IBM Lotus Sametime® Server

IBM software products that can take advantage of a directory
These are:

� IBM WebSphere Application Server

� IBM DB2 Universal Database™

� IBM Lotus Notes® Client

1.7 Directory resources on the Web
OpenLDAP is a very active open source LDAPv3 directory server (and
associated client tools) project that has been around since 1998. It is derived
from the original University of Michigan slapd server. The OpenLDAP suite
includes:

� Stand-alone LDAP server (slapd)

� Stand-alone LDAP replication server (slurpd)

� Libraries implementing the LDAP protocol

� Utilities, tools, and sample clients
 Chapter 1. Introduction to LDAP 23

The OpenLDAP site is also the home of a the JLDAP Java LDAP Class Libraries
and the JDBC-LDAP LDAP Bridge Driver.

http://www.openldap.org

The Apache Directory Project is a new Open Source project that is developing an
embeddable Java based LDAPv3 directory server.

http://incubator.apache.org/directory/subprojects/eve/index.html

The University of Michigan LDAP Mailing List (ldap@umich.edu mail list) is a
popular vendor neutral site used by LDAP developers and system administrators
to resolve questions relating to use of LDAP. You can subscribe to the mailing list
using the following information

SMTP Address: dap-request@umich.edu
subject=SUBSCRIBE

Recent messages are archived and can be access directly at:

http://listserver.itd.umich.edu/cgi-bin/lyris.pl?visit=ldap

The LDAPZone is a general purpose site dedicated to directory issues. It has a
number of useful forums dealing with development and directory administration.

http://www.ldapzone.com/

The Directory Interoperability Forum (DIF) is the Open Group’s directory related
working group focused on promotion of directory standards and standard
compliance certification.

http://www.opengroup.org/dif/

The Mozilla site contains a number of LDAP SDKs that have been popular since
the early days of LDAP development. These include the LDAP C SDK, the
Mozilla Java SDK, and PerLDAP.

http://www.mozilla.org/directory/

Net::LDAP is a pure Perl LDAP module available from CPAN. It is actively
maintained and provides the most comprehensive set of capabilities for
accessing LDAP directories via Perl.

http://search.cpan.org/~gbarr/perl-ldap-0.31/
24 Understanding LDAP Design and Implementation

http://www.openldap.org
http://incubator.apache.org/directory/subprojects/eve/index.html
http://www.ldapzone.com/
http://www.opengroup.org/dif/
http://listserver.itd.umich.edu/cgi-bin/lyris.pl?visit=ldap
http://www.mozilla.org/directory/
http://search.cpan.org/~gbarr/perl-ldap-0.31/

The Java Naming and Directory Interface (JNDI) is a standard component of
Java. It provides the components required to build directory-enabled applications
in Java.

http://java.sun.com/products/jndi/

The Active Directory Service Interfaces (ADSI) provides Microsoft based
applications the ability to query and manipulate directories.

http://www.microsoft.com/windows2000/techinfo/howitworks/activedirector
y/adsilinks.asp

The DirectoryMark is a benchmarking suite designed to measure the
performance of directory servers.

http://www.mindcraft.com/directorymark/index.html

The Java LDAP Browser is a very good cross platform (pure Java) LDAP
Browser/Editor. It is available for download at:

http://www.iit.edu/~gawojar/ldap/index.html

JXplorer is another good cross platform (pure Java) LDAP Browser/Editor. It also
includes very good support for SSL-based LDAP connections.

http://pegacat.com/jxplorer/
 Chapter 1. Introduction to LDAP 25

http://www.mindcraft.com/directorymark/index.html
http://www.iit.edu/~gawojar/ldap/index.html
http://pegacat.com/jxplorer/
http://java.sun.com/products/jndi/
http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/adsilinks.asp

26 Understanding LDAP Design and Implementation

Chapter 2. LDAP concepts and
architecture

LDAP is based on the client/server model of distributed computing. The success
of LDAP has been largely due to the following characteristics that make it simpler
to implement and use, compared to X.500 and DAP.

This chapter explains the basic architecture of LDAP. It discusses the
information, naming, functional, and security models that form the basis of the
LDAP architecture. Various terms and concepts defined by or needed to
understand the LDAP architecture are introduced along the way. After a general
overview of the architecture, each of the models that form the backbone of the
LDAP architecture is discussed in detail.

2

© Copyright IBM Corp. 1998, 2004. All rights reserved. 27

2.1 Overview of LDAP architecture
LDAP defines the content of messages exchanged between an LDAP client and
an LDAP server. The messages specify the operations requested by the client
(that is, search, modify, and delete), the responses from the server, and the
format of data carried in the messages. LDAP messages are carried over
TCP/IP, a connection-oriented protocol, so there are also operations to establish
and disconnect a session between the client and server.

However, for the designer of an LDAP directory, it is not so much the structure of
the messages being sent and received over the wire that is of interest. What is
important is the logical model that is defined by these messages and data types,
how the directory is organized, what operations are possible, how information is
protected, and so forth.

The general interaction between an LDAP client and an LDAP server takes the
following form:

1. The client establishes a session with an LDAP server. This is known as
binding to the server. The client specifies the host name or IP address and
TCP/IP port number where the LDAP server is listening.

2. The client can provide a user name and a password to properly authenticate
with the server, or the client can establish an anonymous session with default
access rights. The client and server can also establish a session that uses
stronger security methods such as encryption of data.

3. The client then performs operations on directory data. LDAP offers both read
and update capabilities. This allows directory information to be managed as
well as queried. LDAP also supports searching the directory for data meeting
arbitrary user-specified criteria. Searching is a very common operation in
LDAP. A user can specify what part of the directory to search and what
information to return. A search filter that uses Boolean conditions specifies
what directory data matches the search.

4. When the client is finished making requests, it closes the session with the
server. This is also known as unbinding.

The philosophy of the LDAP API is to keep simple things simple. This means that
adding directory support to existing applications can be done with low overhead.
Because LDAP was originally intended as a lightweight alternative to DAP for
accessing X.500 directories, it follows a X.500 model. The directory stores and
organizes data structures known as entries. A directory entry usually describes
an object such as a person, device, a location, and so on. Each entry has a name
called a distinguished name (DN) that uniquely identifies it. The DN consists of a
sequence of parts called relative distinguished names (RDNs), much like a file
name consists of a path of directory names in many operating systems such as
28 Understanding LDAP Design and Implementation

UNIX® and Windows. The entries can be arranged into a hierarchical tree-like
structure based on their distinguished names. This tree of directory entries is
called the Directory Information Tree (DIT).

Each entry contains one or more attributes that describe the entry. Each attribute
has a type and a value. For example, the directory entry for a person might have
an attribute called telephoneNumber. The syntax of the telephoneNumber
attribute would specify that a telephone number must be a string of numbers that
can contain spaces and hyphens. The value of the attribute would be the
person’s telephone number, such as 512-555-1212.

A directory entry describes some object. An object class is a general description,
sometimes called a template, of an object, as opposed to the description of a
particular object. For instance, the object class person has a surname attribute,
whereas the object describing John Smith has a surname attribute with the value
Smith. The object classes that a directory server can store and the attributes they
contain are described by schema. Schema define what object classes are
allowed where in the directory, what attributes they must contain, what attributes
are optional, and the syntax of each attribute. For example, a schema could
define a person object class. The person schema might require that a person
have a surname attribute that is a character string, specify that a person entry
can optionally have a telephoneNumber attribute that is a string of numbers with
spaces and hyphens, and so on.

LDAP defines operations for accessing and modifying directory entries such as:

� Binding and unbinding

� Searching for entries meeting user-specified criteria

� Adding an entry

� Deleting an entry

� Modifying an entry

� Modifying the distinguished name or relative distinguished name of an entry
(move)

� Comparing an entry

The version of LDAP all modern directory servers use today is LDAPv3. LDAPv3
is documented in several IETF RFCs. The key LDAP Version 3 RFCs are listed
below along with a short description to provide an overview of the documents
defining the LDAP architecture.

� RFC 2251 Lightweight Directory Access Protocol (v3)

Describes the LDAP protocol designed to provide lightweight access to
directories supporting the X.500 model. The lightweight protocol is meant to
 Chapter 2. LDAP concepts and architecture 29

be implementable in resource-constrained environments such as browsers
and small desktop systems.

This RFC is the core of the LDAP family of RFCs. It describes how entries are
named with distinguished names, defines the format of messages exchanged
between client and server, enumerates the operations that can be performed
by the client, and specifies that data is represented using UTF-8 character
encoding. The RFC specifies that the schema describing directory entries
must themselves be readable so that a client can determine what type of
objects a directory server stores. It defines how the client can be referred to
another LDAP server if a server does not contain the requested information. It
describes how individual operations can be extended using controls and how
additional operations can be defined using extensions. It also discusses how
clients can authenticate to servers and optionally use Simple Authentication
and Security Layer (SASL) to allow additional authentication mechanisms.

� RFC 2252 Lightweight Directory Access Protocol (v3): Attribute Syntax
Definitions

LDAP uses octet strings to represent the values of attributes for transmission
in the LDAP protocol. This RFC defines how values such as integers, time
stamps, mail addresses, and so on are represented. For example, the integer
123 is represented by the string "123". These definitions are called attribute
syntaxes. This RFC describes how an attribute with a syntax such as
“telephone number” is encoded. It also defines matching rules to determine if
values meet search criteria. An example is caseIgnoreString, which is used to
compare character strings when case is not important.

These attribute types and syntaxes are used to build schema that describe
objects classes. A schema lists what attributes a directory entry must or may
have. Every directory entry has an objectclass attribute that lists the (one or
more) schema that describe the entry. For example, a directory entry could be
described by the object classes inetOrgPerson and organizationalPerson. If
an objectclass attribute includes the value extensibleObject, it can contain
any attribute.

� RFC 2253 Lightweight Directory Access Protocol (v3): UTF-8 String
Representation of Distinguished Names

Distinguished names (DNs) are the unique identifiers, sometimes called
primary keys, of directory entries. X.500 uses ASN.1 to encode distinguished
names. LDAP encodes distinguished names as strings. This RFC defines
how distinguished names are represented as strings. A string representation
is easy to encode and decode and is also human readable. A DN is
composed of a sequence of relative distinguished names (RDNs) separated
by commas. The sequence of RDNs making up a DN names the ancestors of
a directory entry up to the root of the DIT. Each RDN is composed of an
attribute value from the directory entry. For example, the DN cn=John
30 Understanding LDAP Design and Implementation

Smith,ou=Austin,o=IBM,c=US represents a directory entry for a person with
the common name (cn) John Smith under the organizational unit (ou) Austin
in the organization (o) IBM in the country (c) US.

� RFC 2254 The String Representation of LDAP Search Filters

LDAP search filters provide a powerful mechanism to search a directory for
entries that match specific criteria. The LDAP protocol defines the network
representation of a search filter. This document defines how to represent a
search filter as a human-readable string. Such a representation can be used
by applications or in program source code to specify search criteria. Attribute
values are compared using relational operators such as equal, greater than,
or “sounds like” for approximate or phonetic matching. Boolean operators can
be used to build more complex search filters. For example, the following
search filter searches for entries that either have a surname attribute of Smith
or that have a common name attribute that begins with Jo:

(| (sn=Smith) (cn=Jo*))

� RFC 2255 The LDAP URL Format

Uniform Resource Locators (URLs) are used to identify Web pages, files, and
other resources on the Internet. An LDAP URL specifies an LDAP search to
be performed at a particular LDAP server. An LDAP URL represents in a
compact and standard way the information returned as the result of the
search. The LDAP URL Format is discussed in more detail later in this
chapter.

� RFC 2256 A Summary of the X.500(96) User Schema for use with LDAPv3

Many schema and attributes commonly accessed by directory clients are
already defined by X.500. This RFC provides an overview of those attribute
types and object classes that LDAP servers should recognize. For instance,
attributes such as cn (common name), description, and postalAddress are
defined. Object classes such as country, organizationalUnit, groupOfNames,
and applicationEntity are also defined.

The RFCs listed above build up the core LDAP Version 3 specification. LDAP
can be better understood by considering the four models upon which it is based:

� Information: Describes the structure of information stored in an LDAP
directory

� Naming: Describes how information in an LDAP directory is organized and
identified

� Functional: Describes what operations can be performed on the information
stored in an LDAP directory

� Security: Describes how the information in an LDAP directory can be
protected from unauthorized access
 Chapter 2. LDAP concepts and architecture 31

The following sections discuss the four LDAP models.

2.2 The informational model
The basic unit of information stored in the directory is called an entry. Entries
represent objects of interest in the real world such as people, servers,
organizations, and so on. Entries are composed of a collection of attributes that
contain information about the object. Every attribute has a type and one or more
values. The type of the attribute is associated with a syntax. The syntax specifies
what kind of values can be stored. For example, an entry might have a attribute.
The syntax associated with this type of attribute would specify that the values are
telephone numbers represented as printable strings optionally followed by
keywords describing paper size and resolution characteristics. It is possible that
the directory entry for an organization would contain multiple values in this
attribute—that is, that an organization or person represented by the entity would
have multiple fax numbers. The relationship between a directory entry and its
attributes and their values is shown in Figure 2-1.

Figure 2-1 Entries, attributes and values

In addition to defining what data can be stored as the value of an attribute, an
attribute syntax also defines how those values behave during searches and other
directory operations. The attribute telephoneNumber, for example, has a syntax
that specifies:

� Lexicographic ordering.
� Case, spaces and dashes are ignored during the comparisons.
� Values must be character strings.

Entry

Attribute Attribute

AttributeAttribute

Attribute

Value

Value

Value

Type
32 Understanding LDAP Design and Implementation

For example, using the correct definitions, the telephone numbers
512-838-6008, 512838-6008, and 5128386008 are considered the same. A few
of the syntaxes that have been defined for LDAP are listed in Table 2-1.

Table 2-1 Some of the attribute syntaxes

Table 2-2 lists some common attributes. Some attributes have alias names that
can be used wherever the full attribute name is used. For example, cn can be
used when referring to the attribute commonName.

Table 2-2 Common LDAP attributes

Syntax Description

bin Binary information

ces Case exact string, also known as a
directory string, case is significant
during comparisons.

cis Case ignore string. Case is not significant
during comparisons.

tel Telephone number. The numbers are
treated as text, but all blanks and dashes
are ignored.

dn Distinguished name.

Generalized Time Year, month, day, and time represented as
a printable string.

Postal Address Postal address with lines separated by "$"
characters.

Attribute, Alias Syntax Description Example

commonName, cn cis Common name of
an entry

John Smith

surname, sn cis Surname (last
name) of a person

Smith

telephoneNumber tel Telephone number 512-838-6008

organizationalUnit
Name, ou

cis name of
organizational unit

Tivoli

owner dn DN of person that
owns the entry

cn=John
Smith,o=IBM,c=us
 Chapter 2. LDAP concepts and architecture 33

Constraints can be associated with attribute types to limit the number of values
that can be stored in the attribute or to limit the total size of a value. For example,
an attribute that contains a photo could be limited to a size of 10 KB to prevent
the use of unreasonable amounts of storage space. Or an attribute used to store
a social security number could be limited to holding a single value.

Schemas define the type of objects that can be stored in the directory. Schemas
also list the attributes of each object type and whether these attributes are
required or optional. For example, in the person schema, the attribute surname
(sn) is required, but the attribute description is optional. Schema-checking
ensures that all required attributes for an entry are present before an entry is
stored. Schema-checking also ensures that attributes not in the schema are not
stored in the entry. Optional attributes can be filled in at any time. Schema also
define the inheritance and subclassing of objects and where in the DIT structure
(hierarchy) objects may appear.

Table 2-3 lists a few of the common schema (object classes and their required
attributes). In many cases, an entry can consist of more than one object class.

Table 2-3 Object classes and required attributes

Though each server can define its own schema, for interoperability it is expected
that many common schema will be standardized (refer to RFC 2252, Lightweight
Directory Access Protocol (v3): Attribute Syntax Definitions, and RFC 2256, A
Summary of the X.500(96) User Schema for use with LDAPv3).

organization, o cis Name of
organization

IBM

jpegPhoto bin Photographic
image in JPEG
format

Photograph of
John Smith

Object class Description Required attributes

InetOrgPerson Defines entries for a
person

commonName (cn)
surname (sn)
objectClass

organizationalUnit Defines entries for
organizational units

ou
objectClass

organization Defines entries for
organizations

o
objectClass

Attribute, Alias Syntax Description Example
34 Understanding LDAP Design and Implementation

There are times when new schema will be needed at a particular server or within
an organization. In LDAP Version 3, a server is required to return information
about itself, including the schema that it uses. A program can therefore query a
server to determine the contents of the schema. This server information is stored
at the special zero-length DN.

Objects can be derived from other objects. This is known as subclassing. For
example, suppose an object called person was defined that included an attribute
surname and so on. An object class organizationalPerson could be defined as a
subclass of the person object class. The organizationPerson object class would
have the same attributes as the person object class and could add other
attributes such as title and officenumber. The person object class would be
called the superior of the organizationPerson object class. One special object
class, called top, has no superiors. The top object class includes the mandatory
objectClass attribute. Attributes in top appear in all directory entries as specified
(required or optional).

Each directory entry has a special attribute called objectClass. The value of the
objectClass attribute is a list of two or more schema names. These schema
define what type of object(s) the entry represents. One of the values must be
either top or alias. Alias is used if the entry is an alias for another entry, otherwise
top is used. The objectClass attribute determines what attributes the entry must
and may have.

The special object class extensibleObject allows any attribute to be stored in the
entry. This can be more convenient than defining a new object class to add a
special attribute to a few entries, but also opens up that object to be able to
contain anything (which might not be a good thing in a structured system).

2.2.1 LDIF
When an LDAP directory is loaded for the first time or when many entries have to
be changed at once, it is not very convenient to change every single entry on a
one-by-one basis. For this purpose, LDAP supports the LDAP Data Interchange
Format (LDIF) that can be seen as a convenient, yet necessary, data
management mechanism. It enables easy manipulation of mass amounts of
data. See Example 2-1 for the basic form of an LDIF entry.

Example 2-1 Basic form of an LDIF entry

dn: <distinguished name>
<attrtype> : <attrvalue>
<attrtype> : <attrvalue>
...
 Chapter 2. LDAP concepts and architecture 35

A line can be continued by starting the next line with a single space or tab
character, for example:

dn: cn=John E Doe, o=University of Higher
Learning, c=US

Multiple attribute values are specified on separate lines, for example:

cn: John E Doe
cn: John Doe

If an attrvalue contains a non-US-ASCII character, or begins with a space or a
colon (:), the attrtype is followed by a double colon and the value is encoded in
base-64 notation. For example, the value "begins with a space" would be
encoded like this:

cn:: IGJlZ2lucyB3aXRoIGEgc3BhY2U=

Multiple entries within the same LDIF file are separated by a blank line. Multiple
blank lines are considered a logical end-of-file.

Example 2-2 shows a simple LDIF file which contains an organizational unit,
People, located beneath the organization ibm.com in the DIT. The entry of John
Smith is the only data entry for People. Further on, there is an organizational unit
called marketing. Note that John Smith is a member of the marketing department
due to the attribute value pair ou: marketing.

Example 2-2 Example LDIF File with organizational and person entries

dn: o=ibm.com
objectclass: top
objectclass: organization
o: ibm.com

dn: ou=People, o=ibm.com
objectclass: organizationalUnit
ou: people

dn: ou=marketing, o=ibm.com
objectclass: organizationalUnit
ou: marketing

dn: cn=John Smith, ou=people, o=ibm.com
objectclass: top
objectclass: organizationalPerson
cn: John Smith
sn: Smith
givenname: John
uid: jsmith
ou: marketing
36 Understanding LDAP Design and Implementation

ou: people
telephonenumber: 838-6004

2.2.2 LDAP schema
In this section we discuss LDAP schema.

Objectclasses
An object class is an LDAP term that denotes the type of object being
represented by a directory entry or record. Some typical object types are person,
organization, organizational unit, domain component and groupOfNames. There
are also object classes that define an object's relationship to other objects, such
as object class top denotes that the object may have subordinate objects under it
in a hierarchical tree structure. Note that some LDAP object classes may be
combined, for example, an object class of organizational unit will most often also
be simultaneously defined as a top object class because it will have entries
beneath it.

An object class is declared as abstract, structural, or auxiliary. An abstract
object class is used as a template for creating other object classes. A directory
entry cannot be instantiated from an abstract object class. Directory entries are
instantiated from structural object classes. An auxiliary object class cannot be
instantiated by itself as a directory entry; it can be attached to directory entries
that are instantiated from structural object classes. Auxiliary object classes
provide a method for extending structural object classes without having to
change the schema definition of a structural class.

LDAP object classes defined sets of standard attributes that are listed as must
contain (mandatory attributes) and may contain (optional attributes). Different
object classes may prescribe some attributes that overlap, or are redundant with
other object classes. And it is common practice in LDAP directories to use
multiple object classes to define a single directory entry. Most object classes are
defined in a hierarchical order, where one object class is said to "inherit" from
another superior object class. Consider an LDAP object that is defined with the
object classes, as shown in Example 2-3.

Example 2-3 LDAP object definition

objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: eDominoAccount
 Chapter 2. LDAP concepts and architecture 37

The order shown for the object classes above indicates a hierarchical
relationship between these object classes, but not necessarily. The top
objectclass is of course at the top of the hierarchy. Most other objectclasses that
are not intended to be subordinate to another class should have top as its
superior. Not all LDAP directories expect a user record to have the top object
class assigned to it, while others require it for using Access Control Lists (ACLs)
on the object. The person class is subordinate to the top class and requires that
the cn (Common Name) and sn (Surname) attributes be populated, and allows
several other optional attributes. The organizationalPerson class inherits from
the person class. The inetOrgPerson class inherits from the
organizationalPerson class. Now here is the tricky part: The eDominoAccount
object class is subordinate to the top class and requires that the sn and userid
attributes be populated. Notice that this overlaps with the person object class
requirement for the sn attribute. Does this mean that we need to store the sn
attribute twice? No, because it is a standard attribute. We will talk more about
attributes a little later in this section. Example 2-3 on page 37 illustrates that you
cannot necessarily tell the hierarchical relationship of object classes by the order
they appear in a list. So then, how do we tell? We tell (or in reality, your LDAP
directory interface shows you) by looking at the object class definitions
themselves. The methods for defining object classes for LDAP V3 are described
in RFC-2251 and RFC-2252. Example 2-4 shows object class definitions taken
from ITDS.

Example 2-4 Some ITDS object class definitions

objectclass: top
objectclasses=(2.5.6.0 NAME 'top' DESC 'Standard ObjectClass' ABSTRACT MUST (
objectClass))

objectclass: person
objectclasses=(2.5.6.6 NAME 'person' DESC 'Defines entries that generically
represent people.' SUP 'top' STRUCTURAL MUST (cn $ sn) MAY (userPassword $
telephoneNumber $ seeAlso $ description))

objectclass: organizationalPerson

objectclasses=(2.5.6.7 NAME 'organizationalPerson' DESC 'Defines entries for
people employed by or associated with an organization.' SUP 'person' STRUCTURAL
MAY (title $ x121Address $ registeredAddress $ destinationIndicator $
preferredDeliveryMethod $ telexNumber $ teletexTerminalIdentifier $
internationalISDNNumber $ facsimileTelephoneNumber $ street $ postalAddress $
postalCode $ postOfficeBox $ physicalDeliveryOfficeName $ ou $ st $ l))
objectclass: inetOrgPerson

objectclasses=(2.16.840.1.113730.3.2.2 NAME 'inetOrgPerson' DESC 'Defines
entries representing people in an organizations enterprise network.' SUP
'organizationalPerson' STRUCTURAL MAY (audio $ businessCategory $ carLicense $
38 Understanding LDAP Design and Implementation

departmentNumber $ employeeNumber $ employeeType $ givenName $ homePhone $
homePostalAddress $ initials $ jpegPhoto $ labeledURI $ mail $ manager $ mobile
$ pager $ photo $ preferredLanguage $ roomNumber $ secretary $ uid $
userCertificate $ userSMIMECertificate $ x500UniqueIdentifier $ displayName $ o
$ userPKCS12))

Note that each object class begins with a string of numbers delimited by
decimals. This number is referred to as the OID (object identifier). After the OID
is the object class name (NAME) followed by a description (DESC). If it is
subordinate to another object class, the superior (SUP) object class is listed.
Finally, the object class definition specifies what attributes are mandatory
(MUST) and which are optional (MAY).

The OID is a numeric string that is used to uniquely identify an object. OIDs are a
managed hierarchy administered by the International Organization for
Standardization (ISO - Web site http://www.iso.ch/) and the International
Telecommunication Union (ITU - Web site http://www.itu.ch/). ISO and ITU
delegate OID management to organizations by assigning them OID numbers.
Organizations can then assign OIDs to objects or further delegate to other
organizations. OIDs are associated with objects in protocols and data structures
defined using Abstract Syntax Notation (ASN.1).

OIDs are intended to be globally unique. They are formed by taking a unique
numeric string (for example, 1.3.4.7.4.17) and adding additional digits in a unique
fashion (such as 1.3.4.7.4.17.1, 1.3.4.7.4.17.2, 1.3.4.7.4.17.3, etc.) An
organization may acquire a "branch" from some root or vertex in the OID tree.
Such a branch is more commonly referred to as an arc (in the previous example
it was 1.3.4.7.4.17). The organization may then extend the arc (called subarcs)
as shown above to create additional OIDs and arcs. We have no idea why the
terminology for the OID tree uses the words "vertex" and "arc" instead of "root"
and "branch" as is more commonly used in LDAP and its X.500 heritage.

If you have an LDAP directory that is a derivative of the original University of
Michigan LDAP code (many open source and commercial LDAP directory
servers are), your object class definitions are contained in files ending with ".oc".

Note that IBM-specific OIDs begin with the arc 1.3.18.0.2; this is a unique private
enterprise number that has been assigned to IBM. The number breaks down as
shown in Example 2-5.

Example 2-5 IBM-specific OIDs

1 (ISO-assigned OID)
1.3 (ISO-identified organization)
1.3.18 (IBM)
1.3.18.0 (IBM Objects)
 Chapter 2. LDAP concepts and architecture 39

http://www.iso.ch/
http://www.itu.ch/

1.3.18.0.2 (IBM Distributed Directory)

As you may have guessed, the "dot notation" as first used by the IETF for IP
addresses was adopted to OIDs to keep things simple. However, unlike IP
addresses, there is no limit to the length of an OID.

If your organization must define your own attributes for use within your internal
directories, you should consider obtaining your own private enterprise number
arc to identify these attributes. We do not recommend that you "make up" your
own numbers, as you will probably not be able to interoperate with other
organizations (or some vendor's LDAP products). This is not to say obtaining
your own OID arc from ISO, IANA or some other authority to define your own
object classes and attributes will guarantee interoperability. But it will prevent you
from using OIDs that have already been assigned to or by someone else. OIDs
are only used for "equality-matching". That is, two objects (for example, directory
attributes or certificate policies) are considered to be the same if they have
exactly the same OID. There are no implied navigational or hierarchical
capabilities with OIDs (unlike IP addresses, for example); given an OID one can
not readily find out who owns the OID, related OIDs, etc. OIDs exist to provide a
unique identifier. There is nothing to stop two organizations from picking the
same identical names for objects that they manage, however, the OIDs will be
unique assuming they were assigned from legitimate arc numbers. If you are
interested in obtaining a private enterprise number (arc) for your own
organization, you may apply for one (free of charge) at the Internet Assigned
Numbers Authority Web site:

http://www.iana.org/cgi-bin/enterprise.pl

For more information regarding OIDs, the trees of assigned numbers, and
registration, we recommend starting at the ASN.1 frequently asked questions
Web site at:

http://asn1.elibel.tm.fr/oid/faq.htm

Let us look at the following example: Top is an abstract class that contains the
objectClass attribute. Person is a structural class that instantiates the directory
entry for a given person where the objectClass attribute is also part of that
Person entry. So far, this example has used only attributes and object classes
defined in a standard. So, now, you may want to tailor the people entries to
include information that your company requires and that is not defined in the
standard Person object definition. There are two ways to do this:

� Subclass the Person object to create a new structural class that includes
those additional attributes defined by your company, and instantiate the
Person directory entry based on that new class.
40 Understanding LDAP Design and Implementation

http://www.iana.org/cgi-bin/enterprise.pl
http://asn1.elibel.tm.fr/oid/faq.htm

� Define that collection of company attributes needed for your company’s
Person definition as an auxiliary class, and attach it to the directory entry
instantiated from the Person class.

Either method is recommended. The downside to auxiliary classes is that if the
auxiliary class includes an attribute that is also included in the structural class
definition, when that attribute is included in the instantiated directory entry and
that attribute contains multiple values and you want to delete the attribute, you
cannot tell whether the attribute (when added to the entry) was added when the
structural class was instantiated or when the auxiliary class was instantiated.
This may be important to the implementor or administrator.

Special entries exist in the namespace, called aliases. Aliases represent links to
other entries or partitions of the namespace. When the distinguished name of an
alias is used, the entry accessed is the entry to which the alias refers (unless
specified otherwise through the programming interface). The collection of
directory entries forms the Directory Information Tree (DIT). The method of
storage for the DIT of the LDAP directory is implementation-dependent and
hidden from the user of that LDAP directory. For example, the ITDS uses IBM
DB2 as its data store, but no DB2 constructs are externalized to LDAP.

Attributes
All the object class does is define the attributes, or types of data items contained
in that type of object. Some examples of typical attributes are cn (common
name), sn (surname), givenName, mail, uid, and userPassword. Just as the
object classes are defined with unique OIDs, each attribute also has a unique
OID number assigned to it. LDAP V3 attributes follow a notation similar (ASN.1)
to object classes. Example 2-6 shows some attribute definitions.

Example 2-6 Attribute definitions

attribute: name
attributetypes=(2.5.4.41 NAME 'name' DESC 'The name attribute type is the
attribute supertype from which string attribute types typically used for naming
may be formed. It is unlikely that values of this type itself will occur in an
entry.' EQUALITY 1.3.6.1.4.1.1466.109.114.2 SUBSTR 2.5.13.4 SYNTAX
1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)

attribute: sn
attributetypes=(2.5.4.4 NAME ('sn' 'surName') DESC 'This is the X.500
surname attribute, which contains the family name of a person.' SUP 2.5.4.41
EQUALITY 2.5.13.2 ORDERING 2.5.13.3 SUBSTR 2.5.13.4 USAGE userApplications)

attribute: mail
attributetypes=(0.9.2342.19200300.100.1.3 NAME ('mail' 'rfc822mailbox') DESC
'Identifies a users primary email address (the email address retrieved and
 Chapter 2. LDAP concepts and architecture 41

displayed by white-pages lookup applications).' EQUALITY 2.5.13.2 SYNTAX
1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplication)

Notice in Example 2-6 on page 41 that the superior (SUP) of sn is the attribute
2.5.4.41, which happens to be the name attribute. But then the name attribute
description says unlikely that values of this type itself will occur....
This illustrates just one of the many peculiarities of the way the attributes have
been defined. It merely provides a shorthand way to defining name-like attributes
such as surname. We did not need to define the syntax for sn because it inherits
this from name.

The attribute mail also has an alias of rfc822mailbox. As you may have guessed,
the "EQUALITY" and "SYNTAX" are yet more ASN.1 definitions.

2.3 The naming model
The LDAP naming model defines how entries are identified and organized.
Entries are organized in a tree-like structure called the Directory Information Tree
(DIT). Entries are arranged within the DIT based on their distinguished name
(DN). A DN is a unique name that unambiguously identifies a single entry. DNs
are made up of a sequence of relative distinguished names (RDNs).

Each RDN in a DN corresponds to a branch in the DIT leading from the root of
the DIT to the directory entry. Each RDN is derived from the attributes of the
directory entry. In the simple and common case, an RDN has the form
<attribute name> = <value>. A DN is composed of a sequence of RDNs
separated by commas.

An example of a DIT is shown in Figure 2-2 on page 43. The example is very
simple, but can be used to illustrate some basic concepts. Each box represents a
directory entry. The root directory entry is conceptual, but does not actually exist.
42 Understanding LDAP Design and Implementation

Figure 2-2 Example of a Directory Information Tree (DIT)

The organization of the entries in the DIT is restricted by their corresponding
object class definitions.

Entries are named according to their position in the DIT. The directory entry at
the bottom of the figure has the DN of cn=John Smith,ou=people,o=ibm,c=us.
The organizational group people has the DN of ou=people,o=ibm,c=us.

2.3.1 LDAP distinguished name syntax (DNs)
Entries in an LDAP directory are identified by their names. The characteristics of
these names are:

� They have two forms: A string representation and a URL.
� They have a uniform syntax.
� Namespace boundaries are not apparent in them.

A component of a name is called a relative distinguished name (RDN). An RDN
represents a point within the namespace hierarchy. RDNs are separated by and
concatenated using a comma (,). Each RDN is typed. RDNs have the form
type=value for single valued RDNs. The plus sign (+) is used to form multi-valued
RDNs: type=value+type=value.

Directory Root

c=us

o=ibm

ou=people ou=groupsou=applications

cn=John Smith
 Chapter 2. LDAP concepts and architecture 43

The type is case-insensitive and the value is defined to have a particular syntax.
The order of RDNs in an LDAP name is the most specific RDN first followed by
the less specific RDNs moving up the DIT hierarchy. A concatenated series of
RDNs equates to a distinguished name. The DN is used to represent an object
and the path to the object in the hierarchical namespace. A URL format for LDAP
has been defined that includes a DN as a component of the URL. These forms
are explained in the sections that follow.

Every entry in the directory has a DN. The DN is the name that uniquely identifies
an entry in the directory. A DN is made up of attribute=value pairs, separated by
commas, for example:

cn=Roger Smith,ou=sales,o=ib,c=US
cn=Sandy Brown,ou=marketing,o=ibm,c=US
cn=Leslie Jones,ou=development,o=ibm,c=US

Any of the attributes defined in the directory schema may be used to make up a
DN. The order of the component attribute value pairs is important. The DN
contains one component for each level of the directory hierarchy from the root
down to the level where the entry resides. LDAP DNs begin with the most
specific attribute (usually some sort of name), and continue with progressively
broader attributes, often ending with a country attribute. The first component of
the DN is referred to as the Relative Distinguished Name (RDN). It identifies an
entry distinctly from any other entries that have the same parent. In the examples
above, the RDN cn=Roger Smith separates the first entry from the second entry,
(with RDN cn=Sandy Brown). These two example DNs are otherwise equivalent.
The attribute:value pair making up the RDN for an entry must also be present in
the entry. (This is not true of the other components of the DN.)

The Distinguished Name (DN) syntax supported by this server is based on RFC
2253. The Backus-Naur Form (BNF) syntax is shown in Example 2-7.

Example 2-7 DN syntax

<name> ::= <name-component> (<spaced-separator>)
 | <name-component> <spaced-separator> <name>

 <spaced-separator> ::= <optional-space>
 <separator>
 <optional-space>

 <separator> ::= "," | ";"

 <optional-space> ::= (<CR>) *(" ")

 <name-component> ::= <attribute>
 | <attribute> <optional-space> "+"
 <optional-space> <name-component>
44 Understanding LDAP Design and Implementation

 <attribute> ::= <string>
 | <key> <optional-space> "=" <optional-space> <string>

 <key> ::= 1*(<keychar>) | "OID." <oid> | "oid." <oid>
 <keychar> ::= letters, numbers, and space

 <oid> ::= <digitstring> | <digitstring> "." <oid>
 <digitstring> ::= 1*<digit>
 <digit> ::= digits 0-9

 <string> ::= *(<stringchar> | <pair>)
 | '"' *(<stringchar> | <special> | <pair>) '"'
 | "#" <hex>

 <special> ::= "," | "=" | <CR> | "+" | "<" | ">"
 | "#" | ";"

 <pair> ::= "\" (<special> | "\" | '"')
 <stringchar> ::= any character except <special> or "\" or '"'

 <hex> ::= 2*<hexchar>
 <hexchar> ::= 0-9, a-f, A-F

A semicolon (;) character can be used to separate RDNs in a distinguished name,
although the comma (,) character is the typical notation.

White-space characters (spaces) might be present on either side of the comma or
semicolon. The white-space characters are ignored, and the semicolon is
replaced with a comma.

In addition, space (' ' ASCII 32) characters may be present either before or
after a '+' or '='. These space characters are ignored when parsing.

A value may be surrounded by double quotation ('"' ACSII 34) characters, which
are not part of the value. Inside the quoted value, the following characters
can occur without being interpreted as escape characters:

A space or "#" character occurring at the beginning of the string
A space character occurring at the end of the string
One of the characters "'", "=", "+", "\", "<", ">", or ";"
Alternatively, a single character to be escaped may be prefixed by a backslash
('\' ASCII 92). This method can be used to escape any of the characters listed
previously and the double quotation marks ('"' ASCII 34) character.

This notation is designed to be convenient for common forms of names. The
following example is a distinguished name written using this notation. First is
 Chapter 2. LDAP concepts and architecture 45

a name containing three components. The first of the components is a multi
valued RDN. A multivalued RDN contains more than one attribute:value pair and
can be used to distinctly identify a specific entry in cases where a simple CN
value might be ambiguous:

OU=Sales+CN=J. Smith,O=Widget Inc.,C=US

2.3.2 String form
The exact syntax for names is defined in RFC 2253. Rather than duplicating the
RFC text, the following are examples of valid distinguished names written in
string form:

� cn=Leslie Smith, ou=Austin, o=IBM

This is a name containing three relative distinguished names (RDNs).

� ou=deptUVZS + cn=Leslie Smith, ou=Austin, o=IBM

This a name containing three RDNs in which the first RDN is multi-valued.

� cn=L. Eagle, o=Sue\, Grabbit and Runn, c=GB

This example shows the method of quoting a comma (using a backslash as
the escape character) in an organization name.

� cn=Before\0DAfter,o=Test,c=GB

This is an example name in which a value contains a carriage return
character (0DH).

� sn=Lu\C4\8Di\C4\87

This last example represents an RDN surname value consisting of five letters
(including non-standard ASCII characters) that is written in printable ASCII
characters. Table 2-4 explains the quoted character codes.

Table 2-4 The ASCII encoding of an RDN surname (example)

Unicode letter description ISO 10646 code UTF-8 Quoted

Latin capital letter L U0000004C 0x4C L

Latin capital letter u U00000075 0x75 u

Latin small letter c with caron U0000010D 0xC48D \C4\8D

Latin small letter i U00000069 0x69 i

Latin small letter c with acute U00000107 0xC487 \C4\87
46 Understanding LDAP Design and Implementation

For the detailed definition of DNs in string form, consult RFC 2253. More about
Unicode character encoding (superset of ISO 10646) and its transformation into
UTF-8 can be found at http://www.unicode.org and in RFC 2279.

2.3.3 URL form
The LDAP URL format has the general form ldap://<host>:<port>/<path>, where
<path> has the form <dn>[?<attributes>[?<scope>?<filter>]].

The <dn> is an LDAP distinguished name using a string representation. The
<attributes> indicate which attributes should be returned from the entry or
entries. If omitted, all attributes are returned. The <scope> specifies the scope of
the search to be performed. Scopes may be current entry, one-level (current
entry’s children), or the whole subtree. The <filter> specifies the search filter to
apply to entries within the specified scope during the search. The URL format
allows Internet clients, for example, Web browsers, to have direct access to the
LDAP protocol and thus LDAP directories.

Examples of LDAP URLs are:

� ldap://austin.ibm.com/ou=Austin,o=IBM

This URL corresponds to a base object search of the <ou=Austin, o=IBM>
entry using a filter <of objectClass=*> requesting all attributes (if a filter is
omitted, a filter of <objectClass=*> is assumed by definition).

� ldap://austin.ibm.com/o=IBM?postalAddress

This is an LDAP URL referring to only the postalAddress attribute of the IBM
entry.

� ldap:///ou=Austin,o=IBM??sub?(cn=Joe Q. Public)

This is an LDAP URL referring to the set of entries found by querying any
capable LDAP server (no hostname was given) and doing a subtree search of
the IBM Austin subtree for any entry with a common name of Joe Q. Public
retrieving all attributes. The LDAP URL format is defined in RFC 2255.

2.4 Functional model
The LDAP functional model is comprised of three categories of operations that
can be performed against a LDAPv3 directory service:

� Authentication: Bind, Unbind, and Abandon operations used to connect and
disconnect to and from an LDAP server, establish access rights and protect
information.
 Chapter 2. LDAP concepts and architecture 47

http://www.unicode.org

� Query: Search for and Compare entries for entries meeting user-specified
criteria.

� Update: Add an entry, Delete an entry, Modify an entry, and modify the
distinguished name (ModifyRDN) or relative distinguished name of an entry.

2.4.1 Query
The most common operation is search. The search operation is very flexible and
has some of the most complex options.

The search operation allows a client to request that an LDAP server search
through some portion of the DIT for information meeting user-specified criteria in
order to read and list the result(s). There are no separate operations for read and
list; they are incorporated in the search function. The search can be very general
or very specific. The search operation allows one to specify the starting point
within the DIT, how deep within the DIT to search, what attributes an entry must
have to be considered a match, and what attributes to return for matched entries.

Some example searches expressed informally in English are:

� Find the postal address for cn=John Smith,o=IBM,c=DE.

� Find all the entries that are children of the entry ou=ITSO,o=IBM,c=US.

� Find the e-mail address and phone number of anyone in IBM whose last
name contains the characters “miller” and who also has a fax number.

To perform a search, the following parameters must be specified:

� Base

A DN that defines the starting point, called the base object, of the search. The
base object is a node within the DIT.

� Scope

Specifies how deep within the DIT to search from the base object. There are
three choices: baseObject, singleLevel, and wholeSubtree. If baseObject is
specified, only the base object is examined. If singleLevel is specified, only
the immediate children of the base object are examined; the base object itself
is not examined. If wholeSubtree is specified, the base object and all of its
descendants are examined.

� Search Filter

Specifies the criteria an entry must match to be returned from a search. The
search filter is a Boolean combination of attribute value assertions. An
attribute value assertion tests the value of an attribute for equality, less than
or equal to, and so on. For example, a search filter might specify entries with
a common name containing “wolf” or belonging to the organization ITSO.
48 Understanding LDAP Design and Implementation

� Attributes to Return

Specifies which attributes to retrieve from entries that match the search
criteria. Since an entry may have many attributes, this allows the user to only
see the attributes they are interested in. Normally, the user is interested in the
value of the attributes. However, it is possible to return only the attribute types
and not their values. This could be useful if a large value like a JPEG
photograph was not needed for every entry returned from the search, but
some of the photographs would be retrieved later as needed.

� Alias Dereferencing

Specifies if aliases are dereferenced—that is, if the alias entry itself or the
entry it points to is used. Aliases can be dereferenced or not when locating
the base object and/or when searching under the base object. If aliases are
dereferenced, then they are alternate names for objects of interest in the
directory. Not dereferencing aliases allows the alias entries themselves to be
examined.

� Limits

Searches can be very general, examining large subtrees and causing many
entries to be returned. The user can specify time and size limits to prevent
wayward searching from consuming too many resources. The size limit
restricts the number of entries returned from the search. The time limit limits
the total time of the search. Servers are free to impose stricter limits than
requested by the client.

2.4.2 Referrals and continuation references
If the server does not contain the base object, it will return a referral to a server
that does, if possible. Once the base object is found singleLevel and
wholeSubtree searches may encounter other referrals. These referrals are
returned in the search result along with other matching entries. These referrals
are called continuation references because they indicate where a search could
be continued. For example, when searching a subtree for anybody named Smith,
a continuation reference to another server might be returned, possibly along with
several other matching entries. It is not guaranteed that an entry for somebody
named Smith actually exists at that server, only that the continuation reference
points to a subtree that could contain such an entry. It is up to the client to follow
continuation references if desired. Since only LDAP Version 3 specifies referrals,
continuation references are not supported in earlier versions.
 Chapter 2. LDAP concepts and architecture 49

2.4.3 Search filter syntax
The search filter defines criteria that an entry must match to be returned from a
search. The basic component of a search filter is an attribute value assertion of
the form:

attribute operator value

For example, to search for a person named John Smith the search filter would be
cn=John Smith. In this case, cn is the attribute, = is the operator, and John Smith
is the value. This search filter matches entries with the common name John
Smith. Table 2-5 shows the search filter options.

Table 2-5 Search filter options

The * character matches any substring and can be used with the = operator. For
example, cn=J*Smi* would match John Smith and Jan Smitty.

Search filters can be combined with Boolean operators to form more complex
search filters. The syntax for combining search filters is:

("&" or "|" (filter1) (filter2) (filter3) ...) ("!" (filter))

The Boolean operators are listed in Table 2-6 on page 51.

Operator Description Example

= Returns entries whose
attribute is equal to the
value.

cn=John Smith finds the
entry with common name
John Smith.

>= Returns entries whose
attribute is greater than or
equal to the value.

sn>=smith finds all entries
from smith to z*.

<= Returns entries whose
attribute is less than or
equal to the value.

sn<=smith finds all entries
from a* to smith.

=* Returns entries that have a
value set for that attribute.

sn=* finds all entries that
have the sn attribute.

~= Returns entries whose
attribute value
approximately matches the
specified value. Typically,
this is an algorithm that
matches words that sound
alike.

sn~= smit might find the
entry “sn=smith”.
50 Understanding LDAP Design and Implementation

Table 2-6 Boolean operators

For example, (|(sn=Smith)(sn=Miller)) matches entries with the surname Smith or
the surname Miller. The Boolean operators can also be nested as in (|
(sn=Smith) (&(ou=Austin)(sn=Miller))), which matches any entry with the
surname Smith or with the surname Miller that also has the organizational unit
attribute Austin.

2.4.4 Compare
The compare operation compares an entry for an attribute value. If the entry has
that value, compare returns TRUE. Otherwise, compare returns FALSE.
Although compare is simpler than a search, it is almost the same as a base
scope search with a search filter of attribute=value. The difference is that if the
entry does not have the attribute at all (the attribute is not present), the search
will return not found. This is indistinguishable from the case where the entry
itself does not exist. On the other hand, compare will return FALSE. This
indicates that the entry does exist, but does not have an attribute matching the
value specified.

2.4.5 Update operations
Update operations modify the contents of the directory. Table 2-7 summarizes
the update operations.

Table 2-7 Update operations

Boolean operator Description

& Returns entries matching all specified filter criteria.

| Returns entries matching one or more of the filter
criteria.

! Returns entries for which the filter is not true. This
operator can only be applied to a single filter. (!(filter)) is
valid, but (!(filter1)(filter2)) is not.

Operation Description

add Inserts new entries into the directory.

delete Deletes existing entries from the directory. Only leaf nodes can
be deleted. Aliases are not resolved when deleting.

modify Changes the attributes and values contained within an existing
entry. Allows new attributes to be added and existing attributes
to be deleted or modified.
 Chapter 2. LDAP concepts and architecture 51

2.4.6 Authentication operations
Authentication operations are used to establish and end a session between an
LDAP client and an LDAP server. The session may be secured at various levels
ranging from an insecure anonymous session, an authenticated session in which
the client identifies itself by providing a password, to a secure, encrypted session
using SASL mechanisms. SASL was added in LDAP Version 3 to overcome the
weak authentication in LDAP Version 2. Table 2-8 summarizes the authentication
operations.

Table 2-8 Authentication operations

2.4.7 Controls and extended operations
Controls and extended operations allow the LDAP protocol to be extended
without changing the protocol itself. Controls modify the behavior of an operation,
and extended operations add new operations to the LDAP protocol. The list of
controls and extensions supported by an LDAP server can be obtained by
examining the root DSE of that server. Controls can be defined to extend any
operation.

Controls are added to the end of the operation’s protocol message. They are
supplied as parameters to functions in the API.

A control has a dotted decimal string object ID used to identify the control, an
arbitrary control value that holds parameters for the control, and a criticality level.
If the criticality level is TRUE, the server must honor the control; or if the server
does not support the control, reject the entire operation. If the criticality level is
FALSE, a server that does not support the control must perform the operation as
if there was no control specified. For example, a control might extend the delete

modify DN Changes the least significant (left most) component of a DN or
moves a subtree of entries to a new location in the DIT. Entries
cannot be moved across server boundaries.

Operation Description

Operation Description

Bind Initiates an LDAP session between a client and a server. Allows
the client to prove its identity by authenticating itself to the server.

Unbind Terminates a client/server session.

Abandon Allows a client to request that the server abandon an outstanding
operation.
52 Understanding LDAP Design and Implementation

operation by causing an audit record of the deletion to be logged to a file
specified by the control value information.

An extended operation allows an entirely new operation to be defined. The
extended operation protocol message consists of a dotted decimal string object
ID used to identify the extended operation and an arbitrary string of
operation-specific data.

2.5 Security model
The security model is based on the bind operation. There are several different
bind operations possible, and thus the security mechanism applied is different as
well. One possibility is when a client requesting access supplies a DN identifying
itself along with a simple clear-text password. If no DN and password is declared,
an anonymous session is assumed by the LDAP server. The use of clear text
passwords is strongly discouraged when the underlying transport service cannot
guarantee confidentiality and may therefore result in disclosure of the password
to unauthorized parties.

LDAP V3 comes along with a bind command supporting the Simple
Authentication and Security Layer (SASL) mechanism. This is a general
authentication framework, where several different authentication methods are
available for authenticating the client to the server; one of them is Kerberos.

Furthermore, extended protocol operations are available in LDAP V3. An
extension related to security is the Extension for Transport Layer Security (TLS)
for LDAPv3. This allow operations too use TLS as a means to encrypt an LDAP
session and protect against spoofing. TLS has a mechanism which enables it to
communicate to an SSL server so that it is backwards compatible. The basic
principles of SSL and TLS are the same.

2.6 Directory security
Security is of great importance in the networked world of computers, and this is
true for LDAP as well. When sending data over insecure networks, internally or
externally, sensitive information may need to be protected during transportation.
There is also a need to know who is requesting the information and who is
sending it. This is especially important when it comes to the update operations
on a directory. The term security, as used in the context of this book, generally
covers the following four aspects:

� Authentication: Assurance that the opposite party (machine or person) really
is who he/she/it claims to be.
 Chapter 2. LDAP concepts and architecture 53

� Integrity: Assurance that the information that arrives is really the same as
what was sent.

� Confidentiality: Protection of information disclosure by means of data
encryption to those who are not intended to receive it.

� Authorization: Assurance that a party is really allowed to do what he/she/it is
requesting to do. This is basically achieved by assigning access controls, like
read, write, or delete, to user IDs or common names.

The following sections focus on the first three aspects (since authorization is not
yet contained in the LDAP Version 3 standard): Authentication, integrity and
confidentiality. There are several methods that can be used for this purpose; the
most important ones are discussed here. These are:

� No authentication.

� Basic authentication.

� Simple Authentication and Security Layer (SASL). This includes
DIGEST-MD5. When a client uses Digest-MD5, the password is not
transmitted in clear text and the protocol prevents replay attacks.

2.6.1 No authentication
This is the simplest authentication method, one that obviously does not need to
be explained in much detail. This method should only be used when data
security is not an issue and when no special access control permissions are
involved. This could be the case, for example, when your directory is an address
book browsable by anybody. No authentication is assumed when you leave the
password and DN fields empty in an ldap operation. The LDAP server then
automatically assumes an anonymous user session and grants access with the
appropriate access controls defined for this kind of access (not to be confused
with the SASL anonymous user).

2.6.2 Basic authentication
The security mechanism in LDAP is negotiated when the connection between
the client and the server is established. This is the approach specified in the
LDAP application program interface (API). Besides the option of using no
authentication at all, the most simple security mechanism in LDAP is called basic
authentication, which is also used in several other Web-related protocols, such
as in HTTP.

When using basic authentication with LDAP, the client identifies itself to the
server by means of a DN and a password which are sent in the clear over the
network (some implementations may use Base64 encoding instead). The server
54 Understanding LDAP Design and Implementation

considers the client authenticated if the DN and password sent by the client
match the password for that DN stored in the directory. Base64 encoding is
defined in the Multipurpose Internet Mail Extensions (MIME) LDAP standard
(RFC 1521). It is a relatively simple encryption, and therefore it is not hard to
break once one has captured the data on the network.

2.6.3 SASL
SASL is a framework for adding additional authentication mechanisms to
connection-oriented protocols. It has been added to LDAP Version 3 to
overcome the authentication shortcomings of Version 2. SASL was originally
devised to add stronger authentication to the IMAP protocol. SASL has since
evolved into a more general system for mediating between protocols and
authentication systems. It is a proposed Internet standard defined in RFC 2222.

In SASL, connection protocols, like LDAP, IMAP, and so on, are represented by
profiles; each profile is considered a protocol extension that allows the protocol
and SASL to work together. A complete list of SASL profiles can be obtained
from the Information Sciences Institute (ISI). Each protocol that intends to use
SASL needs to be extended with a command to identify an authentication
mechanism and to carry out an authentication exchange. Optionally, a security
layer can be negotiated to encrypt the data after authentication and so ensure
confidentiality. LDAP Version 3 includes a command (ldap_sasl_bind()) to
encrypt the data after authentication.

2.6.4 SSL and TLS
The Secure Socket Layer (SSL) protocol was devised to provide both
authentication and data security. It encapsulates the TCP/IP socket so that
basically every TCP/IP application can use it to secure its communication.

SSL/TLS supports server authentication (client authenticates server), client
authentication (server authenticates client), or mutual authentication. In addition,
it provides for privacy by encrypting data sent over the network. SSL/TLS uses a
public key method to secure the communication and to authenticate the
counterparts of the session. This is achieved with a public/private key pair. They
operate as reverse functions to each other, which means data encrypted with the
private key can be decrypted with the public key and vice versa. The assumption
for the following considerations is that the server has its key pair already
generated. This is usually done when setting up the LDAP server.
 Chapter 2. LDAP concepts and architecture 55

The simplified interchange between a client and a server negotiating an SSL/TLS
connection is explained in the following steps:

1. As a first step, the client asks the server for an SSL/TLS session. The client
also includes the SSL/TLS options it supports in the request.

2. The server sends back its SSL/TLS options and a certificate which includes,
among other things, the server’s public key, the identity for whom the
certificate was issued (as a distinguished name), the certifier’s name and the
validity time. A certificate can be thought of as the electronic equivalent of a
passport. It has to be issued by a general, trusted Certificate Authority (CA)
which vouches that the public key really belongs to the entity mentioned in the
certificate. The certificate is signed by the certifier which can be verified with
the certifier’s freely available public key.

3. The client then requests the server to prove its identity. This is to make sure
that the certificate was not sent by someone else who intercepted it on a
former occasion.

4. The server sends back a message including a message digest (similar to a
check sum) which is encrypted with its private key. A message digest that is
computed from the message content using a hash function has two features.
It is extremely difficult to reverse, and it is nearly impossible to find a message
that would produce the same digest. The client can decrypt the digest with the
server’s public key and then compare it with the digest it computes from the
message. If both are equal, the server’s identity is proved, and the
authentication process is finished.

5. Next, server and client have to agree upon a secret (symmetric) key used for
data encryption. Data encryption is done with a symmetric key algorithm
because it is more efficient than the computing-intensive public key method.
The client therefore generates a symmetric key, encrypts it with the server’s
public key, and sends it to the server. Only the server with its private key can
decrypt the secret key.

6. The server decrypts the secret key and sends back a test message encrypted
with the secret key to prove that the key has safely arrived. They can now
start communicating using the symmetric key to encrypt the data.

As outlined above, SSL/TLS is used to authenticate a server to a client using its
certificate and its private key and to negotiate a secret key later on used for data
encryption.
56 Understanding LDAP Design and Implementation

Chapter 3. Planning your directory

The first sections in this chapter describe some guidelines on how the design
and implementation of the data and directory tree structure should be done. Then
security planning is described, followed by implementing such a directory in a
physical infrastructure having scalability, availability, manageability, and
maintenance aspects of an LDAP directory deployment in mind.

Discussing low-level details of designing a directory implementation, such as
detailed performance tuning aspects or product selection criteria, is beyond the
scope of this book. However, this chapter gives you an introductory
understanding of what has to be considered when LDAP is to be introduced in an
organization.

The discussions that follow in this chapter often refer to typical White Pages
directory implementations for people directories. This approach was chosen for
the sake of simplicity. Please bear in mind, LDAP is not only suitable for people
directories. An LDAP directory can hold almost any kind of information and can
therefore be used for a much broader range of applications. The
Directory-Enabled Networks Initiative (DEN) is just one example where an LDAP
directory is being used for storing network configuration and topology data.

Creating a design that has the flexibility to accommodate changes within the
organization is probably the single most important task in implementing a
directory service. This will help save time and money as the directory service

3

© Copyright IBM Corp. 1998, 2004. All rights reserved. 57

grows. When designing the directory service, the project can be divided into
several smaller projects:

� Surveying the directory service contents
� Creating access control strategies
� Replication and partitioning strategies
� Network planning (physical planning)

This chapter discusses the four main planning phases when designing an LDAP
directory and briefly discusses implementation issues:

� The first phase, defining directory content, has two components. The first
component, defining directory requirements, is about a careful analysis of the
main purpose of the directory and the associated considerations to arrive at
an overall approach to the directory plan. The second component, data
design, is then about understanding the sources and nature of the data,
deciding the scope of the data within the directory, and planning the way in
which it will integrate with external data.

� The second phase, organizing your directory, also has two components. The
first component, schema design, determines the format in which the data is to
be stored. This is analogous to the field data definitions in a relational
database. The second component, namespace design, determines the
hierarchical structure of the directory. This is analogous to the relationship
between individual files and their access paths in a relational database.

� The third phase, securing directory entries, is all about privacy and security
design to ensure that the data in the directory is protected, as well as about
allowing applications themselves to be secured by use of the directory. This
aspect of the design affects all other aspects.

� The fourth phase, designing your server and network infrastructure, has two
components. The first component, topology design, helps to determine the
number and location of directory servers and how the data is distributed
among them. The second, optional component, replication design, enables
multiple copies of the data to be deployed, which can aid performance.

Surprising as it may seem, with the exception of security, the various major
dimensions of design are largely independent of each other.

Some aspects of the design process allow for flexibility when requirements may
change in the future. Others are less forgiving and can involve a major upheaval.
It is essential to undergo a thorough planning process before starting the live
implementation. Do not be misled into thinking, for instance, that because the
directories’ servers such as ITDS are included with various IBM Operating
Systems, for example, included in the price of AIX®, it is a lightweight piece of
infrastructure. Nothing could be further from the truth. In building an
LDAP-enabled directory you are laying the framework for generations of software
58 Understanding LDAP Design and Implementation

that are even now beginning to emerge. The directory, like the database, is one
of the major building blocks of your infrastructure and some attention to planning
at the initial stages will reap rich rewards in the future.

We have discussed here some aspects of directory design. However, it needs to
be pointed out that there is no single correct way to design a directory. To be
able to build a more objective picture of the naming methodology, we
recommend that several sources of information are compared. Often, vendors
will have their own implementation guides that reflect different angles of views for
this aspect.
 Chapter 3. Planning your directory 59

3.1 Defining the directory content
The first phase, defining the directory content, is concerned with what it is that
your proposed directory project sets out to achieve and what data is available to
help it do so.

3.1.1 Defining directory requirements
This section discusses the directory definition requirements that need to be
considered when planning a directory implementation.

Application needs
What type of application(s) will use the directory? Determine what
directory-enabled applications are to be deployed and what are their data needs.
Determine the organization's other mission-critical applications. Find out if those
applications can directly access and/or update the directory. What are the
requirements for manageability and scalability? Will the LDAP service be
participating with an X.500 directory service?

User needs
Determine who needs access to the data as a user. Find out if those users can
directly access or even update the directory. Determine the location of clients
(users or applications). What expectations are there for privacy concerns? How
accurate and up-to-date must the directory content be?

Deployment issues
What resources will be available for deployment? What people and skills are
available? Can this be done as part of another project, for example, messaging
migration, or will it require dedicated resources?

Infrastructure constraints
What hardware configurations are already in use and which, if any, are available
to the project? What operating systems, middleware, and applications are in
use? Specifically, what directory applications are already available? Obtain a
network diagram. Is the directory to be protected behind a firewall or exposed to
the Internet?

3.2 Data design
Planning the directory's data is the most important aspect of the directory
planning activities, and it is probably the most time-consuming aspect as well. A
60 Understanding LDAP Design and Implementation

considerable amount of the time spent planning the directory data will most likely
be spent surveying the organization to locate all the data stores where directory
information is managed. As this survey is performed, expect to find that some
kinds of data are not well-managed; some processes may be inefficient,
inadequate, or non-existent; and some kinds of data may not be available at all.
All of these issues should be addressed before finishing a data-planning phase.

However, we start by looking at the requirements on the data to be used in the
directory service. The scope of information required will largely be driven by the
application requirement. However, some types of data are better suited for a
directory service than others. Ideal candidates in a directory service have some
of the following characteristics:

� A directory service is not a file system, a file server, an FTP server, a Web
server, or a relational database. Therefore, large, unstructured objects of data
should not be put in the directory. For that kind of data, a server more
appropriate for the task should be used. However, it is appropriate to store
pointers to these kinds of applications within the directory service through the
use of FTP, HTTP, or other types of accesses.

� The data should typically be read much more often than it is written. This is
because directory services usually are tuned for read operations; write
operations are more expensive in terms of resource utilization than reads,
and they may impact the directory server's performance in typical directory
server implementations.

� Another "rule of thumb" is that the data should typically be accessed from
more than just one system or client. For example, an employee's preference
settings for a specific application may not be meaningful to put in the directory
if that application is only run on the employee's single workstation. If the user
wants to run this application on different systems, such as a mail client
application, then the application would certainly benefit from a central
directory for storing user preferences. This would allow the employee to use
the same setup on multiple systems or even platforms within the organization.

Having in mind the types of data suitable and unsuitable for use in a directory, it
is now possible to survey what the directory service data will be.

3.2.1 Sources for data
Planning the directory content includes deciding which existing data to store in
the directory. Survey the organization and identify where the data comes from
(such as Windows NT® domains, RACF®, application-specific directories,
human resources databases, e-mail systems, and so forth).

When deciding on what to put into the directory, all the owners of data relevant to
the contents of the directory should be identified. It is very probable that the
 Chapter 3. Planning your directory 61

information you will be choosing to put in the LDAP directory already resides on
some other system in your organization. For example, the Personnel Department
most likely already has databases with personnel information. Also be sure to
make adequate use of processes already in place to administer that data even in
the planned directory service.

Data management and access control are both important when maintaining a
directory service. Plans must be made to identify resources for keeping the data
up-to-date and identifying resources with the authority to decide on access
control policies regarding the data residing in the directory tree.

If data is going to be imported from other sources, develop a strategy for both
bulk imports and incremental updates. Try to limit the number of applications that
can change the data. Doing this will help ensure the data integrity while reducing
the organization's administration.

Identify duplications and data that is not actually used or required. Harmonize the
data by eliminating such duplications and discard unnecessary data.

3.2.2 Characteristics of data elements
Data is made up of data elements, which possess several characteristics such as
format, size, frequency, ownership, relationship with other data elements, etc.
For instance, the data element e-mail address has a format of text, has many
characters, has possible multiple values, is owned by the IT department, is used
by both users and applications, and is related to the user's entry. Examine each
planned data element to determine its characteristics and which are shared with
other elements.

For each piece of data, determine the location where it will be mastered and who
owns the data—that is, who is responsible for ensuring that the data is
up-to-date.

3.2.3 Related data
Remember to plan for related data sources that contain directory-related data but
which may not, initially at least, use the directory itself. For example, the human
resources database must bear a close relationship to entries in a directory
containing staff data. Consider appropriate replication and synchronization
techniques and procedures to maintain the relationships.
62 Understanding LDAP Design and Implementation

3.3 Organizing your directory
Having decided on the type of data to use in the directory service, what the
directory will be used for, and how the data will be updated, it is possible to start
structuring the data. Structuring data is done by designing both a schema and a
namespace. We explain these activities in the sections that follow.

3.3.1 Schema design
The schema design plays an important role in your directory implementation and
helps you organize the data within a directory.

Directory schema
A schema is the collection of attribute-type definitions and object class
definitions. A server uses these to determine how to match a filter or attribute
against the attributes of a specific entry and whether to permit given attribute(s)
to be added. This is similar to the data definitions of a relational database
system. For more information on schemas, refer to “LDAP schema” on page 37.

Purpose
The purpose of a schema is to control the nature and format of the data stored in
the directory. This means that schemas can be used for data validation and to
control redundant data. A schema is also used by users and applications as the
basis for directory search criteria.

Elements of LDAP schemas
LDAP directory schemas consist of attributes and object classes. A more
detailed discussion on schema elements can be found in “LDAP schema” on
page 37.

Design overview
Schema design involves several stages. First, identify any schemas provided by
the applications you have in plan, plus any standard and vendor-supplied
schemas. Secondly, select any predefined schemas that meet your needs.
Thirdly, plan for any schema extensions.

For each piece of data, determine the name of the attribute(s) that you will use to
represent the data in the directory and the object class(es) (the type of entry) that
the data will be stored on.
 Chapter 3. Planning your directory 63

Predefined schemas
When deciding on the design of the schema, there are a few things to consider.
The LDAP specifications include a standard schema for a typical White Pages
directory (RFC 2256, A Summary of the X.500(96) User Schema for use with
LDAPv3). Vendors ship schemas with their LDAP server products that may
include some extensions to support special features they feel are common and
useful to their client applications. Work at the Internet Engineering Task Force
(IETF) is in progress to create standard schemas for a broad range of
applications.

Regardless of the type of information contained in the directory server, the
standard schema, some of which is based on the X.500 standard, should not be
modified. If this standard schema proves to be too limiting for the intended use, it
can be extended to support the unique requirements. Standard schema
elements, however, should not be deleted. Doing so can lead to inter-operability
problems between different directory services and LDAP clients.

It is important to use a consistent schema within the directory server because
LDAP-enabled application clients locate entries in the directory by searching for
object classes or attributes and their associated values. If the schemas are
inconsistent, then it becomes virtually impossible to locate information in the
directory tree efficiently. An example of an inconsistent schema is a situation
where an attribute is used to store a specific kind of information, and then later a
different attribute is used to store the exact same kind of data, for example, when
both attributes, telephoneNumber and phone, contain the same data.

Most LDAP-enabled application clients are designed to work with a specific,
well-defined schema. Shrink-wrapped standard applications usually only work
with a standard schema. These are important reasons why LDAP-based
Directory Services should support at least the standard LDAP schema. Then the
schema may be extended as the site discovers site-specific needs that are not
met by the standard schema.

New schema elements
The use of a standard schema is beneficial, and specific changes can be made
so long as they are additions. You may, however, create your own, private
schema. But when doing so, you must take into consideration that compatibility
to any other LDAP service may be lost and that your application clients have to
be aware of that private schema.

3.3.2 Namespace design
Namespace design is a very important task in planning the directory. It is one of
the most difficult to change at a later stage. A namespace is the means by which
64 Understanding LDAP Design and Implementation

directory data is uniquely named and referenced. It is the equivalent of the
unique key field for the entry. The structure of an LDAP namespace is described
in Chapter 2, “LDAP concepts and architecture” on page 27.

Purpose
The namespace provides a way to organize the data. It can be used to partition
(group) the data and to provide a basis for replication. It can affect your access
control methods. Finally, it is the basic support for directory-enabled applications.

Analyzing needs
Before designing your namespace you need to understand the requirements for
it. Do you need a flat namespace or a hierarchical one? What attributes can be
used to name entries? Do you anticipate replication or partitioning? Does a
corporate taxonomy (hierarchical map of the organization) exist, and could or
should it be used? Might your requirements change over time, for example, with
company mergers and acquisitions?

Namespace design approach
Namespace design is done by choosing a directory suffix, branching the
directory tree, and finally creating a naming style for the directory entries.

Choosing a suffix
When deciding on suffixes, where a suffix is the root DN of a directory tree, it is a
good idea to use the same naming structure for LDAP as is used for X.500.
Using the X.500 methodology would lead to choosing a suffix like o=ibm,c=us or
ou=raleigh,o=ibm.

This method will set the root of the directory tree to a specific organization in a
specific country or to a specific organization and organizational unit. However, it
is not necessary to do this, unless there are plans to participate in an X.500
directory service, since LDAP does not require any specific format for the DN
naming convention. In LDAP, the directory suffix can be chosen freely to reflect
the organizations distinct name. Another method that you can use, if the X.500
method does not seem appropriate, is the DNS naming model when choosing
the directory suffix. This would result in a suffix using the domainComponent
attribute, for example, dc=server,dc=company,dc=com.

The design of the directory schema and definition of the suffix makes it possible
to start populating the tree. But, before doing so, the naming structure must be
put in place. We have divided the discussion on naming structure creation into
the two sections that follow:

� Branching of the directory tree
� Naming style for the entries
 Chapter 3. Planning your directory 65

Branching the directory tree
Choosing to branch a directory tree based on the organizational structure, such
as departments, can lead to a large administrative overhead if the organization is
very dynamic and changes often. On the other hand, branching the tree based
on geography may restrict the ability to reflect information about the
organizational structure. A branching methodology that is flexible, and which still
reflects enough information about the organization, must be created.

Because the structure of organizations often changes considerably over time, the
aim should be to branch the tree in such a way as to minimize the number of
necessary changes to the directory tree once the organization has changed.
Note that renaming a department entry, for example, has the effect of requiring a
change of the DNs of all entries below its branch point. This has an undesirable
impact on the service for several reasons. Alias entries and certain attributes or
ordinary entries, such as seeAlso and secretary, use DNs to maintain links with
other entries. These references are one-way only, and LDAP currently offers no
support to automatically update all references to an entry once its DN changes.
The impact of renaming branches is illustrated in the following example.

When adding employees to their respective departments, it would be possible to
create distinguished names (DN) like cn=John Smith, ou=Marketing, l=se, and
dc=xyz.com. If John Smith should at a later time move to another department, his
DN will have to change. This results in changing all entries regarding access
rights and more. If John Smith's DN had been set to cn=John Smith,
ou=employees, l=se, dc=xyz.com, then this would not be a problem. An attribute
describing which department he belongs to (ou=marketing) could be added to his
entry to include this information.

Other criteria that may or should be considered when branching the directory
tree include physical or cultural splits in the organization and the nature of the
client (human or application).

If your organization has separate units that are either physically separated or
have their own management authorities, you might have a natural requirement to
split and separate parts of the DIT.

A general rule of thumb says that the DIT should be reasonably shallow unless
there are strong reasons to design deep branching levels down the directory
tree. If the directory information is primarily searched and read by human users
(that is, if users manually type in search criteria), the DIT should provide the
information in an intuitive manner so that finding information is not limited to
system specialists. If, on the other hand, the information is primarily retrieved
from programs, other rules more suitable for that application can be followed.
66 Understanding LDAP Design and Implementation

3.3.3 Naming style
The first goal of naming is to provide unique identifiers for entries. Once this is
achieved, the next major goal should be to make querying of the directory tree
intuitive. Support for a naming structure that enables the use of user-friendly
naming is desirable. Other considerations, such as accurately reflecting the
organizational structure of an organization, should be disregarded if it has a
negative effect of creating complex DNs, thus making normal querying
non-intuitive. If we take a look at the X.500 view on naming, we see that the
X.501 standard specifies that "RDNs are intended to be long-lived so that the
users of the Directory can store the distinguished names of objects...", and "it is
preferable that distinguished names of objects which humans have to deal with
be user-friendly" (excerpt from The Directory - Overview of Concepts, Models
and Services, CCITT 1988, cited in RFC 1617).

Multicomponent relative distinguished names can be created by using more than
one component selected from the set of the attributes of the entry to be named.
This is useful when there are, for example, two persons named John Smith in
one department. The use of multicomponent relative distinguished names allows
one to avoid artificial naming values such as cn=John Smith 1 or cn=John Smith
2. Attributes that could be used as the additional naming attribute include title,
room number, telephone number, and user ID, resulting in a RDN, like title=Dr,
cn=John Smith, creating a more user-friendly naming model.

A consistent approach to naming people is especially important when the
directory stores information about people. Client applications will also be better
able to assist users if entries have names conforming to a common format, or at
least to a very limited set of formats. It is practical if the RDN follows such a
format.

In general, the standard attribute types should be used as documented in the
standards whenever possible. It is important to decide, within the organization,
which attributes to use for what purpose and not to deviate from that structure.

It is also important that the choice of a naming strategy not be made on the basis
of the possibilities of the currently available client applications. For example, it is
questionable to use commonName of the form surname firstname merely
because a client application presents results in a more satisfactory order by
doing so. Use the best structure for people's names, and adapt or design the
client applications accordingly.

Please refer to “LDAP distinguished name syntax (DNs)” on page 43 for a more
detailed explanation of LDAP Distinguished name syntax.
 Chapter 3. Planning your directory 67

3.4 Securing directory entries
Having designed the directory tree, we now need to decide on a security policy.

The degree of security controls you require will depend on the nature of the
information you are storing. If it is just e-mail addresses then the worst danger of
unlimited read capability is spam e-mail, and the worst danger of uncontrolled
editing is misdirected e-mail. However, if the directory contains gender, home
addresses, and social security numbers then the dangers are more extensive.

The degree of security you require will also reflect the ways in which clients will
be accessing the directory and the methods that will be used to update and
manage the directory.

Finally, it needs to reflect an acceptable level of administration effort for security.
A security policy should be strong enough to prevent sensitive information from
being modified or retrieved by unauthorized users, while simple enough that
administration is kept simple so authorized parties can easily access it. Ease of
administration is very important when it comes to designing a security policy. Too
complex a security policy can lead to mistakes that either prevent people from
accessing information that they should have access to, or allow people to modify
or retrieve directory information that they should not have access to.

3.4.1 Purpose
The most basic purpose of security is to protect the data in your directory. It
needs to be protected against unauthorized access, tampering with information,
and denial of service.

3.4.2 Analysis of security requirements
Try to find answers to the following sorts of questions. Will your directory be
read-only? How sensitive is the data? Is replication to multiple locations
planned? What privileges might administrators have? How reliable are the
users? How will they react to different levels of security? Will they require access
across the Internet? Is your network itself secure? How about the machine
room?

3.4.3 Design overview
To plan for the required level of security, two basic areas must be considered to
answer the following questions: What level of security is needed when clients
identify themselves to the directory server, and what methodology will be used
68 Understanding LDAP Design and Implementation

when authorizing access to the different kinds of information in the directory?
These areas are authentication and authorization.

3.4.4 Authentication design
Conceptually, directory authentication can be thought of as logging into the
directory. LDAP terminology, however, usually refers to this operation as binding
to the directory.

Generally, bind operations consist of providing the equivalent of a user ID and a
password. However, in the case of an LDAP directory, the user ID is actually a
distinguished name (or a distinguished name derived from a user ID). The
distinguished name used to access the directory is referred to as the bind DN.

So, what level of authentication should be considered? There are, generally
speaking, three different approaches:

� No authentication: This is the simplest approach, which might be perfectly
suitable for most directories when all users are equally granted read (or even
write) access to all data. There is no need for user authentication when this is
the case.

� Basic authentication: This lets the client bind by entering a DN and a
password. Using basic authentication will not ensure integrity and
confidentiality of the login data since it is being sent over the network in a
readable form.

� Secure authentication: Simple Authentication and Security Layer (SASL) is
an extensible authentication framework. It was added to LDAP Version 3, and
it supports Kerberos and other security methods, like S/Key. SASL provides
the ability to securely authenticate LDAP clients and LDAP directory servers.
There is an external mechanism in SASL that allows the use of authentication
identity information from security layers external to the SASL layer. One
possibility is to use the authentication information from SSL. SSL is generally
used to secure the connection between a client and a server through the
exchange of certificates. The client certificate can be used through SASL as
authentication identity. SASL is already used within several Internet protocols
including IMAP4 and POP3 (mail server protocols).

It is possible that there is a need for both basic and secure authentication. The
choice will be dependent on the security policies in the organization's networks
and what type of access rights the different types of clients will have when
communicating with the server. For example, when setting up server-to-server
communication, it may be valuable to use strong, secure authentication since
server-to-server communication will often rely on unrestricted access to each
other's tree structures, including individual entry's access settings. On the other
hand, for client-to-server communication, where clients only have read access to
 Chapter 3. Planning your directory 69

names, phone numbers, and mail addresses, there is most likely no need for
anything but basic authentication.

When using secure authentication, it is possible to choose from different
methods depending on the vendors' implementations, for example, Kerberos or
SSL. If Kerberos is not already deployed in the organization's intranet, then it will
probably be sensible to use SSL, since support for SSL is included in most
popular LDAP clients. When using SSL, it is possible for the server to
authenticate the client by using its server certificate. A server certificate can be
thought of as a secure, digital signature that uniquely identifies a server. It has
been generated and registered with a trusted certifying authority, also known as
a Certificate Authority (CA), such as VeriSign or the IBM World Registry™ CA.
Also, when using server certificates, an encrypted communication can be
established between the client and server, enabling a secure basic
authentication of the client to the server.

Using SSL server certificates will be particularly interesting when setting up
LDAP services on insecure networks, such as the Internet/extranet. This will
enable the clients to verify the identity of the server and to encrypt
communication of the basic authentication from the clients to the server on the
insecure networks.

When using basic authentication, administration of passwords on the directory
server will be necessary and may impose some administration overhead. If SSL
client certificates are used, then an appropriate infrastructure will be needed to
support the certificate generation and administration. This is usually done by
separate certificate servers. Client certificate deployment is beyond the scope of
this book, but it ought to be mentioned that LDAP supports storing client public
keys and certificates in the entries allowing you also to use the directory by mail
clients to encrypt e-mail.

3.4.5 Authorization design
The data in the directory tree will have to be protected in different ways. Certain
information must be searchable for everybody, some must be readable, and
most of it will be write protected. In LDAP Version 3, there are no defined
attributes to handle this. As a result, vendors support their own implementations
of authorization. This is done by different implementations of access control lists
(ACLs).

ACLs are used to define access rules to the different entries in the directory tree.
As an example of an ACL implementation, Example 3-1 on page 71 shows the
IBM ITDS implementation of ACL attribute entries. The pertinent control
attributes used here are aclsource, aclpropagate, and aclentry, where the latter,
for example, is the attribute that specifies who has access to the entry and what
70 Understanding LDAP Design and Implementation

level of access he or she has. In Example 3-1, cn=John
Arnold,ou=employees,o=iseriesshop has read, write, search, and compare
(rwsc) rights for normal, sensitive and critical data (the entry is highlighted and
split into three lines in the example).

Example 3-1 Sample ACL attribute entry

dn: ou=employees, o=ibm, c=us
objectclass: top
objectclass: organizationalUnit
ou: employees description: Employees of IBM Corporation
entryowner: access-id:cn=admin,o=ibm, c=us
inheritoncreate: TRUE
ownerpropagate: TRUE
aclpropagate: TRUE
ownersource: default
aclsource: OU=employees,o=ibm, c=us
aclentry: access-id:CN=John
Arnold,OU=employees,o=ibm,c=us:object:a:normal:rwsc:
sensitive:rwsc:critical:rwsc aclentry: group:CN=ANYBODY:normal:rsc

When setting up access control lists, it is important to do it with the goal of
minimizing the administration later on. It is good to try and delegate the access
control hierarchically. An example of this could be the following: An individual,
say John Arnold, needs to protect sensitive information. Two groups have been
created for this purpose, owned by John Arnold (shown in Table 3-1). Entries can
be added and deleted by John Arnold to his own groups without intervention of
the directory service administrators.

Table 3-1 ACL structure for Web content administration using two groups

According to the table, John Arnold has added user1 and user2 to the editor
group and user3 and the group called techsupport to the readers group, thus
enabling user1 and user2 to edit the contents, and enabling user3 and the
people in the techsupport organizational unit to read the contents.

3.4.6 Non-directory security considerations
Other security considerations that are not directly related to directory design but
that can help to protect your data include encryption.

Group name Owner Group members

cn=editor cn=Debbie Smith cn=user1
cn=user2

cn=readers cn=Brian Arnold cn=user3
ou=techsupport
 Chapter 3. Planning your directory 71

You should also ensure that your organization's security audit procedures are
updated to reflect the new directory plan.

3.5 Designing your server and network infrastructure
Physical design involves building a network and server infrastructure to support
availability, scalability, and manageability. Methods to do this in LDAP are
partitioning and replication. Replication is actually not standardized in LDAP
Version 3, but all directory vendors implement replication within their products. In
this section we concentrate on deployment issues regarding when partitioning
and/or replication is appropriate when trying to reach the goals of availability,
scalability, and manageability, and what the trade-offs are.

In sizing the directory service, consideration must be given to which clients will
be accessing what data, from where, and how often. If there are client
applications that use the directory extensively, consideration must be given to
ensuring that the network availability and bandwidth are sufficient between the
application servers and the directory servers. If there are network bottlenecks,
they must be identified because there may be a need to replicate data into
remote LANs.

3.5.1 Availability, scalability, and manageability requirements
Availability for a directory service may not be a hot issue in cases where the
directory is not business critical. However, if the use of the service becomes
mission critical, then there is a need to design a highly available system.
Designing a highly available system involves more than is supported in LDAP.
The components from LDAP that are needed are partitioning and replication.
Since high availability involves eliminating single points of failure or reducing
their impact, it is necessary to have redundant hardware, software, and networks
to spread the risk.

As more and more applications use and rely on a directory service, the need to
scale the directory for high-load tolerance increases. Scaling up directory servers
is done much the same way, either by increasing availability or by upgrading
hardware performance. As is the case when increasing availability, we have to
rely on functions outside the LDAP standard as well as LDAP replication and
partitioning. The round-robin DNS or the load-balancing router, such as the IBM
WebSphere Edge Server, are good tools to scale an LDAP server site.

Manageability aspects involve almost all parts of a directory design. Here is
where trade-offs may have to be made regarding scalability, availability,
flexibility, and manageability. The level of scalability and availability are both
related to cost in hardware and software and, as a drag-along, cost of overall
72 Understanding LDAP Design and Implementation

systems management. One important question to ask in a directory design about
manageability is whether and how all information providers are able to furnish
reliable, correct, and consistent directory data to the LDAP service. If this cannot
be assured, there will be a chance for errors and inconsistencies in the LDAP
directory data. If such problems are considered critical for the clients using the
LDAP service, tools must be provided that can detect and maybe even correct
these errors.

3.5.2 Topology design
Topology design concerns the distribution of directory servers. The first choice is
between a centralized or a distributed approach. The second choice is between a
partitioned and a replicated approach.

Centralized or distributed
You can choose to centralize in a single master directory or to distribute the data
to additional directory servers.

A simple approach to create a highly available directory service is to create a
master and a replica directory server, each one on its own physical machine. By
replicating the data, we have eliminated the single point-of-failure for both
hardware and software failures. This solution with a master and one or more
replica servers normally provides for high availability for read functions to the
LDAP servers. Write requests can only be directed to the master server. If high
availability is required for write access, additional effort is necessary. Neither
read-only nor read/write replication is supported natively by the LDAP standards,
but vendors may have implemented their own mechanisms. Replication solutions
can also be constructed using the export/import facilities of LDAP servers or with
additional, custom-designed software tools. Also the OS/400® Directory server
has its own replication mechanism that is constantly being enhanced.

A mechanism must be added to handle client redirection if one server fails. This
can be done manually or semi-automatically by a DNS switchover, or
automatically with a load-balancing technique by using a router designed for this.
Such a router forwards client requests to one of the servers based on
configurable criteria. It is important that the router supports stateful protocols;
that is, subsequent requests from the same client need to be forwarded to the
same server. There are several products on the market from different vendors to
do this, such as IBM's WebSphere Edge Server. This function is also built into
IBM Lotus Domino. The IBM Eserver iSeries of course allows multiple Domino
server instances to run within a single operating system instance.

There is also the issue of network bandwidth and its reliability to take into
consideration. In some cases, it may be necessary to distribute a replica into
another LAN with slow network connections to the master. This can also be done
 Chapter 3. Planning your directory 73

with any means of replicating an LDAP server (remember that replication is not
included in the LDAP standards, thus you have to use vendor product support or
your own methods). The primary server for a particular client may be the
directory server on the client's own LAN, and the secondary will then be the
central master server, accessed over the WAN.

If the method of spreading the risk is used to create high availability, it is possible
to partition the directory tree and to distribute it to different locations, LANs, or
departments. As a side-effect, depending on how the directory tree is branched
and distributed to these servers, each location, department, or LAN administrator
could then easily manage their own part of the directory tree on a local machine,
if this is a requirement. If a single server failed in such a configuration, then only
a portion of the whole directory would be affected.

A combination of these methods could be used to create a dynamic, distributed,
highly available directory service.

Partitioned or replicated
The second choice for topology design is only applicable when a distributed
approach has been selected for the first choice. The options are between a
partitioned and a replicated approach. The decision criteria are usually based on
performance and availability issues and will be influenced by the size of the
directory.

To create a high-availability environment, it is necessary to replicate and/or
partition the directory, as discussed in the previous sections. Although not
directly related to LDAP, it should be mentioned that adequate systems
management tools and skills must be available to run such a fairly complex
environment. In addition, one of the manageability concerns regarding replication
might be the need to ensure an ample level of consistency. A master LDAP
server might have been updated with new information, while a replica server still
runs with the old, outdated information. The required level of consistency is
largely dependent on the needs of the client applications using the service. If
there is a requirement for currency and consistency among replicated servers,
additional means must be provided to ensure this.

Replication will also affect back up and disaster/recovery procedures. Processes
will be needed to handle recovery of master servers and how synchronization of
replicas will be handled. Since replication is outside the current standard for
LDAP, it is necessary to study the vendor's implementation in order to find
adequate solutions.

Partitioning the directory enables local servers to own their own data, depending
on schema and branching design. This increases flexibility when maintaining
data, but increases the complexity of referral handling. A clear method of linking
74 Understanding LDAP Design and Implementation

the name space together will have to be formulated to ensure consistent referrals
in the directory service name space such that the logical name space is still a
whole. Also, each local server may have to be administered and maintained
locally, requiring staff with operating system and LDAP knowledge.

You should consider partitioning if the directory is very large, if your applications
only require local workgroup data, if replication volumes would otherwise be too
big, if your WAN is not suited to high volumes, and where future expansion of the
service might trigger one of these considerations in the future.

The optimal topology design depends on the applications, the server, the
physical network, and the directory namespace.

Remember that each partition needs a partition root, which is the DN of the entry
at the top of the naming context, and hence occurs at a branching point in your
directory. You may need to revisit your namespace design.

3.5.3 Replication design
Replication is a technique used by directory servers to improve performance,
availability, and reliability. The replication process keeps the data in multiple
directory servers synchronized.

Replication provides three main benefits:

� Redundancy of information: Replicas back up the content of their supplier
servers.

� Faster searches: Search requests can be spread among several different
servers, instead of a single server. This improves the response time for the
request completion.

� Security and content filtering: Replicas can contain subsets of the data in a
supplier server.

The replication design stage is only required when, firstly, a distributed approach
is chosen to server deployment and, secondly, a replicated approach is chosen
over a partitioned approach. Replication aims to improve the reliability and
performance of your directory service.

Concepts
By making directory data available in more than one location you improve the
reliability of the service in the event of server or network failure. You also improve
the performance by distributing the load across multiple servers and reducing
network traffic.
 Chapter 3. Planning your directory 75

Designing replication
Consider first the unit of replication. This concerns which entries and which of
their attributes are to be replicated. A subtree of the DIT might form a suitable
selection basis. Now think about how consistent the data has to be. Must every
change be replicated instantly to all servers? Due to the nature of directory data,
for example people's phone numbers, it is not usual to impose such a tight
restriction, but you might take a different view of removing the entry for a
dismissed member of staff. Think about the sort of replication schedules that
might be appropriate for your directory and network. Also, if you replicate
Certificate Revocation Lists (CRLs) you may want to replicate information about
a revoked certificate instantly.

To ensure initial copies are in place we might use LDAP Data Interchange
Format (LDIF) files to import volumes of data in batch. A more incremental
approach might be used for subsequent updates.

What sort of replication strategy is appropriate? Is a master-replica approach
suitable, with all changes being driven out from the center? The alternative is a
peer-to-peer approach, which allows all servers to update their own data and
subsequently to exchange it.

The replication capabilities of various vendor’s LDAPv3 directory servers widely
vary. It is advisable to look at your particular vendors documentation on
replication to understand what features and capabilities exist in each respective
product. Nearly all of the existing directory server implementations support the
following three types of replication topologies in one form or another.

Master-Replica Replication
The basic relationship in replication is that of a master server and its replica
server. The master server can contain a directory or a subtree of a directory. The
master is writable, which means it can receive updates from clients for a given
subtree. The replica server contains a copy of the directory or a copy of part of
the directory of the master server. The replica is read only; it cannot be directly
updated by clients. Instead it refers client requests to the master server, which
performs the updates and then replicates them to the replica server.

The most simple example of the Master-Replica topology can be seen in
Figure 3-1 on page 77. The Master Server in this example is replicating all of its
data to the Replica server.
76 Understanding LDAP Design and Implementation

Figure 3-1 Master-replica replication topology (single consumer)

A master server can have several replicas. Each replica can contain a copy of
the master's entire directory, or a subtree of the directory. In Figure 3-2, Replica
2 contains a copy of the complete directory of the Master Server; Replica 1 and
Replica 3 each contain a copy of a subtree of the Master Server's directory.

Figure 3-2 Master-replica replication topology (multiple consumers)

The relationship between two servers can also be described in terms of roles,
either supplier or consumer. In Figure 3-2, the Master Server is a supplier to
each of the replicas. Each replica in turn is a consumer of the Master Server.

Cascading replication
Cascading replication is a topology that has multiple tiers of servers. A master
server replicates to a set of read-only (forwarding) servers that in turn replicate to
other servers. Some vendors call these forwarding servers replication hubs.
Such a topology off-loads replication work from the master server. In the
example of this type of topology, the master server is a supplier to the two
forwarding servers. The forwarding servers serve two roles. They are consumers

Master Server
o=ibm,c=us
(Supplier)

(Consumer)
Replica

o=ibm,c=us

Master Server
o=ibm,c=us
(Supplier)

(Consumer)
Replica 1

ou=austin,o=ibm,c=us

(Consumer)
Replica 2

o=ibm,c=us

(Consumer)
Replica 3

ou=group,o=ibm,c=us
 Chapter 3. Planning your directory 77

of the master server and suppliers to the replica servers associated with them.
The replica servers are consumers of their respective forwarding servers. This is
shown in Figure 3-3.

Figure 3-3 Cascading replication topology

Peer-to-peer replication
There can be several servers acting as masters for directory information, with
each master responsible for updating other master servers and replica servers.
This is referred to as peer replication. Some vendors also refer to this replication
topology as multi-master. Peer replication can improve performance, availability,
and reliability. Performance is improved by providing a local server to handle
updates in a widely distributed network. Availability and reliability are improved
by providing a backup master server ready to take over immediately if the
primary master fails. Peer master servers replicate all client updates to the
replicas and to the other peer masters, but do not replicate updates received
from other master servers. Peer replication is shown in Figure 3-4 on page 79.

Master Server
o=ibm,c=us
(Supplier)

(Consumer)
Forwarding 1
o=ibm,c=us
(Supplier)

(Consumer)
Replica 1

ou=austin,o=ibm,c=us

(Consumer)
Replica 2

o=ibm,c=us

(Consumer)
Forwarding 2
o=ibm,c=us
(Supplier)

(Consumer)
Replica 3

o=ibm,c=us

(Consumer)
Replica 4

ou=group,o=ibm,c=us
78 Understanding LDAP Design and Implementation

Figure 3-4 Peer-to-peer replication topology

3.5.4 Administration
In this section we show the tools for administering the directory, then we present
a brief review of who should perform administrative tasks.

The LDAP specifications contained in the pertinent RFCs include functions for
directory data management. These include functions to create and modify the
Directory Information Tree (DIT) and to add, modify, and delete data stored in the
directory.

Vendor products, however, most likely include additional tools for configuring and
managing an LDAP server environment. These include such functions as:

� Server setup (initial creation)
� Configuring a Directory Information Tree
� Content management
� Security setup
� Replication and referrals management
� Access control management
� Logging and log file management
� Resource management and performance analysis tools

Depending on specific needs and preferences, LDAP directory administration
can be performed several ways. Different vendors offer different administration
tools. Although not all vendors provide tools for all methods, in general there are
three tools to manage LDAP directories:

� Graphical administration tools
� Command line utilities
� Custom-written applications

Master Server 1
o=ibm,c=us

Replica 1
ou=austin,o=ibm,c=us

Replica 2
o=ibm,c=us

Master Server 2
o=ibm,c=us

Replica 3
o=ibm,c=us

Replica 4
ou=group,o=ibm,c=us
 Chapter 3. Planning your directory 79

Graphical tools features are specific to each vendor, when provided.

Command line tools are based on the LDAP Software Development Kit (SDK),
which is mainly a set of libraries and header files. Depending on vendors, most
SDKs come with a set of simple command line applications, either in source
code or as ready-to-use executable programs. These tools were built using the
LDAP API functions and thus can serve as sample applications. They enable you
to do basic operations, such as searching the directory and adding, modifying, or
deleting entries within the LDAP server. Each basic operation is accomplished
with a single program such as ldapsearch or ldapmodify. By combining these
tools using, for example a scripting language such as Perl, you can easily build
up more complex applications. In addition, they are easily deployable in
Web-based CGI programs.

As an alternative to using the administration utilities, custom-written
administration tools can be used. A developer has several options for accessing
LDAP. An API library for both C and Java languages is available. Another
approach for custom-written tools is to use the Java Naming and Directory
Interface (JNDI) client APIs. Such administration tools might be desirable when
typical data administration, such as adding or modifying employee data, is done
by non-technical staff. Writing directly to the API layer may also be necessary for
applications that need to control the bind/unbind sequence, or, perhaps, want to
customize the referral behavior. This is a more difficult approach because the
developer must deal with the conversion of the data to the structures that are
sent over the LDAP protocol. Additionally, the developer must be aware of a
particular security setup, such as SSL.
80 Understanding LDAP Design and Implementation

Part 2 IBM Tivoli Directory Server

overview and installation

In this part we provide an introduction to IBM’s directory server offering, named
IBM Tivoli Directory Server. We provide an overview of ITDS, cover installation
and basic configurations for Mircrosoft Windows, IBM AIX, Intel Linux, and IBM
zSeries operating systems.

Part 2
© Copyright IBM Corp. 1998, 2004. All rights reserved. 81

82 Understanding LDAP Design and Implementation

Chapter 4. IBM Tivoli Directory Server
overview

This chapter provides an overview of IBM Tivoli Directory Server (ITDS) and
provides a roadmap to the rest of the book, which focuses primarily on the
installation, configuration, and operation of TDS.

4

© Copyright IBM Corp. 1998, 2004. All rights reserved. 83

4.1 Definition of ITDS
The IBM Tivoli Directory Server implements the Internet Engineering Task Force
(IETF) LDAP V3 specifications. It also includes enhancements added by IBM in
functional and performance areas. This version uses IBM DB2 Universal
Database as the backing store to provide per-LDAP operation transaction
integrity, high performance operations, and online backup and restore capability.
The IBM Tivoli Directory Server interoperates with the IETF LDAP V3 based
clients.

Figure 4-1 provides a high-level overview of what the various components of
ITDS are and how clients might interact with it.

Figure 4-1 ITDS high-level overview

The base components of IBM Tivoli Directory Server are:

� IBM DB2 Universal Database as the backing store to provide per-LDAP
operation transaction integrity, high-performance operations, and online

WebSphere
Express

Application
Server

ibmslapd
Directory

Administration
Daemon

(ibmdiradm)

IBM
DB2

LDAP
Client

LDAP
Client

LDAP
Client

Web Administration
Tool

ibmdirctl

Directory
Admin

via Web
Browser

DSMLv2 Gateway
DSMLv2

Client
84 Understanding LDAP Design and Implementation

backup and restore capability. IBM Tivoli Directory Server Version 5.2
currently ships with DB2 V8.1.

� The server executable named ibmslapd.

� Tools to administer and configure the directory. These tools rely on the
directory administration daemon (ibmdiradm), which runs on each server
machine and also enables remote management. The main tools are:

– Web Administration Tool. This is a J2EE compliance application installable
on IBM WebSphere Application Server and in its Express version, which is
provided with IBM Tivoli Directory Server—GUI for configuring the
directory and the database: Configuration tool (ldapxcfg).

– Command line server utilities.

– IBM Tivoli Directory Server Client SDK, which provides the tools required
to develop LDAP applications. It includes:

• Client libraries that provide a set of C-language APIs

• C header files for building and compiling LDAP applications

• Documentation that describes the programming interface and the
sample programs

• Sample programs in source form

• Command line client utilities

� DSMLv2 Front-end which provides DSMLv2 services via an application that
run from the bundled IBM WebSphere Express server.

The major features of ITDS include:

� A Graphical User Interface (GUI) that can be used to administer and
configure the IBM Directory. The administration and configuration functions
enable the administrator to:

– Perform the initial setup of the directory.

– Change configuration parameters and options.

– Manage the daily operations of the directory, such as adding or editing
objects, for example object classes, attributes, and entries.

� A dynamically extensible directory schema. This means that administrators
can define new attributes and object classes to enhance the directory
schema. Changes can be made to the directory schema, too, which are
subject to consistency checks. Users may dynamically modify the schema
content without restarting the directory server. Because the schema itself is
part of the directory, schema update operations are done through standard
 Chapter 4. IBM Tivoli Directory Server overview 85

LDAP APIs. The major functions provided by the LDAPv3 dynamic extensible
schema are:

– Queriable schema information through LDAP APIs
– Dynamic schema changes through LDAP APIs
– Server Root DSE

� UTF-8 (Universal Character Set Transformation Format). An IBM Tivoli
Directory Server supports data in multiple languages, and allows users to
store, retrieve and manage information in a native language code page.

� Simple Authentication and Security Layer (SASL). This support provides for
additional authentication mechanisms. The Secure Sockets Layer (SSL)
provides encryption of data and authentication using X.509v3 public-key
certificates. A server may be configured to run with or without SSL support.

� Replication. Replication is supported, which makes additional read-only
copies of the directory available, improving performance and reliability of the
directory service. Replication topologies also support forwarding and gateway
servers.

� Referrals. Support for LDAP referrals, allowing directories to be distributed
across multiple LDAP servers where a single server may contain only a
subset of the whole directory data.

� Access control model. A powerful, easy-to-manage access control model is
supported through ACLs.

� Change log.

� Password policy.

� Security audit logging.

� Dynamic configuration changes using LDAP APIs.

IBM Tivoli Directory Server is a powerful, security-rich and standards-compliant
enterprise directory for corporate intranets and the Internet. Directory Server is
built to serve as the identity data foundation for rapid development and
deployment of your Web applications and security and identity management
initiatives by including strong management, replication and security features.

With IBM Tivoli Directory Server you can choose your authentication strategy,
you can use simple user ID and password authentication, or you can implement
the more secure digital certificate-based authentication structure. IBM Tivoli
Directory Server also includes a Simple Authentication Security Layer (SASL)
plug-in interface, including Challenge-Response Authentication Mechanism MD5
(CRAM-MD5) and Kerberos authentication if required.

The fine grained access control features in IBM Tivoli Directory Server extend to
the attribute level, enabling self service and delegated administration while also
86 Understanding LDAP Design and Implementation

offering protection of access control list (ACL) values within the directory,
preventing unauthorized users from changing the security assigned to objects
within the directory.

Development and deployment of your enterprise directory with IBM Tivoli
Directory Server is enhanced through the inclusion of the IBM default schema, a
flexible server plug-in framework and the client SDK which includes support for
64-bit AIX and Java TM access via a standard J2EE interface.

IBM Tivoli Directory Server is a component of the IBM Tivoli Identity Manager
solution that can help you get users, systems and applications online and
productive fast, reduce costs and maximize return on investment. IBM Tivoli
Identity Manager provides identity lifecycle management (user self-care,
enrollment and provisioning), identity control (access and privacy control, single
sign-on and auditing), identity federation (sharing user authentication and
attribute information between trusted Web services applications) and identity
foundation (directory and workflow) to effectively manage internal users as well
increase number of customers and partners through the Internet.

4.2 ITDS 5.2
ITDS, released in October 2003, introduced a number of new features well as
enhancements to existing capabilities. These features and enhancements
include:

� Updated versions of corequisite products

– DB2 Universal Database Version 8.1 Enterprise Server Edition (DB2) with
FixPak 2.

– IBM Global Security Kit (GSKit) Version 7a. GSKit includes open-source
libraries.

– The embedded version of IBM WebSphere Application Server - Express
Version 5.0.2.

� Support for Microsoft Windows Server 2003

IBM Tivoli Directory Server supports the Microsoft Windows Server 2003
operating system, Standard and Enterprise editions.

� Non-SSL packages only on AIX

In previous versions, both Secure Sockets Layer (SSL) and non-SSL
packages were provided on all operating system platforms. For IBM Tivoli
Directory Server Version 5.2, non-SSL packages are provided only on AIX.
 Chapter 4. IBM Tivoli Directory Server overview 87

� Full 64-bit server support on AIX

IBM Tivoli Directory Server has been ported to 64-bit architecture on AIX only.
Solaris, HP-UX, Linux zSeries, Linux Intel, Linux iSeries and pSeries®, and
Microsoft Windows remain 32-bit servers. The Web Administration Tool
remains a 32-bit application. The 32-bit server will no longer be available on
AIX; however, the client SDK will still be available as a 32-bit application. The
64-bit architecture increases the ability to cache a large number of directory
entries.

Note that AIX Version 5.1 or later is required for the 64-bit AIX Server.

To move up to 64-bit server support, you must migrate your database.
However, you do not need to unload and reload your data. See the chapter on
“Migration from previous releases” located in Installation and Configuration
Guide, SC32-1338.

� Authentication methods for LDAP (RFC 2829)

IBM Tivoli Directory Server 5.2 provides support for DIGEST-MD5 Simple
Authentication and Security Layer (SASL) authentication, as well as
Transport Layer Security (TL\S) support as defined in RFC 2829.

� LDAP v3 Extensions for TLS (RFC 2830)

TLS allows clients to connect to the server on a non-secure port and issue a
TLS start command. If GSKit is installed, the server honors the request and
begins a secure connection with the client. RFC 2830 specifies how LDAP
should support TLS.

� DIGEST-MD5 SASL Mechanism (RFC 2831)

RFC 2831 defines how HTTP Digest Authentication (Digest) can be used as
an SASL mechanism for any protocol that has an SASL profile. (RFC 2222
defines SASL.) DIGEST-MD5 is intended to be both an improvement over
CRAM-MD5 and a convenient way to support a single authentication
mechanism for Web, mail, LDAP, and other protocols.

� Use of Language codes (RFC 2596)

RFC 2596 defines a mechanism that allows the directory to associate natural
language codes with values that meet certain natural language requirements.
IBM Tivoli Directory Server 5.2 supports a single language code option and
language tag support discovery.

� Subtree search on null base

A subtree can now be searched from a null base. This provides a shorthand
way to retrieve all entries in the directory. In earlier releases, multiple
searches were required for each suffix to search the entire directory.
88 Understanding LDAP Design and Implementation

� Unique attributes

IBM Tivoli Directory Server 5.2 allows the administrator to identify attributes
that must have unique values. This ensures that there are not two directory
entries with the same attribute values. For example, no two users can have
the same user ID or e-mail address if these attributes have been configured
to enforce uniqueness.

� Delegation of server administration to a group of administrative users

In previous releases, IBM Tivoli Directory Server required that the
administrator user ID be used to perform server tasks such as replication
configuration and starting and stopping the server. For the 5.2 release, there
is an administration group that contains IDs of users with administrative rights
and privileges. This avoids the use of a single administration ID shared by a
number of administrators. The root administrator can add or remove
members from the administration group.

� Prevention of denial of service

For the 5.2 release, support has been added to reduce the vulnerability of the
server to malicious attacks, causing a denial of service. The server can be
configured to reject non-responsive clients after some number of attempts.
Support has also been added to close connections issued by a specific IP
address or DN. An emergency thread is available when some number of
items, configurable on the server, are on the work queue. This provides a
method for the administrator to access the server during a denial of service
attack. The oldest connections can, through configurable parameters, be
reused first.

� Unbind of bound DN/IP

This security enhancement allows an administrator to force a specific bound
DN or IP address to unbind. The emergency thread added in the denial of
service prevention feature enhances this feature by ensuring that an
administrator always has access to unbind bound DNs and IP addresses.

� Group specific search limits

You can now configure "extended" search limits for a defined group of people
who are not the administrator or part of the administration group.

� Preservation of operational attributes

The operational attributes creatorsName, createTimestamp, lastModifiedBy,
and lastModifiedTime are now preserved so that they are consistent
between a master and its replicas. In addition, these attributes are now
imported by the ldif2db and bulkload utilities and exported by the db2ldif
utility.
 Chapter 4. IBM Tivoli Directory Server overview 89

� Attribute cache

The attribute cache improves search performance for certain search filters by
allowing configured attributes and their values to be stored in memory. When
a search is performed using a filter that contains all cached attributes and the
filter is of a type supported by the attribute cache manager, the filter can be
resolved in memory; this leads to improved search performance.

� Serviceability improvements

The following new features improve the serviceability of IBM Tivoli Directory
Server:

– Server input and output logging

The actual input and output from the server can now be logged to allow
better analysis of problems. In previous releases, the LDAP client library
output the BER data to stderr or a file. The new feature adds the capability
to record the same formatted BER data one time to the in-memory trace.
The trace facility can then be used to extract this data.

– Dynamic trace enablement

Trace information from the server can now be captured without stopping
and restarting the server. The level of tracing and the size available for
trace output can also be configured dynamically.

� Monitor enhancements

More information has been added to the output of cn=monitor to be used in
analyzing server performance. These attributes are intended for directory
administrators only. The new information includes counts of completed
operations by type (for example, BIND, MODIFY, COMPARE, SEARCH), depth of the
work queue, number of available workers, counts of messages added to the
server log, audit log, command-line interface errors, and counts of SSL
connections. Information is also included about what worker threads are
doing and when they started.

� Additional support on iSeries and pSeries Linux

Support for the new iSeries and pSeries Linux platforms was added in the
IBM Tivoli Directory Server 5.1 FixPak 1. IBM Tivoli Directory Server 5.2 adds
more support for iSeries and pSeries. The Web Administration Tool can now
be used on these platforms, and translated messages have been added.

� System and restricted ACLs - compatibility with OS/390(R)

Support has been added for specification and evaluation of ACLs for the
system and restricted attribute classes. This resolves the following
interoperability problems between IBM Tivoli Directory Server and OS/390
versions of the LDAP Server.
90 Understanding LDAP Design and Implementation

In previous releases, during replication the IBM Tivoli Directory Server server
rejected any directory entry data that contained ACL specifications with
references to system or restricted attribute classes. Replication from an
OS/390 server provider to an IBM Tivoli Directory Server server consumer
therefore failed.

In previous releases, ACL management code could not be written that would
run correctly on both types of servers. A client application written for an IBM
Tivoli Directory Server environment might not work properly on an OS/390
server because the ACLs might not allow the application to read system
attributes. Conversely, a client application developed for an OS/390 server
environment would fail to work properly on an IBM Tivoli Directory Server
server if the application attempted to set ACLs on system or restricted
attributes.

This feature replaces the limited restricted attribute class ACL support,
originally provided by IBM Tivoli Directory Server 5.1 Protection of Access
Control Information feature (ibm-slapdACLAccess), with full directory-specific
ACL support. The behavior of this feature is consistent with the existing ACL
support provided for the other attribute access classes: Normal, sensitive,
and critical.

To maintain consistency with the legacy IBM Tivoli Directory Server ACL
model, existing version 5.1 directories that contain entries with explicit ACL
specification will be automatically migrated to provide legacy default read,
search, and compare access for the subject DN group:cn=anybody, as well as
any specific access IDs. This is to prevent an unexpected loss of default
access after migration. If denial of access is required, it should be explicitly
specified in the directory, based on the specific needs and desires of the
individual IBM Tivoli Directory Server administrator.

� Support for identity assertions (proxied authentication)

Support has been added for identity assertions, also known as LDAP Proxied
Authorization Control. The Proxied Authorization Control allows a client to
request that an operation be processed under a provided authorization
identity instead of as the current authorization identity associated with the
connection.

� Option that the server does not dereference aliases by default

In previous releases, the Java Naming and Directory Interface (JNDI) had
dereferencing aliases by default. This sometimes caused performance
degradation on the server even if no alias entries existed in the server. A
server configuration option has been added to override the dereference
option specified in the client search request. Additionally, if no alias objects
exist in the directory, the server always bypasses the dereference logic.
 Chapter 4. IBM Tivoli Directory Server overview 91

� Gateway replication

Gateway replication uses Gateway servers to collect and distribute replication
information effectively across a replicating network. The primary benefit of
Gateway replication is the reduction of network traffic.

� Enhancements to the Web Administration Tool

Enhancements have been made to the Web Administration Tool, including
the following:

– Support for administration of OS/400(R) V5R3 and z/OS(TM) R4 LDAP
servers

– Support for object class inheritance from multiple superior objects

– Support for peer-to-peer replication

– Support for gateway replication

– Web Administration support for most new features

4.3 Resources on ITDS
There are several resources available publicly on the Web to find out more
information about ITDS. The best place to start is the IBM Tivoli homepage for
ITDS at:

http://www-306.ibm.com/software/tivoli/products/directory-server/

From here you can download the product and the most recent Fix Packs and
patches, access technical documentation, review recent issues (APARs) that
have been resolved, and see published Technotes.

An excellent place for getting questions answered about ITDS is the ITDS NNTP
group on IBM’s public NNTP service. This group, can be found here:

http://www.news://news.software.ibm.com/ibm.software.ldap

4.4 Summary of ITDS-related chapters
The rest of the chapters in this book go into particular aspects of ITDS
installation, configuration, and management. The topics include:

� Chapter 5, “ITDS installation and basic configuration - Windows” on page 95

� Chapter 6, “ITDS installation and basic configuration - AIX” on page 125

� Chapter 7, “ITDS installation and basic configuration on Intel Linux” on
page 155
92 Understanding LDAP Design and Implementation

http://www.news://news.software.ibm.com/ibm.software.ldap
http://www-306.ibm.com/software/tivoli/products/directory-server/

� Chapter 8, “IBM Tivoli Directory Server installation - IBM zSeries” on
page 185

� Chapter 9, “IBM Tivoli Directory Server Distributed Administration” on
page 193

� Chapter 10, “Client tools” on page 237

� Chapter 11, “Schema management” on page 287

� Chapter 12, “Group and role management” on page 301

� Chapter 13, “Replication” on page 319

� Chapter 14, “Access control” on page 395

� Chapter 15, “Securing the directory” on page 431

� Chapter 16, “Performance Tuning” on page 475

� Chapter 17, “Monitoring IBM Tivoli Directory Server” on page 547

� Chapter 18, “Debugging IBM Tivoli Directory Server related issues” on
page 589

� Chapter 19, “Developing C-based applications” on page 603

� Appendix A, “DSML Version 2” on page 635

� Appendix B, “Directory Integration - IBM Tivoli Directory Integrator” on
page 681
 Chapter 4. IBM Tivoli Directory Server overview 93

94 Understanding LDAP Design and Implementation

Chapter 5. ITDS installation and basic
configuration - Windows

This section describes the installation and basic configuration of ITDS 5.2 on
Microsoft Windows NT, Windows 2000, and Windows 2003. For the latest
information and updates, as well as code downloads, please check the IBM site
at:

http://www-3.ibm.com/software/tivoli/products/directory-server/

ITDS 5.2 has several installation options. You can install using an InstallShield
graphical user interface (GUI) or use platform-specific installation methods such
as the command line or installation tools for the operating system. This chapter
focuses on the GUI installation. For more information on the other types of
installation options, please refer to the ITDS product documentation at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

Before installing, see the IBM Tivoli Directory Server Version 5.2 Server
Readme, GI11-4151, for any updated information about supported versions of
the Microsoft Windows operating system. The readme file is in the root directory
of the installation CD or the directory where you unzipped the server package.
After installing, the readme file is located in the installpath\doc\lang directory in
files server.txt, server.pdf, and server.htm, where:

� installpath is the location where the IBM Tivoli Directory Server is installed.

5

© Copyright IBM Corp. 1998, 2004. All rights reserved. 95

http://www-3.ibm.com/software/tivoli/products/directory-server/
http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

� lang is the locale you chose when you installed IBM Tivoli Directory Server.
For example, for United States English the locale is en_US.

Also see the IBM Tivoli Directory Server Version 5.2 Readme Addendum, which
contains the latest information. The latest version of the Readme Addendum can
be found online with the ITDS product documentation:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html
96 Understanding LDAP Design and Implementation

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

5.1 Installable components
When you install IBM Tivoli Directory Server, you can install either the client or
the server. The server component requires the client.

In addition, you can install the Web Administration Tool on an application server,
with or without the server or the client. You can use the Web Administration Tool
to administer multiple ITDS servers either locally or remotely. You can install a
single Web administration console to manage multiple IBM Tivoli Directory
Server servers. You can also manage servers from previous releases, including
SecureWay Directory 3.2.x and IBM Directory Server Versions 4.1 and 5.1. See
Requirements for the Web Administration Tool in “Web Administration Tool” on
page 101 for a complete list of servers that can be managed.

� Client: (Required) Includes a number of key libraries and command utilities
required by the server. The client also includes a “C” Development SDK. This
component can be installed standalone and requires no other components to
be installed. GSKit must be installed if you require SSL for stronger security.

� Server: (Required) The core LDAP server component. You must install at
least the client and DB2 in conjunction with the server.

� GSKit: (Optional) Global Security Kit (GSKit) Version 7a is a software
package that is required only if Secure Sockets Layer (SSL) Security or
Transport Layer Security (TLS) is required.

� IBM WebSphere Express Application Server: (Optional) To use the Web
Administration Tool, an application server is required. The embedded version
is IBM WebSphere Application Server - Express V5.0.2 is provided with ITDS
as an application server.

� Web Administration Tool: (Optional) A Web-based tool used to manage any
number of distributed IBM Tivoli Directory Servers as well as prior versions of
IBM’s Directory Server product line. In order to install the Web Administration
tool, you need to have a supported Application Server already installed or the
bundled IBM WebSphere Express Application Server is required.

� IBM DB2: (Required) DB2 Universal Database is used as the underling data
storage mechanism for the Server.

In order to install the server, at a bare minimum you must install Client, Server,
and IBM DB2. If you want to require secure access over SSL to the LDAP Server
or Web Administration Tool, you also need to install GSKIT. Finally, if you have
not yet installed the Web Administration Tool anywhere else, you will need to
install it along with a supported Application Server.
 Chapter 5. ITDS installation and basic configuration - Windows 97

5.2 Installation and configuration checklist
Below you will find an abbreviated checklist that contains a high level summary
of the steps required to install and configure ITDS to the point where you can add
your own data. Many of these steps are optional but all are recommended to
provide a well-tuned, high-performance, and secure directory environment.

ITDS 5.2 installation checklist:

1. Verify that the hardware and operating system meet minimum
requirements. See “System and software requirements” on page 99.

2. Obtain products including the latest relevant Fixpacks.

3. Operating system configuration and tuning.

4. Basic product installation. See “Installing the server” on page 102.

5. Add Administrator DN and password. See “Configuring the Administrator
DN and password” on page 106.

6. Configure database. See “Configuring the database” on page 108.

7. Add suffix. See “Adding a suffix” on page 115.

8. Tune DB2. See “DB2 tuning” on page 491.

9. Tune slapd parameters in ibmslapd.conf. See “Additional slapd and
ibmslapd settings” on page 488.

10.Schema customization. See “Modifying the schema” on page 292.

11.Configure ITDS.

a. TCP/IP Ports ITDS uses.

b. Password encryption. See “Password encryption” on page 451

c. Password policy enforcement. See “Password policy enforcement” on
page 437.

d. SSL/TLS, Kerberos, and Digest-MD5. See “SSL/TLS support” on
page 455.

e. Log locations and settings. See “Enabling and disabling the change log”
on page 118.

12.Add data.
98 Understanding LDAP Design and Implementation

5.3 System and software requirements
To install the IBM Tivoli Directory Server client and server packages, administer
the server, and use the Global Security Kit (GSKit), your computer must meet the
minimum system requirements as outlined in this section.

5.3.1 ITDS Client
The IBM Tivoli Directory Server Client SDK provides the tools required to
develop LDAP applications as well as a number of the most commonly used
command line utilities for manipulating LDAP data within the directory. The
following are provided:

� Client libraries that provide a set of C-language APIs

� C header files for building and compiling LDAP applications

� Documentation that describes the programming interface and the sample
programs

� Sample programs in source form

� Executable versions of the sample programs:

– ldapmodrdn.exe: LDAP modify relative distinguished name

– ldapdelete.exe: LDAP delete

– ldapmodify.exe: LDAP modify

– ldapsearch.exe: LDAP search

– ldapadd.exe: LDAP add (a renamed version of ldapmodify)

– ldapchangepwd.exe: LDAP change password

– ldapexop.exe: LDAP extended operations

The following are the system and software requirements for the ITDS client on
Microsoft Windows.

� Operating system requirements

– Microsoft Windows 2000
– Microsoft Windows XP
– Microsoft Windows Server 2003 Standard or Enterprise
– Microsoft Windows NT 4.0 with Service Pack 6 or later

� Memory requirements

A minimum of 128 MB RAM is required. For better results, use 256 MB or
more.
 Chapter 5. ITDS installation and basic configuration - Windows 99

� Disk space requirements

You need at least 100 MB of free space on the disk where you will be
installing the client.

5.3.2 ITDS Server (including client)
The Server consists of the following components:

� The server executable: ibmslapd

� Command line import/export utilities

� Web-based GUI for administering the directory: Web Administration Tool

� Server configuration and database utilities GUI for configuring the directory:
Configuration Tool (ldapxcfg)

� Online Web Administration Tool and Configuration Tool helps

� The ITDS Client (see previous section)

The following are the system and software requirements for the ITDS Server on
Microsoft Windows. By default, the ITDS Server requires the ITDS client.

� Operating system requirements

– Microsoft Windows 2000.

– Microsoft Windows Server 2003 Standard or Enterprise.

– Microsoft Windows NT 4.0 with Service Pack 6 or later. A Microsoft
Windows NT file system (NTFS) is required for security support.

� Memory requirements

A minimum of 256 MB RAM is required. For better results, use 512 MB or
more.

� Disk space requirements

– You must have at least 100 MB of free space in the directory specified by
the TEMP environment variable.

– You will need 410–610 MB of disk space for the ITDS software on the
device you choose to install onto. If IBM DB2 is already installed, then you
will need 150 MB to install the other ITDS components.

– Disk space required for data storage is dependent upon the number and
size of database entries. Allow a minimum of 80 MB for your database on
Windows systems. Also allow another 2 to 3 MB of disk space when
creating the DB2 instance.
100 Understanding LDAP Design and Implementation

� Other software requirements

The minimum supported level of IBM DB2 is IBM DB2 Version 7.2 with
FixPak 5 or later. DB2 Version 8.1 Enterprise Server Edition with FixPak 2 is
included with IBM Tivoli Directory Server and is installed if a supported
version of DB2 is not detected on your system. If you have a version of DB2
earlier than Version 7.2 with FixPak 5 installed on your system, you must
remove it or upgrade it before installing ITDS. For more information on
migrating from previous versions of ITDS, please refer to the Tivoli Software
Information Center ITDS 5.2 page at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

5.3.3 Web Administration Tool
You can install the Web Administration Tool on a computer with or without the
client or the server. The Web Administration Tool can be used to administer
LDAP servers of the following types:

� IBM Tivoli Directory Server 5.2
� IBM Directory Server 5.1
� IBM Directory Server 4.1
� IBM SecureWay Directory 3.2.2
� OS/400 V5R3
� z/OS R4

Note that for z/OS R4, only the following configurations are supported:

� A single TDBM backend
� A single SDBM backend
� One TDBM and SDBM backend

The Web Administration Tool is supported on the following Microsoft Windows
platforms:

� Microsoft Windows NT 4.0
� Microsoft Windows 2000
� Microsoft Windows XP
� Microsoft Windows Server 2003 Standard, Enterprise

To use the Web Administration Tool, you also need the following:

� One of the following application servers:

– The embedded version of IBM WebSphere Application Server - Express
V5.0 or later. Version 5.0.2 is provided with IBM Tivoli Directory Server
5.2. (iSeries Linux, pSeries Linux, and HP-UX require version 5.0.2.) If you
have version 5.0, which was provided with IBM Directory Server, installed,
see the section titled “Migrating the Web Administration Tool and
 Chapter 5. ITDS installation and basic configuration - Windows 101

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

upgrading the embedded version of WebSphere Application Server -
Express” in the IBM Tivoli Directory Server Installation and Configuration
Guide version 5.2, SC32-1338.

– IBM WebSphere 5.0 or later. (iSeries Linux, pSeries Linux, and HP-UX
require version 5.0.2.)

� One of the following Web browsers on the computer from which you will use
the Web Administration Tool. (This might or might not be the computer where
the Web Administration Tool is installed.)

– On Microsoft Windows platforms

Microsoft Internet Explorer Version 6.0

– On AIX

Mozilla 1.3 or 1.4

– On xSeries® Linux

Mozilla 1.3 or 1.4

– On iSeries, pSeries, zSeries Linux

No browser support available

– On Solaris 7, 8, or 9

Mozilla 1.3 or 1.4

– On HP-UX

Mozilla 1.3 or 1.4

5.4 Installing the server
Use the information in the following sections to install ITDS 5.2 on a Windows
platform using the Installshield GUI.

5.4.1 Create a user ID for ITDS
Before you install, create or be sure that you have created the user ID that will
own ITDS’s IBM DB2 database used to store the directory data. You will be
asked to provide this user ID and its password during configuration, which runs
automatically after installation and system restart. The user ID must be 8

Note: The following installation instructions do not cover migration scenarios.
For information on how to migrate previous versions of the Directory Server to
ITDS 5.2, please refer to the IBM Tivoli Directory Server Installation and
Configuration Guide version 5.2, SC32-1338.
102 Understanding LDAP Design and Implementation

characters or less, and it must be a member of the Administrators group. If you
are creating a new database, a DB2 instance with the same name as the user ID
will be created to hold the database.

The method used to create the user varies from one Microsoft Windows
operating system to another. Please refer to the operating system documentation
for more details on this process.

5.4.2 Installing ITDS with the Installshield GUI
To install:

1. On the computer where you are installing the IBM Tivoli Directory Server,
stop any programs that are running and close all windows. If you have open
windows, the initial IBM Tivoli Directory Server installation window might be
hidden behind other windows.

2. If you are installing from a CD, insert the CD in your CD-ROM drive.

3. If you are installing locally from a CD or remotely from the network, go to the
drive for your CD-ROM or for the appropriate network path. If you
downloaded a zipped file, go to the directory where you unzipped the file.

4. In the \ismp folder, double-click the setup.exe icon. The language window is
displayed.

Tip: A simple way to create the type of user account that ITDS requires on a
Microsoft Windows 2000 Server is with the following two commands. This
example uses a username of ldapdb2 and a password of somepassword. Enter
these two commands at a Microsoft Windows command prompt window (as
an Administrator).

NET USER ldapdb2 somepassword /ADD /ACTIVE:yes /expires:never /comment:"ITDS
Account"

NET LOCALGROUP Administrators /add ldapdb2

The account ldapdb2 now exists on the Windows Server, is active, and has
the proper privileges. You can now move into the actual setup of ITDS.
 Chapter 5. ITDS installation and basic configuration - Windows 103

5. Select the language you want to use during IBM Tivoli Directory Server
installation. Click OK.

6. On the Welcome window, click Next.

7. After reading the Software license agreement, select I accept the terms in
the license agreement. Click Next.

8. Any preinstalled components and corresponding version levels are displayed.
Click Next.

9. To install to the default directory, click Next. You can specify a different
directory by clicking Browse.

10.Select the language you want to use in IBM Tivoli Directory Server 5.2. Click
Next.

11.A window showing the following components for installation is displayed, as
shown in Figure 5-1 on page 105:

– Client SDK 5.2
– Web Administration Tool 5.2
– Server 5.2
– IBM WebSphere Application Server - Express 5.0.2
– DB2 V8.1
– GSKit

Note: When installing on Windows, if the installation program exits without
displaying the language window, it might be caused by one of the
following:

� Backlevel video drivers. Update your video drivers to the most recent
levels to correct this.

� Not enough space in the directory specified by the TEMP environment
variable. Be sure that you have at least 100 MB of free space in this
directory.

Note: This is the language used in the installation program, not in IBM
Tivoli Directory Server. You choose the language used in IBM Tivoli
Directory Server in step 10.

Note: Do not use special characters, such as hyphen (-) and period (.) in
the name of the installation directory. If you do not use the default location,
use a name such as ldap or ldapdir. Do not use a name such as ldap-dir or
ldap.dir.
104 Understanding LDAP Design and Implementation

The components that are not yet installed are preselected. You can choose to
reinstall the server, the client, or the Web Administration Tool if they were
previously installed.

Figure 5-1 Install component selection window

Figure 5-1 also indicates the amount of disk space required and available on
the selected drive.

Be sure the components you want to install are selected, and click Next.

12.If you selected DB2 V8.1 in step 12, a window is displayed prompting you to
enter a Windows user ID and password for the DB2 system ID. The default
user ID is db2admin. On the window:

a. Type the user ID or accept the default.

b. Type the password, and then type the password again for verification.

c. Click Next.
 Chapter 5. ITDS installation and basic configuration - Windows 105

13.The installation program now has enough information to begin installing. A
summary window displays the components you selected and the locations
where the selected components will be installed. Click Back to change any of
your selections. Click Next to begin installation.

14.After the files are installed:

– If you installed the client, the Client Readme file is displayed. Read the file
and click Next.

– If you installed the server, the server Readme file is also displayed. Read
the file and click Next.

– If you installed the Web Administration Tool, the Web Administration Tool
Readme file is also displayed. Read the file and click Next.

15.Select to restart your computer now or later. Click Finish.

After your computer is restarted, if you installed the server, log in using the same
user ID that you used to install IBM Tivoli Directory Server. The Configuration
Tool automatically runs so that you can complete the server configuration.
Before you can use the server, you must set the administrator DN and password
and configure the database that will store the directory data.

5.4.3 Configuring the Administrator DN and password
Each ITDS Server has a special “super-user” account associated with it that
provides maximum privileges within ITDS. You will need to create this account
before you can administer ITDS.

Note: Note the following:

� This user ID must not be the one you created in Creating the DB2
database owner.

� If you are using an existing Microsoft Windows user ID, be sure that
your password is correct. Otherwise, DB2 does not install correctly.

� If you are using an existing Windows user ID, it must be a member of
the Administrators group.

� If you are not using an existing user ID, DB2 creates the user ID you
specify with the password you type.

Note: If you installed the server, you must restart your system to complete
IBM Tivoli Directory Server configuration. You are unable to use IBM Tivoli
Directory Server until this is completed.
106 Understanding LDAP Design and Implementation

To set the administrator DN and password, refer to Figure 5-2 on page 108, and
perform these steps:

1. In the IBM Tivoli Directory Server Configuration Tool window, click
Administrator DN/password in the task list on the left.

2. In the Administrator DN/password window on the right, type a valid DN (or
accept the default DN, cn=root) in the Administrator DN field.

The IBM Directory Server administrator DN is the DN used by the
administrator of the directory. This administrator is the one user who has full
access to all data in the directory.

The default DN is cn=root. DNs are not case sensitive. If you are unfamiliar
with X.500 format, or if for any other reason you do not want to define a new
DN, accept the default DN.

3. Type the password for the Administrator DN in the Administrator Password
field. You must define a password. Passwords are case-sensitive.

Record the password for future reference.

4. Retype the password in the Confirm password field.

5. Click OK.

Note: Double byte character set (DBCS) characters in the password are
not supported.
 Chapter 5. ITDS installation and basic configuration - Windows 107

Figure 5-2 Setting the administrator DN and password

5.4.4 Configuring the database
Since ITDS uses IBM DB2 as the storage repository for all data, prior to adding
data to your directory, you will need to configure a database instance that will be
associated with ITDS.

To configure the directory database:

1. Before you configure the database that ITDS will use, create or be sure that
you have previously created a valid user ID that will own the DB2 database
used to store the directory data. You will be asked to provide this user ID and
its password during configuration, which runs automatically after installation
and system restart. The user ID must be 8 characters or less, and it must be a
member of the Administrators group. If you are creating a new database, a
DB2 instance with the same name as the user ID will be created to hold the
database.

Note: Verify that the user ID you have created or assigned can
successfully log into the system. Check to ensure the password does not
expire on first login. Check to see if the account is enabled.
108 Understanding LDAP Design and Implementation

2. In the Configuration Tool, click Configure database in the task list on the left.
Select Configure new database and click Next as shown in Figure 5-3 on
page 109.

Figure 5-3 Database configuration

3. A user ID and password is requested, as shown in Figure 5-4 on page 110:

a. Type a user ID in the User ID field. This user ID must already exist before
you can configure the database. This is the user ID you created in step 1.
Type a password for the user in the Password field. Passwords are
case-sensitive.

b. Click Next.
 Chapter 5. ITDS installation and basic configuration - Windows 109

Figure 5-4 Database configuration - Setting the user ID and password for the database

4. Next you will be prompted for a name for the database, as shown in
Figure 5-5 on page 111:

a. Type the name you want to give the DB2 database. The name can be from
1 to 8 characters long. The database will be created in an instance with
the same name as the user ID.

b. Click Next.
110 Understanding LDAP Design and Implementation

Figure 5-5 Database configuration - Choose DB2 database name

5. If the database location is requested, as shown in Figure 5-6 on page 112:

a. Type the location for the database in the Database location field. For
Windows platforms, this must be a drive letter.

Be sure that you have at least 80 MB of free hard disk space in the
location you specify and that additional disk space is available to
accommodate growth as new entries are added to the directory.

b. Click Next.
 Chapter 5. ITDS installation and basic configuration - Windows 111

Figure 5-6 Database configuration - Choosing an install location (Windows)

6. If a character set selection is requested, as shown in Figure 5-7 on page 113:

a. Click the type of database you want to create. You can create a UCS
Transformation Format (UTF-8) database, in which LDAP clients can store
UTF-8 character data, or a local code page database, which is a database
in the local code page.
112 Understanding LDAP Design and Implementation

b. Click Next.

Figure 5-7 Database configuration - Codepage selection

Note: IBM Tivoli Directory Server supports a wide variety of national
language characters through the UTF-8 (UCS Transformation Format)
character set. As specified for the LDAP Version 3 protocol, all
character data that is passed between an LDAP client and a server is in
UTF-8. Consequently, the directory server can be configured to store
any national language characters that can be represented in UTF-8.
The limitations on what types of characters can be stored and searched
for are determined by how the database is created. The database
character set can be specified as UTF-8 or it can be set to use the
server system's local character set (based on the locale, language, and
code page environment).

If you specify UTF-8, you can store any UTF-8 character data in the
directory. LDAP clients running anywhere in the world (in any UTF-8
supported language) can access and search the directory. In many
cases, however, the client has limited ability to properly display the
results retrieved from the directory in a particular language/character
set. There is also a performance advantage to using a UTF-8 database
because no data conversion is required when storing data to or
retrieving data from the database.
 Chapter 5. ITDS installation and basic configuration - Windows 113

7. In the verification window, shown in Figure 5-8, information is displayed about
the configuration options you specified. To return to an earlier window and
change information, click Back. To begin configuration, click Finish.

Figure 5-8 Configuration final confirmation

8. The completion window is displayed, as shown in Figure 5-9 on page 115.
Click Close.
114 Understanding LDAP Design and Implementation

Figure 5-9 Database configuration - Results window

5.4.5 Adding a suffix
A suffix (also known as a naming context) is a distinguished name (DN) that
identifies the top entry in a locally held directory hierarchy. Because of the
relative naming scheme used in LDAP, this DN is also the suffix of every other
entry within that directory hierarchy. A directory server can have multiple
suffixes, each identifying a locally held directory hierarchy, for example,
o=ibm,c=us.

Entries to be added to the directory must have a suffix that matches the DN
value, such as ou=Marketing,o=ibm,c=us. If a query contains a suffix that does
not match any suffix configured for the local database, the query is referred to the
LDAP server that is identified by the default referral. If no LDAP default referral is
 Chapter 5. ITDS installation and basic configuration - Windows 115

specified, an Object does not exist result is returned. The server must be
stopped before you add or remove suffixes.

Add a suffix
To add a suffix:

1. In the Configuration Tool, click Manage suffixes in the task list on the left, as
shown in Figure 5-10.

2. In the Manage suffixes window, type the suffix you want to add in the
SuffixDN field, and click Add.

3. When you have added all the suffixes you want, click OK. When you click
Add, the suffix is added to the list in the current suffix DNs box; however, the
suffix is not actually added to the directory until you click OK.

Figure 5-10 Adding a suffix

Removing a suffix
To remove a suffix:

1. In the Configuration Tool, click Manage suffixes in the task list on the left.

2. In the Manage suffixes window, click the suffix you want to remove in the
Current suffix DNs box, and click Remove.
116 Understanding LDAP Design and Implementation

3. When you have selected all the suffixes you want to remove, click OK. When
you click Remove, the suffix is removed from the list in the current suffix DNs
box; however, the suffix is not actually removed until you click OK.

5.4.6 Removing or reconfiguring a database
At some point you may need to remove the IBM DB2 database instance that is
associated with ITDS. The ITDS ldapxcfg tool allows you to unconfigure the
database instance, unconifgure and destroy the database instance, and
unconfigure, destroy, and delete the database instance.

To unconfigure the database:

1. In the Configuration Tool, click Unconfigure database in the task list on the
left.

2. In the Unconfigure database window, click of the following:

– Unconfigure only

Does not destroy any existing LDAP DB2 data. However, the configuration
information for the database will be removed from the configuration file
(ibmslapd.conf), and the database will be inaccessible to the directory
server.

– Unconfigure and destroy database

Removes the existing database and its contents, and removes the
configuration information for the database from the configuration file.

– Unconfigure and destroy database and delete instance

Removes the existing database and its contents, removes the
configuration information for the database from the configuration file, and
deletes the instance in which the database is located.

3. Click Unconfigure.
 Chapter 5. ITDS installation and basic configuration - Windows 117

Figure 5-11 Unconfiguring the DB2 database associated with ITDS

Once you have completed these steps, you may now configure or re-configure a
new database instance for use with ITDS. See “Configuring the database” on
page 108 for more information.

5.4.7 Enabling and disabling the change log
The change log database is used to record changes to the schema or directory
entries in the typical LDAP entry structure that can be retrieved through the
LDAP API. The change log records all update operations: Add, delete, modify,
and modrdn. The change log enables LDAP client applications to retrieve a set of
changes that have been made to an IBM Tivoli Directory Server database. The
client might then update its own replicated or cached copy of the data.

The change log function causes all updates to LDAP to be recorded in a
separate change log DB2 database (that is, a different database from the one
used to hold the LDAP server Directory Information Tree). The change log
database can be used by other applications to query and track LDAP updates.
The change log function is disabled by default.
118 Understanding LDAP Design and Implementation

Unlike some other directory servers on the market, the change log is not required
by ITDS to setup replication. Typically, the change log is enabled so
meta-directory sychronization products such as IBM Tivoli Directory Integrator
(ITDI) can detect changes occurring within ITDS and then push those changes to
other non-ITDS data repositories.

There are some performance considerations when you enable the change log
since all changes within ITDS are now logged to a separate a database instance.
You should evaluate the impact of enabling the change log during in the
pre-deployment phases of your ITDS deployment.

You can use the ldapxcfg Configuration Tool to enable or disable the change
log. The server must be stopped before you enable or disable the change log.

To enable the change log, refer to Figure 5-12 on page 120 and perform the
following steps:

1. In the Configuration Tool, click Configure/unconfigure changelog in the
task list on the left.

2. In the Configure/unconfigure changelog window, select the Enable change
log database check box.

3. In the Maximum number of log entries box, click Unlimited if you want an
unlimited number of entries in the change log. If you want to limit the number
of entries, click Entries and type the maximum number of entries you want
recorded. The default is 1,000,000 entries.

4. In the Maximum age box, accept the default of Unlimited if you want entries to
remain in the change log indefinitely, or click Age and type the number of
days and hours for which you want each entry to be kept.

5. Click Update.
 Chapter 5. ITDS installation and basic configuration - Windows 119

Figure 5-12 Enabling the change log

To disable the change log:

1. In the Configuration Tool, click Configure/unconfigure changelog in the
task list on the left.

2. In the Configure/unconfigure changelog window, clear the Enable change log
database check box.

3. Click Update.

5.5 Starting ITDS
There are a number of other optional tasks you can perform within the Directory
Configuration tool at this point such as adding custom schema and importing
data. Those tasks do not have to be completed before you initially start the
server. Those topics are covered in subsequent chapters.
120 Understanding LDAP Design and Implementation

The easiest way to start the server is by typing ibmslapd in a windows command
prompt, as shown in Example 5-1.

Example 5-1 Starting the Directory Server

C:\>ibmslapd

Dec 13 16:01:43 2003 Server starting.
Dec 13 16:01:44 2003 Plugin of type EXTENDEDOP is successfully loaded from libevent.dll.
Dec 13 16:01:44 2003 Plugin of type EXTENDEDOP is successfully loaded from libtranext.dll.
Dec 13 16:01:45 2003 Plugin of type EXTENDEDOP is successfully loaded from libldaprepl.dll.
Dec 13 16:01:45 2003 Plugin of type PREOPERATION is successfully loaded from libDSP.dll.
Dec 13 16:01:45 2003 Plugin of type PREOPERATION is successfully loaded from libDigest.dll.
Dec 13 16:01:45 2003 Plugin of type EXTENDEDOP is successfully loaded from libevent.dll.
Dec 13 16:01:45 2003 Plugin of type EXTENDEDOP is successfully loaded from libtranext.dll.
Dec 13 16:01:45 2003 Plugin of type AUDIT is successfully loaded from C:/Program
Files/IBM/LDAP/bin/libldapaudit.dll.
Dec 13 16:01:45 2003 Plugin of type PREOPERATION is successfully loaded from C:/Program
Files/IBM/LDAP/bin/libcl.dll.
Dec 13 16:01:45 2003 Plugin of type EXTENDEDOP is successfully loaded from libevent.dll.
Dec 13 16:01:45 2003 Plugin of type EXTENDEDOP is successfully loaded from libtranext.dll.
Dec 13 16:01:45 2003 Plugin of type DATABASE is successfully loaded from C:/Program
Files/IBM/LDAP/bin/libback-rdbm.dll.
Dec 13 16:01:45 2003 Plugin of type REPLICATION is successfully loaded from C:/Program
Files/IBM/LDAP/bin/libldaprepl.dll.
Dec 13 16:01:45 2003 Plugin of type EXTENDEDOP is successfully loaded from C:/Program
Files/IBM/LDAP/bin/libback-rdbm.dll.
Dec 13 16:01:45 2003 Plugin of type PREOPERATION is successfully loaded from C:/Program
Files/IBM/LDAP/bin/libcl.dll.
Dec 13 16:01:45 2003 Plugin of type EXTENDEDOP is successfully loaded from libevent.dll.
Dec 13 16:01:45 2003 Plugin of type DATABASE is successfully loaded from C:/Program
Files/IBM/LDAP/bin/libback-rdbm.dll.
Dec 13 16:01:45 2003 Plugin of type PREOPERATION is successfully loaded from C:/Program
Files/IBM/LDAP/bin/libcl.dll.
Dec 13 16:01:45 2003 Plugin of type EXTENDEDOP is successfully loaded from libevent.dll.
Dec 13 16:01:45 2003 Plugin of type DATABASE is successfully loaded from C:/Program
Files/IBM/LDAP/bin/libback-config.dll.
Dec 13 16:01:50 2003 Plugin of type EXTENDEDOP is successfully loaded from libloga.dll.
Dec 13 16:01:50 2003 Non-SSL port initialized to 389.
Dec 13 16:01:54 2003 IBM Tivoli Directory (SSL), Version 5.2Server started.
Dec 13 16:01:54 2003 Started 15 worker threads to handle client requests.

C:\>

After you type ibmslapd at the command prompt, a number of messages will be
logged to the screen. One of them should say IBM Tivoli Directory (SSL)
Version 5.2 Server started.
 Chapter 5. ITDS installation and basic configuration - Windows 121

To verify ITDS is indeed running, configured properly, and responding to queries,
you can type the following command at the Windows command prompt:

ldapsearch -s base -b ““ objectclass=*

The output of this command is shown in Example 5-2.

Example 5-2 Querying the root DSE

C:\>ldapsearch -s base -b "" objectclass=*

namingcontexts=CN=SCHEMA
namingcontexts=CN=LOCALHOST
namingcontexts=CN=PWDPOLICY
namingcontexts=CN=IBMPOLICIES
namingcontexts=O=IBM,C=US
namingcontexts=CN=CHANGELOG
subschemasubentry=cn=schema
supportedextension=1.3.18.0.2.12.1
supportedextension=1.3.18.0.2.12.3
supportedextension=1.3.18.0.2.12.5
supportedextension=1.3.18.0.2.12.6
supportedextension=1.3.18.0.2.12.15
supportedextension=1.3.18.0.2.12.16
supportedextension=1.3.18.0.2.12.17
supportedextension=1.3.18.0.2.12.19
supportedextension=1.3.18.0.2.12.44
supportedextension=1.3.18.0.2.12.24
supportedextension=1.3.18.0.2.12.22
supportedextension=1.3.18.0.2.12.20
supportedextension=1.3.18.0.2.12.28
supportedextension=1.3.18.0.2.12.30
supportedextension=1.3.18.0.2.12.26
supportedextension=1.3.6.1.4.1.1466.20037
supportedextension=1.3.18.0.2.12.35
supportedextension=1.3.18.0.2.12.40
supportedextension=1.3.18.0.2.12.46
supportedextension=1.3.18.0.2.12.37
supportedcontrol=2.16.840.1.113730.3.4.2
supportedcontrol=1.3.18.0.2.10.5
supportedcontrol=1.2.840.113556.1.4.473
supportedcontrol=1.2.840.113556.1.4.319
supportedcontrol=1.3.6.1.4.1.42.2.27.8.5.1
supportedcontrol=1.2.840.113556.1.4.805

Note: There are a number of other ways to start ITDS. Please refer to
Chapter 9, “IBM Tivoli Directory Server Distributed Administration” on
page 193, for more information.
122 Understanding LDAP Design and Implementation

supportedcontrol=2.16.840.1.113730.3.4.18
supportedcontrol=1.3.18.0.2.10.15
supportedcontrol=1.3.18.0.2.10.18
security=none
port=389
supportedsaslmechanisms=CRAM-MD5
supportedsaslmechanisms=DIGEST-MD5
supportedldapversion=2
supportedldapversion=3
ibmdirectoryversion=5.2
changelog=cn=changelog
firstchangenumber=1
lastchangenumber=1
ibm-ldapservicename=TEST-WIN2K
ibm-serverId=718b8a13-a75f-4e2e-acb7-e8aa69095157
ibm-supportedacimechanisms=1.3.18.0.2.26.3
ibm-supportedacimechanisms=1.3.18.0.2.26.4
ibm-supportedacimechanisms=1.3.18.0.2.26.2
vendorname=International Business Machines (IBM)
vendorversion=5.2
ibm-sslciphers=N/A
ibm-slapdisconfigurationmode=FALSE
ibm-slapdSizeLimit=500
ibm-slapdTimeLimit=900
ibm-slapdDerefAliases=always
ibm-supportedAuditVersion=2
ibm-sasldigestrealmname=TEST-WIN2K

C:\>

If the suffix you added in “Adding a suffix” on page 115 is displayed in the output
of your ldapsearch command in the format namingcontexts=O=IBM,C=US
(o=ibm,c=us is the suffix added in this example), then ITDS’s slapd LDAP
listener is configured properly and open for business.
 Chapter 5. ITDS installation and basic configuration - Windows 123

124 Understanding LDAP Design and Implementation

Chapter 6. ITDS installation and basic
configuration - AIX

This section describes the installation and basic configuration of ITDS 5.2 on the
IBM AIX operating system. For the latest information and updates, as well as
code downloads, please check the IBM site at:

http://www-3.ibm.com/software/tivoli/products/directory-server/

ITDS 5.2 has several installation options. You can install using an InstallShield
graphical user interface (GUI) or use platform-specific installation methods such
as the command line or installation tools for the operating system. This chapter
focuses on the GUI installation. For more information on the other types of
installation options, please refer to the ITDS documentation at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

Before installing, see IBM Tivoli Directory Server Version 5.2 Server Readme,
GI11-4151, for any updated information about supported versions of the AIX
operating system. The readme file is in the root directory of the CD or the
directory where you extracted the server package from the tape archive (tar)
image. After installing, the readme file is located in the installpath\doc\lang
directory in files server.txt, server.pdf, and server.htm, where:

� installpath is the location where the IBM Tivoli Directory Server is installed.

6

© Copyright IBM Corp. 1998, 2004. All rights reserved. 125

http://www-3.ibm.com/software/tivoli/products/directory-server/
http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

� lang is the locale you chose when you installed IBM Tivoli Directory Server;
for example, for United States English the locale is en_US.

Also see the IBM Tivoli Directory Server Version 5.2 Readme Addendum, which
contains the latest information. The latest version of the Readme Addendum can
be found online with the ITDS product documentation:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html
126 Understanding LDAP Design and Implementation

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

6.1 Installable components
When you install IBM Tivoli Directory Server, you can install either the client or
the server, which requires the client.

In addition, you can install the Web Administration Tool on an application server,
with or without the server or the client. You can use the Web Administration Tool
to administer IBM Tivoli Directory Server servers either locally or remotely. You
can install a single Web Administration console to manage multiple IBM Tivoli
Directory Server servers. You can manage servers from previous releases,
including SecureWay Directory 3.2.x and IBM Directory Server Versions 4.1 and
5.1. See Requirements for the Web Administration Tool in “Web Administration
Tool” on page 132 for a complete list of servers that can be managed.

� Client: (Required) Includes a number of key libraries and command utilities
required by the server. The client also includes a “C” Development SDK. This
component can be installed standalone and requires no other components to
be installed. GSKit must be installed if you require SSL for stronger security.

� Server: (Required) The core LDAP server component. You must install at
least the client and DB2 in conjunction with the server.

� IBM GSKit: (Optional) IBM Global Security Kit (GSKit) Version 7a is a
software package that is required only if Secure Sockets Layer (SSL) Security
or Transport Layer Security (TLS) is required.

� IBM WebSphere Express Application Server: (Optional) To use the Web
Administration Tool, an application server is required. The embedded version
of IBM WebSphere Application Server - Express V5.0.2 is provided with ITDS
as an application server.

� Web Administration Tool: (Optional) A Web-based tool used to manage any
number of distributed IBM Tivoli Directory Servers as well as prior versions of
IBM’s Directory Server product line. In order to install the Web Administration
tool, you will need to have a supported application server already installed or
the bundled IBM WebSphere Express Application Server is required.

� DB2: (Required) IBM DB2 Universal Database is used as the underling data
storage mechanism for the server.

In order to install the server, at a bare minimum you must install client, server,
and DB2. If you want to require secure access over SSL to the LDAP Server or
Web Administration Tool, you will also need to install GSKIT. Finally, if you have
not yet installed the Web Administration Tool anywhere else, you will need to
install it along with a supported application server.
 Chapter 6. ITDS installation and basic configuration - AIX 127

6.2 Installation and configuration checklist
Below you will find an abbreviated checklist that contains a high-level summary
of the steps required to install and configure ITDS to the point where you can add
your own data. Many of these steps are optional but all are recommended in
order to provide a well-tuned, high-performance, and secure directory service
environment.

ITDS 5.2 installation checklist:

1. Verify that the hardware and operating system meet minimum
requirements. See “System and software requirements” on page 129.

2. Obtain product including latest relevant Fixpacks.

3. Operating system configuration and tuning.

4. Basic product installation. See “Installing the server” on page 133.

5. Add Administrator DN and password. See “Configuring the Administrator
DN and password” on page 137.

6. Configure database. See “Configuring the database” on page 138.

7. Add suffix. See “Adding a suffix” on page 145.

8. Tune DB2. See “DB2 tuning” on page 491.

9. Tune slapd parameters in ibmslapd.conf. See “Additional slapd and
ibmslapd settings” on page 488.

10.Schema customization. See “Modifying the schema” on page 292.

11.Configure ITDS.

c. TCP/IP Ports ITDS uses.

d. Password encryption. See “Password encryption” on page 451.

e. Password policy enforcement. See “Password policy enforcement” on
page 437.

f. SSL / TLS, Kerberos, and Digest-MD5. See “SSL/TLS support” on
page 455.

g. Log locations and settings. See “Enabling and disabling the change log”
on page 148.

12.Add data.
128 Understanding LDAP Design and Implementation

6.3 System and software requirements
To install the IBM Tivoli Directory Server client and server packages, administer
the server, and use the Global Security Kit (GSKit), your computer must meet the
minimum system requirements as outlined in this section.

6.3.1 ITDS Client
The IBM Tivoli Directory Server Client SDK provides the tools required to
develop LDAP applications as well as a number of the most commonly used
command line utilities for manipulating LDAP data within the directory. The
following are provided:

� Client libraries that provide a set of C-language APIs

� C header files for building and compiling LDAP applications

� Documentation that describes the programming interface and the sample
programs

� Sample programs in source form

� Executable versions of the sample programs

– ldapmodrdn: LDAP modify relative distinguished name
– ldapdelete: LDAP delete
– ldapmodify: LDAP modify
– ldapsearch: LDAP search
– ldapadd: LDAP add (a renamed version of ldapmodify)
– ldapchangepwd: LDAP change password
– ldapexop.exe: LDAP extended operations

The following are the system and software requirements for the ITDS client on
AIX. The client is 32-bit and does not require 64-bit support if installed on a
different machine than the ITDS Server component.

� Operating system requirements

– IBM AIX 4.3.3. (The GUI Install is not supported on AIX 4.3.3. Please refer
to the IBM Tivoli Directory Server Version 5.2 Installation & Configuration
Guide, SC32-1338, for alternative installation methods.)

– IBM AIX 5.1.

– IBM AIX 5.2.

� Memory requirements

A minimum of 128 MB RAM is required. For better results, use 256 MB or
more.
 Chapter 6. ITDS installation and basic configuration - AIX 129

� Disk space requirements

You must have at least 100 MB of free space in the /var directory and at least
200 MB of free space in the /tmp directory.

� Other requirements

The following additional requirements may apply:

– The Korn shell is required.

– For AIX 4.3.3 you must install IBM AIX Maintenance Level 8 or later. On
AIX 5.1, you must install IBM AIX Maintenance Level 4 or later. On AIX
5.2, you must install IBM AIX Maintenance Level 1 or later.

– The bos.loc.iso.ZH_TW fileset must be installed for the Taiwan locale. The
fileset is available from the IBM AIX 4.3.3 installation medium.

– The xlC.rte 6.0.0.0 or later fileset is required for GSKit 7a on AIX 5.1 and
5.2.

– The xlC.aix43.rte 6.0.0.0 or later fileset is required for GSKit 7a on AIX
4.3.3.

– To use GSKit, the IBM JRE or JDK 1.4.1 or an equivalent JRE or JDK is
required.

6.3.2 ITDS Server (including client)
The server consists of the following components:

� The server executable: ibmslapd

� Command line import and export utilities

� Web-based GUI for administering the directory: Web Administration Tool

� Server configuration and database utilities GUI for configuring the directory:
Configuration Tool (ldapxcfg)

� Online Web Administration Tool and Configuration Tool helps

� The ITDS Client

The following are the system and software requirements for the ITDS Server on
AIX. By default, the ITDS Server requires the ITDS client. You must be running
on 64-bit hardware and have 64-bit AIX kernel installed.
130 Understanding LDAP Design and Implementation

The requirements are:

� Operating system requirements

– IBM AIX 5.1
– IBM AIX 5.2

� Memory requirements

A minimum of 512 MB RAM is required. For better results, have 1 GB or more
available.

� Disk space requirements

– You must have at least 100 MB of free space in the /var directory and at
least 400 MB in the /tmp directory.

– You will need 460–660 MB of disk space for the ITDS software on the
device you choose to install on. If DB2 is already installed, then you will
need 160 MB to install the other ITDS components.

– Disk space required for data storage is dependent upon the number and
size of database entries. Allow a minimum of 80 MB for your database on
AIX systems. Also, ensure that there is approximately another 4 MB of
disk space in the home directory of the user who will own the database to
create the DB2 instance.

� Other software

– The Korn shell is required.

Tip: To verify that your AIX hardware is 64-bit, run the following command:

bootinfo -y

If the command returns 32, your hardware is 32-bit.

In addition, if you type the command lsattr -El proc0, the output of the
command returns the type of processor for your server. If you have any of the
following, you have 64-bit hardware: RS64 I, II, III, IV, POWER3™, POWER3
II or POWER4™.

To verify that you have the 64 bit kernel (/usr/lib/boot/unix_64) installed and
running, run the following command:

bootinfo -K

Go to http://www-1.ibm.com/support/docview.wss?uid=isg1hintsTips0214
for more information on determining if you system has 64-bit hardware and/or
a 64-bit kernel.
 Chapter 6. ITDS installation and basic configuration - AIX 131

http://www-1.ibm.com/support/docview.wss?uid=isg1hintsTips0214

– On AIX 5.1, you must install IBM AIX Maintenance Level 4 or later. On AIX
5.2, you must install IBM AIX Maintenance Level 1 or later.

– The xlC.aix50.rte 6.0.0.0 or later fileset is required for GSKit 7a.

– To use GSKit, the IBM JRE or JDK 1.4.1 or an equivalent JRE or JDK is
required.

– IBM DB2 Universal Database for AIX Version 8.1 Enterprise Server
Edition with FixPak 2 (DB2) is included with the IBM Tivoli Directory
Server. For AIX, no previous versions of DB2 are supported.

6.3.3 Web Administration Tool
You can install the Web Administration Tool on a computer with or without the
client or the server. The Web Administration Tool can be used to administer
LDAP servers of the following types:

� IBM Tivoli Directory Server 5.2
� IBM Directory Server 5.1
� IBM Directory Server 4.1
� IBM SecureWay Directory 3.2.2
� IBM OS/400 V5R3
� IBM z/OS R4

Note that for z/OS R4, only the following setups are supported:

� A single TDBM backend
� A single SDBM backend
� One TDBM and SDBM backend

The Web Administration Tool is supported on the following versions of AIX:

� IBM AIX 4.3.3
� IBM AIX 5.1
� IBM AIX 5.2

To use the Web Administration Tool, you also need the following:

� One of the following application servers:

– The embedded version of IBM WebSphere Application Server - Express
V5.0 or later. Version 5.0.2 is provided with IBM Tivoli Directory Server
5.2. (iSeries Linux, pSeries Linux, and HP-UX require version 5.0.2.) If you
have version 5.0, which was provided with IBM Tivoli Directory Server,
installed, see the section titled “Migrating the Web Administration Tool and
upgrading the embedded version of WebSphere Application Server -
Express” in the IBM Tivoli Directory Server Installation and Configuration
Guide version 5.2, SC32-1338.
132 Understanding LDAP Design and Implementation

– IBM WebSphere 5.0 or later. (iSeries Linux, pSeries Linux, and HP-UX
require version 5.0.2.)

� One of the following Web browsers on the computer from which you will use
the Web Administration Tool. (This might or might not be the computer where
the Web Administration Tool is installed.)

– On Windows platforms

Microsoft Internet Explorer Version 6.0

– On AIX

Mozilla 1.3 or 1.4

– On xSeries Linux

Mozilla 1.3 or 1.4

– On iSeries, pSeries, zSeries Linux

No browser support available

– On Solaris 7, 8, or 9

Mozilla 1.3 or 1.4

– On HP-UX

Mozilla 1.3 or 1.4

6.4 Installing the server
Use the information in the following sections to install ITDS 5.2 on AIX using the
Installshield GUI.

6.4.1 Create a user ID for ITDS
Before you install, create or be sure that you have created the user ID that will
own ITDS’s DB2 database used to store the directory data. You will be asked to
provide this user ID and its password during configuration, which runs
automatically after installation. Keep the following items in mind when creating
the user ID:

� The user must have a home directory and must be the owner of the home
directory.

� You should create a group called dbsysadm (if it does not already exist). The
group ownership of the user's home directory should be that group. For
example, in the case of a user named ldapdb2, the user ID home directory
should be owned by ldapdb2:dbsysadm.
 Chapter 6. ITDS installation and basic configuration - AIX 133

� The user root must be a member of the user's primary group (in this case
dbsysadm). If root is not a member of this group, add root as a member of the
group.

� For best results, the user's login shell should be the Korn shell script
(/usr/bin/ksh).

� The user's password must be set correctly and ready to use. For example, the
password cannot be expired or waiting for a first-time validation of any kind.
(The best way to verify that the password is correctly set is to telnet to the
same computer and successfully log in with that user ID and password.)

� When configuring the database, it is not necessary, but customary, to specify
the home directory of the user ID as the database location. However, if you
specify some other location, the user's home directory still must have 3 to 4
MB of space available. This is because DB2 creates links and adds files into
the home directory of the instance owner (that is, the user account) even
though the database itself is elsewhere. If you do not have enough space in
the home directory, you can either create enough space or specify another
directory as the home directory.

6.4.2 Installing ITDS with the Installshield GUI
To install:

1. On the computer where you are installing the IBM Tivoli Directory Server,
stop any programs that are running and close all windows, if you have any
open.

2. If you are installing from a CD, insert the CD in your CD-ROM drive and
mount the CD.

3. If you have downloaded a tape archive (tar) file, go to the directory where you
extracted the tar file.

4. From the root directory on the CD or the directory where you extracted the tar
file, type ./setup. A language window is displayed.

5. Select the language you want to use during IBM Tivoli Directory Server
installation. Click OK.

6. On the Welcome window, click Next.

7. After reading the Software license agreement, select I accept the terms in
the license agreement. Click Next.

Note: This is the language used in the installation program, not in IBM
Tivoli Directory Server. You choose the language used in IBM Tivoli
Directory Server in step 10.
134 Understanding LDAP Design and Implementation

8. Any preinstalled components and corresponding version levels are displayed.
Click Next.

9. To install to the default directory, click Next. You can specify a different
directory by clicking Browse.

10.Select the language you want to use in IBM Tivoli Directory Server 5.2. Click
Next.

11.A window showing the following components for installation is displayed, as
shown in Figure 6-1 on page 136:

– Client SDK 5.2
– Web Administration Tool 5.2
– Server 5.2
– IBM WebSphere Application Server - Express 5.0.2
– DB2 V8.1
– GSKit

The components that are not yet installed are preselected. You can choose to
reinstall the server, the client, or the Web Administration Tool if they were
previously installed.

Note: Do not use special characters, such as hyphen (-) and period (.) in
the name of the installation directory. If you do not use the default location,
use a name such as ldap or ldapdir. Do not use a name such as ldap-dir or
ldap.dir.
 Chapter 6. ITDS installation and basic configuration - AIX 135

Figure 6-1 Install component selection window

Figure 6-1 also indicates the amount of disk space required and available on
the selected drive.

Be sure the components you want to install are selected, and click Next.

12.The installation program now has enough information to begin installing. A
summary window displays the components you selected and the locations
where the selected components will be installed. Click Back to change any of
your selections. Click Next to begin installation.

13.After the files are installed:

– If you installed the client, the Client Readme file is displayed. Read the file
and click Next.

– If you installed the server, the server Readme file is also displayed. Read
the file and click Next.

– If you installed the Web Administration Tool, the Web Administration Tool
Readme file is also displayed. Read the file and click Next.

At this point in the installation, the ITDS Configuration Tool is automatically
executed so that you can complete the server configuration. Before you can use
136 Understanding LDAP Design and Implementation

the server, you must set the administrator DN and password and configure the
database that will store the directory data.

6.4.3 Configuring the Administrator DN and password
Each ITDS Server has a special “super-user” account associated with it that
provides maximum privileges within ITDS. You will need to create this account
before you can administer ITDS.

To set the administrator DN and password, refer to Figure 6-2 on page 138 and
perform the following steps:

1. In the IBM Tivoli Directory Server Configuration Tool window, click
Administrator DN/password in the task list on the left.

2. In the Administrator DN/password window on the right, type a valid DN (or
accept the default DN, cn=root) in the Administrator DN field.

The IBM Directory Server administrator DN is the DN used by the
administrator of the directory. This administrator is the one user who has full
access to all data in the directory.

The default DN is cn=root. DNs are not case sensitive. If you are unfamiliar
with X.500 format, or if for any other reason you do not want to define a new
DN, accept the default DN.

3. Type the password for the Administrator DN in the Administrator Password
field. You must define a password. Passwords are case-sensitive.

Record the password for future reference.

4. Retype the password in the Confirm password field.

5. Click OK.

Note: Double byte character set (DBCS) characters in the password are
not supported.
 Chapter 6. ITDS installation and basic configuration - AIX 137

Figure 6-2 Setting the Administrator DN and password

6.4.4 Configuring the database
Since ITDS uses IBM DB2 Universal Database as the storage repository for all
data, prior to adding data to your directory, you will need to configure a database
instance that will be associated with ITDS.

To configure the directory database:

1. Before you configure the database that ITDS will use, create or be sure that
you have previously created a valid user ID that will own the DB2 database
used to store the directory data. You will be asked to provide this user ID and
its password during configuration, which runs automatically after the base
installation.

2. In the Configuration Tool, click Configure database in the task list on the left.

Note: Verify that the user ID you have created or assigned can
successfully log into the system. Check to ensure the password does not
expire on first login. Check to see if the account is enabled.
138 Understanding LDAP Design and Implementation

Figure 6-3 Database configuration - Configuring the database

3. Select Configure New Database in the left panel and click Next, as shown in
Figure 6-3.

4. A user ID and password are requested; refer to Figure 6-4 on page 140:

a. Type a user ID in the User ID field. This user ID must already exist before
you can configure the database. This is the user ID you created in step 1.
Type a password for the user in the Password field. Passwords are
case-sensitive.

b. Click Next.
 Chapter 6. ITDS installation and basic configuration - AIX 139

Figure 6-4 Database configuration - Setting the user ID and password for the database

5. Next you will be prompted for a name for the database, as shown in
Figure 6-5 on page 141.

Type the name you want to give the DB2 database. The name can be from 1
to 8 characters long. The database will be created in an instance with the
same name as the user ID.

6. Click Next.
140 Understanding LDAP Design and Implementation

Figure 6-5 Database configuration - Choose DB2 database name

7. If the database location is requested, as shown in Figure 6-6 on page 142:

a. Type the location for the database in the Database location field. For AIX,
this must be a location on the file system, typically the home directory of
the user you created earlier in the installation.

Be sure that you have at least 80 MB of free hard disk space in the
location you specify and that additional disk space is available to
accommodate growth as new entries are added to the directory.

b. Click Next.
 Chapter 6. ITDS installation and basic configuration - AIX 141

Figure 6-6 Database configuration - Choosing an install location (AIX)

8. If a character set selection is requested, as shown in Figure 6-7 on page 143:

a. Click the type of database you want to create. You can create a UCS
Transformation Format (UTF-8) database, in which LDAP clients can store
UTF-8 character data, or a local code page database, which is a database
in the local code page.
142 Understanding LDAP Design and Implementation

b. Click Next.

Figure 6-7 Database configuration - Codepage selection

Note: IBM Tivoli Directory Server supports a wide variety of national
language characters through the UTF-8 (UCS Transformation Format)
character set. As specified for the LDAP Version 3 protocol, all
character data that is passed between an LDAP client and a server is in
UTF-8. Consequently, the directory server can be configured to store
any national language characters that can be represented in UTF-8.
The limitations on what types of characters can be stored and searched
for are determined by how the database is created. The database
character set can be specified as UTF-8 or it can be set to use the
server system's local character set (based on the locale, language, and
code page environment).

If you specify UTF-8, you can store any UTF-8 character data in the
directory. LDAP clients running anywhere in the world (in any UTF-8
supported language) can access and search the directory. In many
cases, however, the client has limited ability to properly display the
results retrieved from the directory in a particular language/character
set. There is also a performance advantage to using a UTF-8 database
because no data conversion is required when storing data to or
retrieving data from the database.
 Chapter 6. ITDS installation and basic configuration - AIX 143

9. In the verification window shown in Figure 6-8, information is displayed about
the configuration options you specified. To return to an earlier window and
change information, click Back. To begin configuration, click Finish.

Figure 6-8 Configuration final confirmation

10.The completion window is displayed as shown in Figure 6-9 on page 145.
Click Close.
144 Understanding LDAP Design and Implementation

Figure 6-9 Database configuration - Results window

6.4.5 Adding a suffix
A suffix (also known as a naming context) is a distinguished name (DN) that
identifies the top entry in a locally held directory hierarchy. Because of the
relative naming scheme used in LDAP, this DN is also the suffix of every other
entry within that directory hierarchy. A directory server can have multiple
suffixes, each identifying a locally held directory hierarchy, for example,
o=ibm,c=us.

Entries to be added to the directory must have a suffix that matches the DN
value, such as ou=Marketing,o=ibm,c=us. If a query contains a suffix that does
not match any suffix configured for the local database, the query is referred to the
LDAP server that is identified by the default referral. If no LDAP default referral is
 Chapter 6. ITDS installation and basic configuration - AIX 145

specified, an Object does not exist result is returned. The server must be
stopped before you add or remove suffixes.

Add a suffix
Refer to Figure 6-10 and perform the following steps to add a suffix:

1. In the Configuration Tool, click Manage suffixes in the task list on the left.

2. In the Manage suffixes window, type the suffix you want to add in the
SuffixDN field, and click Add.

3. When you have added all the suffixes you want, click OK. When you click
Add, the suffix is added to the list in the Current suffix DNs box; however, the
suffix is not actually added to the directory until you click OK.

Figure 6-10 Adding a suffix

Removing a suffix
To remove a suffix:

1. In the Configuration Tool, click Manage suffixes in the task list on the left.

2. In the Manage suffixes window, click the suffix you want to remove in the
Current suffix DNs box, and click Remove.
146 Understanding LDAP Design and Implementation

3. When you have selected all the suffixes you want to remove, click OK. When
you click Remove, the suffix is removed from the list in the Current suffix DNs
box; however, the suffix is not actually removed until you click OK.

6.4.6 Removing or reconfiguring a database
At some point you may need to remove the DB2 database instance that is
associated with ITDS. The ITDS ldapxcfg tool allows you to unconfigure the
database instance, unconifgure and destroy the database instance, and
unconfigure, destroy, and delete the database instance.

To unconfigure the database, refer to Figure 6-11 on page 148 and perform the
following steps:

1. In the Configuration Tool, click Unconfigure database in the task list on the
left.

2. In the Unconfigure database window, click of the following:

– Unconfigure only

Does not destroy any existing LDAP DB2 data. However, the configuration
information for the database will be removed from the configuration file
(ibmslapd.conf), and the database will be inaccessible to the directory
server.

– Unconfigure and destroy database

Removes the existing database and its contents, and removes the
configuration information for the database from the configuration file.

– Unconfigure and destroy database and delete instance

Removes the existing database and its contents, removes the
configuration information for the database from the configuration file, and
deletes the instance in which the database is located.

3. Click Unconfigure.
 Chapter 6. ITDS installation and basic configuration - AIX 147

Figure 6-11 Unconfiguring the DB2 database associated with ITDS

Once you have completed these steps, you may now configure or re-configure a
new database instance for use with ITDS. See “Configuring the database” on
page 138 for more information.

6.4.7 Enabling and disabling the change log
The change log database is used to record changes to the schema or directory
entries in the typical LDAP entry structure that can be retrieved through the
LDAP API. The change log records all update operations: Add, delete, modify,
and modrdn. The change log enables LDAP client applications to retrieve a set of
changes that have been made to an IBM Tivoli Directory Server database. The
client might then update its own replicated or cached copy of the data.

The change log function causes all updates to LDAP to be recorded in a
separate change log DB2 database (that is, a different database from the one
used to hold the LDAP server Directory Information Tree). The change log
database can be used by other applications to query and track LDAP updates.
The change log function is disabled by default.
148 Understanding LDAP Design and Implementation

Unlike some other directory servers on the market, the change log is not required
by ITDS for replication to work successfully. Typically, the change log is enabled
so meta-directory sychronization products such as IBM Tivoli Directory Integrator
(ITDI) can detect changes occurring within ITDS and then push those changes to
other non-ITDS data repositories.

There are some performance considerations when you enable the change log
since all changes within ITDS are now logged to a separate a database instance.
You should evaluate the impact of enabling the change log during in the
pre-deployment phases of your ITDS deployment.

You can use the ldapxcfg Configuration Tool to enable or disable the change
log. The server must be stopped before you enable or disable the change log.

To enable the change log, refer to Figure 6-12 on page 150 and perform the
following steps:

1. In the Configuration Tool, click Configure/unconfigure changelog in the
task list on the left.

2. In the Configure/unconfigure changelog window, select the Enable change
log database check box.

3. In the Maximum number of log entries box, click Unlimited if you want an
unlimited number of entries in the change log. If you want to limit the number
of entries, click Entries and type the maximum number of entries you want
recorded. The default is 1,000,000 entries.

4. In the Maximum age box, accept the default of Unlimited if you want entries
to remain in the change log indefinitely, or click Age and type the number of
days and hours for which you want each entry to be kept.

5. Click Update.
 Chapter 6. ITDS installation and basic configuration - AIX 149

Figure 6-12 Enabling the change log

To disable the change log:

1. In the Configuration Tool, click Configure/unconfigure changelog in the
task list on the left.

2. In the Configure/unconfigure changelog window, clear the Enable change log
database check box.

3. Click Update.

6.5 Starting ITDS
There are a number of other optional tasks you can perform within the Directory
Configuration tool at this point such as adding custom schema and importing
data. Those tasks do not have to be completed before you initially start the
server. Those topics are covered in subsequent chapters.
150 Understanding LDAP Design and Implementation

The easiest way to start the server is by typing ibmslapd at a AIX command
prompt. The output of this command is shown in Example 6-1.

Example 6-1 Starting the Directory Server

test_aix:# ibmslapd
Server starting.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.so.
Plugin of type EXTENDEDOP is successfully loaded from libldaprepl.so.
Plugin of type PREOPERATION is successfully loaded from libDSP.so.
Plugin of type PREOPERATION is successfully loaded from libDigest.so.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.so.
Plugin of type AUDIT is successfully loaded from /lib/libldapaudit.so.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.so.
Plugin of type DATABASE is successfully loaded from /lib/libback-rdbm.so.
Plugin of type REPLICATION is successfully loaded from /lib/libldaprepl.so.
Plugin of type EXTENDEDOP is successfully loaded from /lib/libback-rdbm.so.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type DATABASE is successfully loaded from /lib/libback-config.so.
Plugin of type EXTENDEDOP is successfully loaded from libloga.so.
Non-SSL port initialized to 389.

test_aix:#

After you type ibmslapd at the command prompt, a number of messages will be
logged to the screen. One of them should say, IBM Tivoli Directory (SSL)
Version 5.2 Server started.

To verify ITDS is indeed running, configured properly, and responding to queries,
you can type the following command at Unix command prompt:

ldapsearch -s base -b ““ objectclass=*

The output of this command is shown in Example 6-2.

Example 6-2 Querying the root DSE

ldapsearch -s base -b "" objectclass=*

namingcontexts=CN=SCHEMA

Note: There are a number of other ways to start ITDS. Please refer to
Chapter 9, “IBM Tivoli Directory Server Distributed Administration” on
page 193, for more information.
 Chapter 6. ITDS installation and basic configuration - AIX 151

namingcontexts=CN=LOCALHOST
namingcontexts=CN=PWDPOLICY
namingcontexts=CN=IBMPOLICIES
namingcontexts=O=IBM,C=US
subschemasubentry=cn=schema
supportedextension=1.3.18.0.2.12.1
supportedextension=1.3.18.0.2.12.3
supportedextension=1.3.18.0.2.12.5
supportedextension=1.3.18.0.2.12.6
supportedextension=1.3.18.0.2.12.15
supportedextension=1.3.18.0.2.12.16
supportedextension=1.3.18.0.2.12.17
supportedextension=1.3.18.0.2.12.19
supportedextension=1.3.18.0.2.12.44
supportedextension=1.3.18.0.2.12.24
supportedextension=1.3.18.0.2.12.22
supportedextension=1.3.18.0.2.12.20
supportedextension=1.3.18.0.2.12.28
supportedextension=1.3.18.0.2.12.30
supportedextension=1.3.18.0.2.12.26
supportedextension=1.3.6.1.4.1.1466.20037
supportedextension=1.3.18.0.2.12.35
supportedextension=1.3.18.0.2.12.40
supportedextension=1.3.18.0.2.12.46
supportedextension=1.3.18.0.2.12.37
supportedcontrol=2.16.840.1.113730.3.4.2
supportedcontrol=1.3.18.0.2.10.5
supportedcontrol=1.2.840.113556.1.4.473
supportedcontrol=1.2.840.113556.1.4.319
supportedcontrol=1.3.6.1.4.1.42.2.27.8.5.1
supportedcontrol=1.2.840.113556.1.4.805
supportedcontrol=2.16.840.1.113730.3.4.18
supportedcontrol=1.3.18.0.2.10.15
supportedcontrol=1.3.18.0.2.10.18
security=none
port=389
supportedsaslmechanisms=CRAM-MD5
supportedsaslmechanisms=DIGEST-MD5
supportedldapversion=2
supportedldapversion=3
ibmdirectoryversion=5.2
ibm-ldapservicename=test_aix
ibm-serverId=3d63f6c0-b48f-1027-92b9-ea0c2fc6cccd
ibm-supportedacimechanisms=1.3.18.0.2.26.3
ibm-supportedacimechanisms=1.3.18.0.2.26.4
ibm-supportedacimechanisms=1.3.18.0.2.26.2
vendorname=International Business Machines (IBM)
vendorversion=5.2
ibm-sslciphers=N/A
152 Understanding LDAP Design and Implementation

ibm-slapdisconfigurationmode=FALSE
ibm-slapdSizeLimit=500
ibm-slapdTimeLimit=900
ibm-slapdDerefAliases=always
ibm-supportedAuditVersion=2
ibm-sasldigestrealmname=test_aix

If the suffix you added in “Adding a suffix” on page 145 is displayed in the output
of your ldapsearch command in the format namingcontexts=O=IBM,C=US
(o=ibm,c=us is the suffix added in this example), then ITDS’s slapd LDAP listener
is configured properly and open for business.

6.6 Uninstalling ITDS
To uninstall ITDS, issue the following commands:

1. As the operating system user root, kill ibmslapd if it is running.

2. Type:

su -ldapdb2

3. Type:

cd sqllib

4. Type:

. ./db2profile

Note that there is a period<space> in front of the ./db2profile.

5. Type:

db2stop

6. Type:

exit

7. (Optional) If you want to remove the DB2 Database associated with ITDS,
type ldapucfg -d -r -i (select Continue). If you do not remove the
database, it will still be available later on if you re-install the ITDS.

8. Type /usr/ldap/_uninst/uninstall. Note that the installer is a X-Windows
application and you will need to have a local X-Windows console or have
exported your display to another machine that has X-Windows running on it.
Follow all the prompts until the uninstallation is complete

The basic uninstallation of ITDS is complete. ITDS does leave files behind in
different locations including /opt/IBM/db2, /var/ldap, and /usr/lda.
 Chapter 6. ITDS installation and basic configuration - AIX 153

154 Understanding LDAP Design and Implementation

Chapter 7. ITDS installation and basic
configuration on Intel Linux

This section describes the installation and basic configuration of ITDS 5.2 on
Intel Linux based platforms. For the latest information and updates, as well as
code downloads, please check the IBM site at:

http://www-3.ibm.com/software/tivoli/products/directory-server/

ITDS 5.2 has several installation options. You can install using an InstallShield
graphical user interface (GUI) or use platform-specific installation methods such
as the command line or installation tools for the operating system. This chapter
focuses on the GUI installation. For more information on the other types of
installation options, please refer to the ITDS documentation at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

Before installing, see IBM Tivoli Directory Server Version 5.2 Server Readme,
GI11-4151, for any updated information about supported versions of the Linux
operating system. The readme file is in the root directory of the CD or the
directory where you extracted the server package. After installing, the readme
file is located in the installpath\doc\lang directory in files server.txt, server.pdf,
and server.htm, where:

� installpath is the location where IBM Tivoli Directory Server is installed.

7

© Copyright IBM Corp. 1998, 2004. All rights reserved. 155

http://www-3.ibm.com/software/tivoli/products/directory-server/
http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

� lang is the locale you chose when you installed IBM Tivoli Directory Server;
for example, for United States English the locale is en_US.

Also see the IBM Tivoli Directory Server Version 5.2 Readme Addendum which
contains the latest information. The latest version of the Readme Addendum can
be found online with the ITDS product documentation:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html
156 Understanding LDAP Design and Implementation

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

7.1 Installable components
When you install IBM Tivoli Directory Server, you can install either the client or
the server, which requires the client.

In addition, you can install the Web Administration Tool on an application server,
with or without the server or the client. You can use the Web Administration Tool
to administer IBM Tivoli Directory Server servers either locally or remotely. You
can install a single Web Administration console to manage multiple IBM Tivoli
Directory Server servers. You can manage servers from previous releases,
including SecureWay Directory 3.2.x and IBM Directory Server version 4.1 and
5.1. See Requirements for the Web Administration Tool in “Web Administration
Tool” on page 161 for a complete list of servers that can be managed.

� Client: (Required) Includes a number of key libraries and command utilities
required by the server. The client also includes a “C” Development SDK. This
component can be installed standalone and requires no other components to
be installed. GSKit must be installed if you require SSL for stronger security.

� Server: (Required) The core LDAP server component. You must install at
least the client and DB2 in conjunction with the server.

� IBM GSKit: (Optional) IBM Global Security Kit (GSKit) Version 7a is an
software package that is required only if Secure Sockets Layer (SSL) Security
or Transport Layer Security (TLS) is required.

� IBM WebSphere Express Application Server: (Optional) To use the Web
Administration Tool, an application server is required. The embedded version
of IBM WebSphere Application Server - Express V5.0.2 is provided with ITDS
as an application server.

� Web Administration Tool: (Optional) A Web-based tool used to manage any
number of distributed IBM Tivoli Directory Servers as well as prior versions of
IBM’s Directory Server product line. In order to install the Web Administration
tool, you will need to have a supported Application Server already installed or
the bundled IBM WebSphere Express Application Server is required.

� IBM DB2: (Required) IBM DB2 Universal Database is used as the underling
data storage mechanism for the server.

In order to install the server, at a bare minimum you must install a client, server,
and DB2. If you want to require secure access over SSL to the LDAP Server or
Web Administration Tool, you will also need to install GSKIT. Finally, if you have

Note: During the writing of this book, the IBM WebSphere Express
Application Server did not function properly on Red Hat Enterprise Linux
(RHEL) 3. Do not install it until this issue has been resolved.
 Chapter 7. ITDS installation and basic configuration on Intel Linux 157

not yet installed the Web Administration Tool anywhere else, you will need to
install it along with a supported application server.

7.2 Installation and configuration checklist
Below you will find an abbreviated checklist that contains a high-level summary
of the steps required to install and configure ITDS to the point where you can add
your own data. Many of these steps are optional but all are recommended in
order to provide a well-tuned, high-performance, and secure directory service
environment.

ITDS 5.2 installation checklist:

1. Verify that the hardware and operating system meet minimum
requirements. See “System and software requirements” on page 159.

2. Obtain product including latest relevant Fixpacks.

3. Operating system configuration and tuning.

4. Basic Product Installation. See “Installing the server” on page 162.

5. Add Administrator DN and password. See “Configuring the Administrator
DN and password” on page 166.

6. Configure database. See “Configuring the database” on page 167.

7. Add suffix. See “Adding a suffix” on page 173.

8. Tune DB2. See “DB2 tuning” on page 491.

9. Tune slapd parameters in ibmslapd.conf. See “Additional slapd and
ibmslapd settings” on page 488.

10.Schema customization. See “Modifying the schema” on page 292.

11.Configure ITDS.

c. TCP/IP Ports ITDS uses.

d. Password encryption. See “Password encryption” on page 451.

e. Password policy enforcement. See “Password policy enforcement” on
page 437.

f. SSL / TLS, Kerberos, and Digest-MD5. See “SSL/TLS support” on
page 455.

g. Log locations and settings. See “Enabling and disabling the change log”
on page 176
158 Understanding LDAP Design and Implementation

7.3 System and software requirements
To install the IBM Tivoli Directory Server client and server packages, administer
the server, and use the IBM Global Security Kit (GSKit), your computer must
meet the minimum system requirements as outlined in this section.

7.3.1 ITDS Client
The IBM Tivoli Directory Server Client SDK provides the tools required to
develop LDAP applications as well as a number of the most commonly used
command line utilities for manipulating LDAP data within the directory. The
following are provided:

� Client libraries that provide a set of C-language APIs

� C header files for building and compiling LDAP applications

� Documentation that describes the programming interface and the sample
programs

� Sample programs in source form

� Executable versions of the sample programs:

– ldapmodrdn: LDAP modify relative distinguished name
– ldapdelete: LDAP delete
– ldapmodify: LDAP modify
– ldapsearch: LDAP search
– ldapadd: LDAP add (a renamed version of ldapmodify)
– ldapchangepwd: LDAP change password
– ldapexop: LDAP extended operations

The following are the system and software requirements for the ITDS client on
Linux.

� Operating system requirements

– Red Hat Enterprise Linux 3.0
– UnitedLinux 1.0
– SuSE Linux Enterprise Server 8

� Memory requirements

A minimum of 128 MB RAM is required. For better results, use 256 MB or
more.

� Disk space requirements

You have at least 100 MB of free space in the /var directory and at least 200
MB of free space in the /tmp directory.
 Chapter 7. ITDS installation and basic configuration on Intel Linux 159

� Other requirements

The following additional requirements may apply:

– The Korn shell is required.

– To use IBM GSKit, the IBM JRE or JDK 1.4.1 or an equivalent JRE or JDK
is required.

7.3.2 ITDS Server (including client)
The server consists of the following components:

� The server executable ibmslapd

� Command line import/export utilities

� Web-based GUI for administering the directory: Web Administration Tool

� Server configuration and database utilities GUI for configuring the directory:
Configuration Tool (ldapxcfg)

� On-line Web Administration Tool and Configuration Tool helps

� The ITDS Client

The requirements are:

� Operating system requirements

– UnitedLinux 1.0 (including SP2®)
– SuSE Linux Enterprise Server 8
– Red Hat Enterprise Linux 3.0

� Memory requirements

A minimum of 256 MB RAM is required. For better results, 512 MB or more is
recommended.

� Disk space requirements

– You must have at least 100 MB of free space in the /var directory and at
least 400 MB in the /tmp directory.

– You will need 460–660 MB of disk space for the ITDS software on the
device you choose to install onto. If DB2 is already installed, then you will
need 160 MB to install the other ITDS components.

– Disk space required for data storage is dependent upon the number and
size of database entries. Allow a minimum of 80 MB for your database on
Linux systems. Also, ensure that there is approximately another 4 MB of
disk space in the home directory of the user who will own the database to
create the DB2 instance.
160 Understanding LDAP Design and Implementation

� Other software

– The Korn shell is required.

– IBM DB2 Universal Database for Linux Version 8.1 Enterprise Server
Edition with FixPak 2 (DB2) is included with the IBM Tivoli Directory
Server, although DB2 Version 7.2 with FixPak 5 or later is also supported.

7.3.3 Web Administration Tool
You can install the Web Administration Tool on a computer with or without the
client or the server. The Web Administration Tool can be used to administer
LDAP servers of the following types:

� IBM Tivoli Directory Server 5.2
� IBM Directory Server 5.1
� IBM Directory Server 4.1
� IBM SecureWay Directory 3.2.2
� IBM OS/400 V5R3
� IBM z/OS R4

Note that for IBM z/OS R4, only the following setups are supported:

� A single TDBM backend
� A single SDBM backend
� One TDBM and SDBM backend

The Web Administration Tool is supported on the following versions of Linux:

� UnitedLinux 1.0
� SuSE Linux Enterprise Server 7 or 8
� Red Hat Advanced Server 2.1

To use the Web Administration Tool, you also need the following:

� One of the following application servers:

– The embedded version of IBM WebSphere Application Server - Express
V5.0 or later. Version 5.0.2 is provided with IBM Tivoli Directory Server
5.2. (iSeries Linux, pSeries Linux, and HP-UX require version 5.0.2.) If you
have version 5.0, which was provided with IBM Tivoli Directory Server,
installed, see the embedded version of IBM WebSphere Application
Server - Express V5.0 or later. Version 5.0.2 is provided with IBM Tivoli
Directory Server 5.2. (iSeries Linux, pSeries Linux, and HP-UX require
version 5.0.2.) If you have version 5.0, which was provided with IBM
Directory Server, installed, see the section titled Migrating the Web
Administration Tool and upgrading the embedded version of WebSphere
Application Server - Express in the IBM Tivoli Directory Server Installation
and Configuration Guide Version 5.2, SC32-1338.
 Chapter 7. ITDS installation and basic configuration on Intel Linux 161

– IBM WebSphere 5.0 or later. (iSeries Linux, pSeries Linux, and HP-UX
require version 5.0.2.)

� One of the following Web browsers on the computer from which you will use
the Web Administration Tool. (This might or might not be the computer where
the Web Administration Tool is installed.)

– On Windows platforms

Microsoft Internet Explorer Version 6.0

– On AIX

Mozilla 1.3 or 1.4

– On xSeries Linux

Mozilla 1.3 or 1.4

– On iSeries, pSeries, zSeries Linux

No browser support available

– On Solaris 7, 8, or 9

Mozilla 1.3 or 1.4

– On HP-UX

Mozilla 1.3 or 1.4

7.4 Installing the server
Use the information in the following sections to install ITDS 5.2 on Linux using
the Installshield GUI.

7.4.1 Create a user ID for ITDS
Before you install, create or be sure that you have created the user ID that will
own ITDS’s DB2 database used to store the directory data. You will be asked to
provide this user ID and its password during configuration, which runs
automatically after installation. Keep the following items in mind when creating
the user ID:

� The user must have a home directory and must be the owner of the home
directory.

� You should create a group called dbsysadm (if it does not already exist). The
group ownership of the user's home directory should be that group. For
example, in the case of a user named ldapdb2, the user ID home directory
should be owned by ldapdb2:dbsysadm.
162 Understanding LDAP Design and Implementation

� The user root must be a member of the user's primary group (in this case
dbsysadm). If root is not a member of this group, add root as a member of
the group.

� For best results, the user's login shell should be the Korn shell script
(/usr/bin/ksh).

� The user's password must be set correctly and ready to use. For example, the
password cannot be expired or waiting for a first-time validation of any kind.
(The best way to verify that the password is correctly set is to telnet to the
same computer and successfully log in with that user ID and password.)

� When configuring the database, it is not necessary, but customary, to specify
the home directory of the user ID as the database location. However, if you
specify some other location, the user's home directory still must have 3 to 4
MB of space available. This is because DB2 creates links and adds files into
the home directory of the instance owner (that is, the user account) even
though the database itself is elsewhere. If you do not have enough space in
the home directory, you can either create enough space or specify another
directory as the home directory.

Tip: All of these pre-install steps can be achieved using the following
commands. It is assumed that no version of ITDS has been installed
previously on the server. Run these commands as the user root:

groupadd dbsysadm
usermod -G dbysysadm root
useradd -G dbsysadm -g dbsysadm ldapdb2 -d /home/ldapdb2 -m
password ldapdb2 (Change the Password to Something Valid)

At this point verify the login ID and password work. One way to do this is to
type:

ssh 127.0.0.1 -l ldapdb2

If your password is accepted and you can login, the password is valid for
ITDS use.

Type exit to return back to the previous shell.

The directory /home/ldapdb2 should now have permissions that look like:

drwxr-xr-x 5 ldapdb2 dbsysadm 624 Mar 24 16:25 ldapdb2

All the user ID and group information should now be set correctly for the
ITDS installation.
 Chapter 7. ITDS installation and basic configuration on Intel Linux 163

7.4.2 Installing ITDS with the Installshield GUI
To install:

1. On the computer where you are installing the IBM Tivoli Directory Server,
stop any programs that are running and close all windows if you have any
open.

2. If you are installing from a CD, insert the CD in your CD-ROM drive and
mount the CD.

3. If you have downloaded a tape archive (tar) file, go to the directory where you
extracted the tar file.

4. From the root directory on the CD or the directory where you extracted the tar
file, type ./setup. A language window is displayed.

5. Select the language you want to use during IBM Tivoli Directory Server
installation. Click OK.

6. On the Welcome window, click Next.

7. After reading the Software license agreement, select I accept the terms in
the license agreement. Click Next.

8. Any preinstalled components and corresponding version levels are displayed.
Click Next.

9. To install to the default directory, click Next. You can specify a different
directory by clicking Browse.

10.Select the language you want to use in IBM Tivoli Directory Server 5.2. Click
Next.

11.A window showing the following components for installation is displayed, as
shown in Figure 7-1 on page 165:

– Client SDK 5.2
– Web Administration Tool 5.2
– Server 5.2

Note: This is the language used in the installation program, not in IBM
Tivoli Directory Server. You choose the language used in IBM Tivoli
Directory Server in step 10.

Note: Do not use special characters, such as hyphen (-) and period (.) in
the name of the installation directory. If you do not use the default location,
use a name such as ldap or ldapdir. Do not use a name such as ldap-dir or
ldap.dir.
164 Understanding LDAP Design and Implementation

– IBM WebSphere Application Server - Express 5.0.2
– IBM DB2 V8.1
– IBM GSKit

The components that are not yet installed are preselected. You can choose to
reinstall the server, the client, or the Web Administration Tool if they were
previously installed.

Figure 7-1 Install Component Selection screen

Figure 7-1 also indicates the amount of disk space required and available on
the selected drive.

Be sure the components you want to install are selected, and click Next.

12.The installation program now has enough information to begin installing. A
summary window displays the components you selected and the locations
where the selected components will be installed. Click Back to change any of
your selections. Click Next to begin installation.

13.After the files are installed:

– If you installed the client, the Client Readme file is displayed. Read the file
and click Next.

Note: During the writing of this book, the IBM WebSphere Express
Application Server did not function properly on Red Hat Enterprise Linux
(RHEL) 3. Do not install it until this issue is resolved.
 Chapter 7. ITDS installation and basic configuration on Intel Linux 165

– If you installed the server, the server Readme file is also displayed. Read
the file and click Next.

– If you installed the Web Administration Tool, the Web Administration Tool
Readme file is also displayed. Read the file and click Next.

The ITDS Configuration Tool is automatically executed so that you can complete
the server configuration. Before you can use the server, you must set the
administrator DN and password and configure the database that will store the
directory data.

7.4.3 Configuring the Administrator DN and password
Each ITDS Server has a special “super-user” account associated with it that
provides maximum privileges within ITDS. You will need to create this account
before you can administer ITDS.

To set the administrator DN and password, refer to Figure 7-2 on page 167 and
perform the following steps:

1. In the IBM Tivoli Directory Server Configuration Tool window, click
Administrator DN/password in the task list on the left.

2. In the Administrator DN/password window on the right, type a valid DN (or
accept the default DN, cn=root) in the Administrator DN field.

The IBM Directory Server administrator DN is the DN used by the
administrator of the directory. This administrator is the one user who has full
access to all data in the directory.

The default DN is cn=root. DNs are not case sensitive. If you are unfamiliar
with X.500 format, or if for any other reason you do not want to define a new
DN, accept the default DN.

3. Type the password for the Administrator DN in the Administrator Password
field. You must define a password. Passwords are case-sensitive.

Record the password for future reference.

4. Retype the password in the Confirm password field.

5. Click OK.

Note: Double byte character set (DBCS) characters in the password are
not supported.
166 Understanding LDAP Design and Implementation

Figure 7-2 Setting the Administrator DN and password

7.4.4 Configuring the database
Since ITDS uses IBM DB2 as the storage repository for all data, prior to adding
data to your directory, you will need to configure a database instance that will be
associated with ITDS.

To configure the directory database:

1. Before you configure the database that ITDS will use, create or be sure that
you have previously created a valid user ID that will own the DB2 database
used to store the directory data. You will be asked to provide this user ID and
its password during configuration, which runs automatically after the base
installation.

2. In the Configuration Tool, click Configure database in the task list on the left,
as shown in Figure 7-3 on page 168.

Note: Verify that the user ID you have created or assigned can
successfully log into the system. Check to ensure the password does not
expire on first login. Check to see if the account is enabled.
 Chapter 7. ITDS installation and basic configuration on Intel Linux 167

Figure 7-3 Database configuration - Configuring the database

3. Select Configure New Database in the left panel and click Next.

4. A user ID and password is requested, as shown in Figure 7-4 on page 169:

a. Type a user ID in the User ID field. This user ID must already exist before
you can configure the database. This is the user ID you created in step 1.
Type a password for the user in the Password field. Passwords are
case-sensitive.

b. Click Next.
168 Understanding LDAP Design and Implementation

Figure 7-4 Database configuration - Setting the user ID and password for the database

5. Next you will be prompted for a name for the database, as shown in
Figure 7-5:

a. Type the name you want to give the DB2 database. The name can be from
1 to 8 characters long. The database will be created in an instance with
the same name as the user ID.

b. Click Next.

Figure 7-5 Database configuration - Choose DB2 database name
 Chapter 7. ITDS installation and basic configuration on Intel Linux 169

6. If the database location is requested, as shown in Figure 7-6:

a. Type the location for the database in the Database location field.

Be sure that you have at least 80 MB of free hard disk space in the
location you specify and that additional disk space is available to
accommodate growth as new entries are added to the directory.

b. Click Next.

Figure 7-6 Database configuration - Choosing an install locations (Linux)

7. If a character set selection is requested, as shown in Figure 7-7 on page 171:

a. Click the type of database you want to create. You can create a UCS
Transformation Format (UTF-8) database, in which LDAP clients can store
UTF-8 character data, or a local code page database, which is a database
in the local code page.
170 Understanding LDAP Design and Implementation

b. Click Next.

Figure 7-7 Database configuration - Codepage selection

8. In the verification window shown in Figure 7-8 on page 172, information is
displayed about the configuration options you specified. To return to an earlier

Note: IBM Tivoli Directory Server supports a wide variety of national
language characters through the UTF-8 (UCS Transformation Format)
character set. As specified for the LDAP Version 3 protocol, all
character data that is passed between an LDAP client and a server is in
UTF-8. Consequently, the directory server can be configured to store
any national language characters that can be represented in UTF-8.
The limitations on what types of characters can be stored and searched
for are determined by how the database is created. The database
character set can be specified as UTF-8 or it can be set to use the
server system's local character set (based on the locale, language, and
code page environment).

If you specify UTF-8, you can store any UTF-8 character data in the
directory. LDAP clients running anywhere in the world (in any UTF-8
supported language) can access and search the directory. In many
cases, however, the client has limited ability to properly display the
results retrieved from the directory in a particular language/character
set. There is also a performance advantage to using a UTF-8 database
because no data conversion is required when storing data to or
retrieving data from the database.
 Chapter 7. ITDS installation and basic configuration on Intel Linux 171

window and change information, click Back. To begin configuration, click
Finish.

Figure 7-8 Configuration final confirmation

9. The completion window is displayed, as shown in Figure 7-9 on page 173.
Click Close.
172 Understanding LDAP Design and Implementation

Figure 7-9 Database configuration - Results screen

7.4.5 Adding a suffix
A suffix (also known as a naming context) is a distinguished name (DN) that
identifies the top entry in a locally held directory hierarchy. Because of the
relative naming scheme used in LDAP, this DN is also the suffix of every other
entry within that directory hierarchy. A directory server can have multiple
suffixes, each identifying a locally held directory hierarchy, for example,
o=ibm,c=us.

Entries to be added to the directory must have a suffix that matches the DN
value, such as ou=Marketing,o=ibm,c=us. If a query contains a suffix that does
not match any suffix configured for the local database, the query is referred to the
LDAP server that is identified by the default referral. If no LDAP default referral is
specified, an Object does not exist result is returned. The server must be
stopped before you add or remove suffixes.
 Chapter 7. ITDS installation and basic configuration on Intel Linux 173

Add a suffix
To add a suffix refer to Figure 7-10 and perform the following steps:

1. In the Configuration Tool, click Manage suffixes in the task list on the left.

2. In the Manage suffixes window, type the suffix you want to add in the
SuffixDN field, and click Add.

3. When you have added all the suffixes you want, click OK. When you click
Add, the suffix is added to the list in the Current suffix DNs box; however, the
suffix is not actually added to the directory until you click OK.

Figure 7-10 Adding a suffix

Removing a suffix
To remove a suffix:

1. In the Configuration Tool, click Manage suffixes in the task list on the left.

2. In the Manage suffixes window, click the suffix you want to remove in the
Current suffix DNs box, and click Remove.

3. When you have selected all the suffixes you want to remove, click OK. When
you click Remove, the suffix is removed from the list in the Current suffix DNs
box; however, the suffix is not actually removed until you click OK.

7.4.6 Removing or reconfiguring a database
At some point you may need to remove the DB2 database instance that is
associated with ITDS. The ITDS ldapxcfg tool allows you to unconfigure the
174 Understanding LDAP Design and Implementation

database instance, unconifgure and destroy the database instance, and
unconfigure, destroy, and delete the database instance.

To unconfigure the database, refer to Figure 7-11 and perform the following
steps:

1. In the Configuration Tool, click Unconfigure database in the task list on the
left.

2. In the Unconfigure database window, click of the following:

– Unconfigure only

Does not destroy any existing LDAP DB2 data. However, the configuration
information for the database will be removed from the configuration file
(ibmslapd.conf), and the database will be inaccessible to the directory
server.

– Unconfigure and destroy database

Removes the existing database and its contents, and removes the
configuration information for the database from the configuration file.

– Unconfigure and destroy database and delete instance

Removes the existing database and its contents, removes the
configuration information for the database from the configuration file, and
deletes the instance in which the database is located.

3. Click Unconfigure.

Figure 7-11 Unconfiguring the DB2 database associated with ITDS
 Chapter 7. ITDS installation and basic configuration on Intel Linux 175

Once you have completed these steps, you may now configure or re-configure a
new database instance for use with ITDS. See “Configuring the database” on
page 167 for more information.

7.4.7 Enabling and disabling the change log
The change log database is used to record changes to the schema or directory
entries in the typical LDAP entry structure that can be retrieved through the
LDAP API. The change log records all update operations: Add, delete, modify,
and modrdn. The change log enables LDAP client applications to retrieve a set of
changes that have been made to an IBM Tivoli Directory Server database. The
client might then update its own replicated or cached copy of the data.

The change log function causes all updates to LDAP to be recorded in a
separate change log DB2 database (that is, a different database from the one
used to hold the LDAP server Directory Information Tree). The change log
database can be used by other applications to query and track LDAP updates.
The change log function is disabled by default.

Unlike some other directory servers on the market, the change log is not required
by ITDS to set up replication. Typically, the change log is enabled so
meta-directory sychronization products such as IBM Tivoli Directory Integrator
(ITDI) can detect changes occurring within ITDS and then push those changes to
other non-ITDS data repositories.

There are some performance considerations when you enable the change log
since all changes within ITDS are now logged to a separate a database instance.
You should evaluate the impact of enabling the change log during in the
pre-deployment phases of your ITDS deployment.

You can use the ldapxcfg Configuration Tool to enable or disable the change
log. The server must be stopped before you enable or disable the change log.

To enable the change log, refer to Figure 7-12 on page 177 and perform the
following steps:

1. In the Configuration Tool, click Configure/unconfigure changelog in the
task list on the left.

2. In the Configure/unconfigure changelog window, select the Enable change
log database check box.

3. In the Maximum number of log entries box, click Unlimited if you want an
unlimited number of entries in the change log. If you want to limit the number
of entries, click Entries and type the maximum number of entries you want
recorded. The default is 1,000,000 entries.
176 Understanding LDAP Design and Implementation

4. In the Maximum age box, accept the default of Unlimited if you want entries to
remain in the change log indefinitely, or click Age and type the number of
days and hours for which you want each entry to be kept.

5. Click Update.

Figure 7-12 Enabling the change log

To disable the change log:

1. In the Configuration Tool, click Configure/unconfigure changelog in the
task list on the left.

2. In the Configure/unconfigure changelog window, clear the Enable change log
database check box.

3. Click Update.

7.5 Starting ITDS
There are a number of other optional tasks you can perform within the Directory
Configuration Tool at this point such as adding custom schema and importing
 Chapter 7. ITDS installation and basic configuration on Intel Linux 177

data. Those tasks do not have to be completed before you initially start the
server. Those topics are covered in subsequent chapters.

The easiest way to start the server is by typing ibmslapd at a Linux command
prompt. The output of this command is shown in Example 7-1.

Example 7-1 Starting the Directory Server

test_sles8:# ibmslapd
Server starting.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.so.
Plugin of type EXTENDEDOP is successfully loaded from libldaprepl.so.
Plugin of type PREOPERATION is successfully loaded from libDSP.so.
Plugin of type PREOPERATION is successfully loaded from libDigest.so.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.so.
Plugin of type AUDIT is successfully loaded from /lib/libldapaudit.so.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.so.
Plugin of type DATABASE is successfully loaded from /lib/libback-rdbm.so.
Plugin of type REPLICATION is successfully loaded from /lib/libldaprepl.so.
Plugin of type EXTENDEDOP is successfully loaded from /lib/libback-rdbm.so.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type DATABASE is successfully loaded from /lib/libback-config.so.
Plugin of type EXTENDEDOP is successfully loaded from libloga.so.
Non-SSL port initialized to 389.

test_sles8:#

After you type ibmslapd at the command prompt, a number of messages will be
logged to the screen. One of them should say, IBM Tivoli Directory (SSL)
Version 5.2 Server started.

To verify ITDS is indeed running, configured properly, and responding to queries,
you can type the following command at the Unix command prompt:

ldapsearch -s base -b ““ objectclass=*

The output of this command is shown in Example 7-2.

Example 7-2 Querying the root DSE

ldapsearch -s base -b "" objectclass=*

Note: There are a number of other ways to start ITDS. Please refer to
Chapter 9, “IBM Tivoli Directory Server Distributed Administration” on
page 193, for more information.
178 Understanding LDAP Design and Implementation

namingcontexts=CN=SCHEMA
namingcontexts=CN=LOCALHOST
namingcontexts=CN=PWDPOLICY
namingcontexts=CN=IBMPOLICIES
namingcontexts=O=IBM,C=US
subschemasubentry=cn=schema
supportedextension=1.3.18.0.2.12.1
supportedextension=1.3.18.0.2.12.3
supportedextension=1.3.18.0.2.12.5
supportedextension=1.3.18.0.2.12.6
supportedextension=1.3.18.0.2.12.15
supportedextension=1.3.18.0.2.12.16
supportedextension=1.3.18.0.2.12.17
supportedextension=1.3.18.0.2.12.19
supportedextension=1.3.18.0.2.12.44
supportedextension=1.3.18.0.2.12.24
supportedextension=1.3.18.0.2.12.22
supportedextension=1.3.18.0.2.12.20
supportedextension=1.3.18.0.2.12.28
supportedextension=1.3.18.0.2.12.30
supportedextension=1.3.18.0.2.12.26
supportedextension=1.3.6.1.4.1.1466.20037
supportedextension=1.3.18.0.2.12.35
supportedextension=1.3.18.0.2.12.40
supportedextension=1.3.18.0.2.12.46
supportedextension=1.3.18.0.2.12.37
supportedcontrol=2.16.840.1.113730.3.4.2
supportedcontrol=1.3.18.0.2.10.5
supportedcontrol=1.2.840.113556.1.4.473
supportedcontrol=1.2.840.113556.1.4.319
supportedcontrol=1.3.6.1.4.1.42.2.27.8.5.1
supportedcontrol=1.2.840.113556.1.4.805
supportedcontrol=2.16.840.1.113730.3.4.18
supportedcontrol=1.3.18.0.2.10.15
supportedcontrol=1.3.18.0.2.10.18
security=none
port=389
supportedsaslmechanisms=CRAM-MD5
supportedsaslmechanisms=DIGEST-MD5
supportedldapversion=2
supportedldapversion=3
ibmdirectoryversion=5.2
ibm-ldapservicename=test_sles8
ibm-serverId=3d63f6c0-b48f-1027-92b9-ea0c2fc6cccd
ibm-supportedacimechanisms=1.3.18.0.2.26.3
ibm-supportedacimechanisms=1.3.18.0.2.26.4
ibm-supportedacimechanisms=1.3.18.0.2.26.2
vendorname=International Business Machines (IBM)
 Chapter 7. ITDS installation and basic configuration on Intel Linux 179

vendorversion=5.2
ibm-sslciphers=N/A
ibm-slapdisconfigurationmode=FALSE
ibm-slapdSizeLimit=500
ibm-slapdTimeLimit=900
ibm-slapdDerefAliases=always
ibm-supportedAuditVersion=2
ibm-sasldigestrealmname=test_sles8

If the suffix you added in “Adding a suffix” on page 173 is displayed in the output
of your ldapsearch command in the format:

namingcontexts=O=IBM,C=US

(o=ibm,c=us is the suffix added in this example), then ITDS’s slapd LDAP listener
is configured properly and open for business.

7.6 Quick installation of ITDS 5.2 on Intel (minimal GUI)
If you want to install ITDS quickly and with as little graphical user interface
interaction as possible, follow these quick steps:

1. Confirm that the system meets all prerequisites.

2. Log in as the user root and enter the following commands:

– groupadd dbsysadm
– usermod -G dbysysadm root
– useradd -G dbsysadm -g dbsysadm ldapdb2 -d /home/ldapdb2 -m
– password ldapdb2 (Change the password to something valid.)

3. At this point verify that the login ID and password work. One way to do this is
to type:

ssh 127.0.0.1 -l ldapdb2

If your password is accepted and you can login the password is valid for IDS
use.

4. Type exit to return back to the previous shell.

The directory /home/ldapdb2 should now have permissions that look like:

drwxr-xr-x 5 ldapdb2 dbsysadm 624 Mar 24 16:25 ldapdb2

5. Go to the directory where the setup exists (it may be on a CD-ROM or you
may have extracted the tar file into a directory). Type ./setup. Note that the
installer is an X-Windows application and you will need to have a local
X-Windows console or have exported your DISPLAY to another machine that
has X-Windows running on it.
180 Understanding LDAP Design and Implementation

6. Follow the GUI installer and accept all defaults (pick your local language). For
English, the clicks in the GUI you would need to make to get completely
through the GUI Install are:

OK
NEXT
I ACCEPT
NEXT
ENGLISH
NEXT
NEXT
NEXT
NEXT
NEXT
NEXT
FINISH

7. The IBM Tivoli Directory Server Configuration Tool appears. We are not going
to use this tool. Exit the tool by clicking:

FILE
CLOSE
YES

8. Type: cd /tmp

9. Type: ldapcfg -c -a ldapdb2 -w ldapdb3 -d testldap -l /home/ldapdb2
and then select Continue with the above Actions. Note that:

– -c sets the database instance up for UTF-8 storage.

– -a sets the useraccount that you created.

– -w sets the password we set for the user that you created.

– -d sets the name of the DB2 database you want (can be anything).

– -l sets the directory where the database is created. (Normally this is the
home directory of the user that you created.)

The database should configure successfully and return a message similar to:

Configuring IBM Tivoli Directory Server Database.
 Creating instance: 'ldapdb2'.
 Created instance: 'ldapdb2'.
 Cataloging instance node: 'ldapdb2'.
 Cataloged instance node: 'ldapdb2'.
 Starting database manager for instance: 'ldapdb2'.
 Started database manager for instance: 'ldapdb2'.
 Creating database: 'testldap'.
 Created database: 'testldap'.
 Updating the database: 'testldap'
 Updated the database: 'testldap'
 Updating the database manager: 'ldapdb2'
 Chapter 7. ITDS installation and basic configuration on Intel Linux 181

 Updated the database manager: 'ldapdb2'
 Enabling multi-page file allocation: 'testldap'
 Enabled multi-page file allocation: 'testldap'
 Configuring database: 'testldap'
 Configured database: 'testldap'
 Adding local loop back to database: 'testldap'.
 Added local loop back to database: 'testldap'.
 Stopping database manager for instance: 'ldapdb2'.
 Stopped database manager for instance: 'ldapdb2'.
 Starting database manager for instance: 'ldapdb2'.
 Started database manager for instance: 'ldapdb2'.
 Configured IBM Tivoli Directory Server Database.

IBM Tivoli Directory Server Configuration complete.

10.Type: ldapcfg -u"cn=root" -psecret. Note that:

– -u sets the Administrator DN.
– -p sets the Administrator Password.

11.Type: ldapcfg -s “o=ibm,c=us”. Note that -s sets the suffix you want to use.

12.At this point, configuration is complete. You can type: ibmslapd at the
command line and the following message should be displayed:

Server starting.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.so.
Plugin of type EXTENDEDOP is successfully loaded from libldaprepl.so.
Plugin of type PREOPERATION is successfully loaded from libDSP.so.
Plugin of type PREOPERATION is successfully loaded from libDigest.so.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.so.
Plugin of type AUDIT is successfully loaded from /lib/libldapaudit.so.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.so.
Plugin of type DATABASE is successfully loaded from
/lib/libback-rdbm.so.
Plugin of type REPLICATION is successfully loaded from
/lib/libldaprepl.so.
Plugin of type EXTENDEDOP is successfully loaded from
/lib/libback-rdbm.so.
Plugin of type EXTENDEDOP is successfully loaded from libevent.so.
Plugin of type DATABASE is successfully loaded from
/lib/libback-config.so.
Plugin of type EXTENDEDOP is successfully loaded from libloga.so.
Non-SSL port initialized to 389.

13.Basic configuration is complete. Refer to Example 7-2 on page 178 to confirm
ITDS is up and running.
182 Understanding LDAP Design and Implementation

7.7 Uninstalling ITDS
To uninstall ITDS, issue the following commands:

1. As the user root, kill ibmslapd if it is running.

2. Type:

su -ldapdb2

3. Type:

cd sqllib

4. Type . ./db2profile. (Note: There is a period<space> in front of
./db2profile.)

5. Type:

db2stop

6. Type:

exit

7. (Optional) If you want to remove the DB2 database associated with ITDS,
type: ldapucfg -d -r -i (select Continue). If you do not remove the
database, it will still be available later on if you re-install the ITDS.

8. Type: /usr/ldap/_uninst/uninstall. Note that the installer is an X-Windows
application and you will need to have a local X-Windows console or have
exported your DISPLAY to another machine that has X-Windows running on
it. Follow all the prompts until uninstall is complete

The basic uninstallation of ITDS is complete. ITDS does leave files behind in
different locations including /opt/IBM/db2, /var/ldap, /usr/ldap/, and other
locations. For a more complete uninstall, see “Removing all vestiges of an ITDS
5.2 Install on Intel Linux” on page 183.

7.8 Removing all vestiges of an ITDS 5.2 Install on Intel
Linux

The following commands assume you installed the product using the options
outlined in “Quick installation of ITDS 5.2 on Intel (minimal GUI)” on page 180.

1. As the user root, kill ibmslapd if it is running.

2. Type: su -ldapdb2

3. Type: cd sqllib

4. Type: . ./db2profile (Note: There is a period<space> in front of the
./db2profile.)
 Chapter 7. ITDS installation and basic configuration on Intel Linux 183

5. Type: db2stop

6. Type: exit

7. Type: ldapucfg -d -r -i (select Continue.)

8. Type: /usr/ldap/_uninst/uninstall. Note that the installer is an X-Windows
application and you will need to have a local X-Windows console or have
exported your DISPLAY to another machine that has X-Windows running on
it. Follow all the prompts until uninstall is complete.

9. Type: cd /tmp

10.Type: rm -rf /usr/ldap

11.Type: rm -rf /var/ldap

12.Type: rm -rf /opt/iBM/db2

13.Type: userdel -r ldapdb2

14.Type: rm -rf /usr/local/ibm/gsk7

15.Type: rm -rf /home/ldapdb2

16.Type: groupdel dbsysadm

At this point, the server should look exactly the way it did before you ever
attempted the ITDS install.

Note: Sometimes IBM WebSphere Express does not uninstall properly. If you
see an error indicating it did not uninstall properly, type (as the user root from
the command line):

rpm --erase ldap-webadmind-5.2-1 --justdb

The version number may vary. Use yast2 to find out the proper package name
and remove it if the version number above is incorrect.
184 Understanding LDAP Design and Implementation

Chapter 8. IBM Tivoli Directory Server
installation - IBM zSeries

This chapter provides detailed instructions for installing the IBM Tivoli Directory
Server that is packaged with the IBM z/OS operating system. This chapter is
based on the IBM z/OS V1R4 operating system. Earlier releases of z/OS may
require slight modification of these instructions for proper installation and
configuration of the LDAP server.

In this chapter we discuss the following:

� Using the ldapcnf utility
� Running the MVS™ jobs generated from the ldapcnf utility
� Loading the schema
� Enabling Native Authentication
� Migrating data to LDAP on z/OS

8

© Copyright IBM Corp. 1998, 2004. All rights reserved. 185

8.1 Installing LDAP on z/OS
The following sections describe the steps needed to install LDAP on the IBM
z/OS operating system.

8.1.1 Using the ldapcnf utility
LDAP on z/OS offers a configuration utility called ldapcnf to assist in the
installation and customization of an LDAP server. To complete the installation
process, follow the instructions below.

1. Copy the ldap.profile hfs file from /usr/lpp/ldap/etc to a workable directory
such as /etc/ldap.

2. Customize the ldap.profile file to reflect your system and the configuration
variables by following the detailed descriptions of each attribute in the profile.

Note that some attributes in the ldap.profile file are required, but not given a
default value. Make sure you read through the entire file, completing all
required variables.

3. Run ldapcnf from the command line in OMVS. This utility will generate a set
of jobs in the MVS dataset that was defined in ldap.profile.

4. Copy the LDAP server started task procedure from the output dataset into the
system proclib. The default name for this started task is LDAPSRV.

5. Copy the file named PROGxxx to the system parmlib.

8.1.2 Running the MVS jobs
To do this:

1. Run each job in the following sequence, remembering to check all of the
output for successful return codes.

a. RACF
b. APF
c. DBCLI - Make sure DB2 is started before submitting this job.
d. PGRMCTRL (if required)

2. Use the DB2 SPUFI tool to submit the DBSPUFI job.

3. Start the LDAP server using the LDAPSRV started task. From SDSF you can
start the server by entering /s LDAPSRV.

4. When you see the phrase slapd is ready for requests your LDAP server
has started successfully.
186 Understanding LDAP Design and Implementation

8.1.3 Loading the schema
The next steps will assist you in building the LDAP schema and loading the
directory with your suffix and a test user.

1. Copy the following files to your /etc/ldap directory:

/usr/lpp/ldap/etc/schema.user.ldif

/usr/lpp/ldap/etc/schema.IBM.ldif

2. Edit these files (schema.user.ldif and schema.IBM.ldif) by changing the line
cn=schema,<suffix> to reflect the suffix that is defined in your configuration
file.

3. Use the ldapmodify command to load the schema files into the directory.

ldapmodify -h x.x.x.x -p 3389 -D “cn=LDAP Administrator” -w secret -f \
/etc/ldap/schema.user.ldif
ldapmodify -h x.x.x.x -p 3389 -D “cn=LDAP Administrator” -w secret -f \
/etc/ldap/schema.IBM.ldif

4. Create an LDIF file containing the suffix entry for the directory. This may
contain test users as well. The file may look like the following:

dn: o=itso
objectclass: organization
objectclass:top
o: itso

dn: cn=test1,o=itso
objectclass: top
objectclass: ePerson
cn: test1
sn: user

5. Use ldapadd to add the entries from the suffix file to the directory.

ldapadd -h x.x.x.x -p 3389 -D “cn=LDAP Administrator” -w secret -f \
suffix.ldif

6. Execute the following ldapsearch command as an IVP, ensuring that LDAP is
set up correctly:

ldapsearch -h x.x.x.x -p 3389 -V 3 -s base -b “ “ “objectclass=*”

8.1.4 Enabling Native Authentication
In order to enable LDAP to use a TDBM but bind against RACF, native
authentication must be configured.

1. Copy the following files to your /etc/ldap directory:

/usr/lpp/ldap/etc/NativeAuthentication.ldif
 Chapter 8. IBM Tivoli Directory Server installation - IBM zSeries 187

2. Edit the above files by changing the line cn=schema,<suffix> to reflect the
suffix that is defined in your configuration file.

3. Use the ldapmodify command to load the schema files into the directory.

ldapmodify -h x.x.x.x -p 3389 -D “cn=LDAP Administrator” -w secret -f \
/etc/ldap/NativeAuthenication.ldif

4. Modify the LDAP configuration file to include the following in the TDBM
section:

useNativeAuth SELECTED
"nativeAuthSubtree" o=itso
nativeUpdateAllowed YES

5. Modify existing users, adding the native authentication objectclass and
ibm-nativeId attribute using the ldapmodify command

ldapmodify -h x.x.x.x -p 3389 -D “cn=LDAP Administrator” -w secret -f \
/etc/ldap/nativeupdate.ldif

nativeupdate.ldif should look like this:

dn: cn=test1, o=itso
changetype: modify
add: x
ibm-nativeId: test1
objectclass: ibm-nativeAuthentication

8.2 Migrating data to LDAP on z/OS
There are instances where it is necessary to move LDAP data from one platform
to another, or simply from one directory to another. This happens when replica
servers are being created, or when an LDAP server is being moved to z/OS to
take advantage of native authentication.

8.2.1 Migrating LDAP server contents to z/OS
Migrating contents from an existing LDAP server to a z/OS LDAP server can be
done using the DB2LDIF utility that is packaged with both the z/OS and distributed
versions of the IBM Tivoli Directory Server. Examples of using each utility are
listed below.

db2ldif on z/OS
DB2LDIF is a member of the GLD.GLDSAMP data set and contains JCL for
exporting existing LDIF entries from the DB2 database. Export these entries to a
temporary file in the file system. LDAP writes the exported file to SYSPRINT.
See Example 8-1 on page 189 for an example of this JCL.
188 Understanding LDAP Design and Implementation

Example 8-1 Example DB2LDIF JCL

//DB2LDIF JOB (????,????),'AHMADS JOB',MSGCLASS=O,CLASS=A,
// NOTIFY=????????,REGION=0M,USER=SYSADM1,PASSWORD=SYSADM1
//DB2LDIF PROC REGSIZE=0M,
// CBCONFIG='/WebSphere390/CB390',
// PARMS='',
// GLDHLQ='SYS1.LDAP',
// OUTCLASS='*',
// LDAPPATH='etc/ldap',
// LAPDCONF='bboslapd.conf',
// SYSPLEX=WSLPLEX,
// SYSNAME=WSL1
//DB2LDIF EXEC PGM=GLDDB2LD,REGION=®SIZE,
// PARM=('/&PARMS')
//STEPLIB DD DSN=&GLDHLQ..SGLDLNK,DISP=SHR
//DSNAOINI DD PATH='&CBCONFIG/&SYSPLEX/&LDAPPATH/&SYSNAME..dsnaoini'
//CONFIG DD PATH='&CBCONFIG/&SYSPLEX/&LDAPPATH/&SYSNAME..&LAPDCONF'
//SYSPRINT DD PATH='/u/ahmad/export.ldif'
//CEEDUMP DD SYSOUT=&OUTCLASS
//SYSERR DD SYSOUT=&OUTCLASS
//STDOUT DD SYSOUT=&OUTCLASS
// PEND
//GO EXEC DB2LDIF

The following command will then load the LDIF file created by the db2ldif
command into the z/OS directory.

ldapmodify –a –h 127.0.0.1 –p 1389 –D “cn=CBAdmin” –w secret –f \
/u/ahmad/export.ldif

8.2.2 Moving RACF users to the TDBM space
Moving RACF user IDs to the TDBM side of the LDAP server seems like a simple
task. However, there is no utility to allow this functionality. As you search against
the SDBM backend and interact with RACF, you will see that if you search for
one particular user, you can retrieve that user’s entire record, or filter it to retrieve
only one or two attributes. As you try to extract these fields for more than one
user in a given search, you will see that RACF only returns the fully qualified DNs
that match that search. The specific attributes you requested will not be returned.

As a means to extract the most common RACF attributes to convert each SDBM
user into a TDBM user for use with Native Authentication, a PERL script may be
written to complete nested searches, finding all RACF distinguished names that
match the search criteria, then searching each DN for specific information such
as the RACFID and RACFPROGRAMMERNAME. The script would then be able
to extract those attributes and plug them into a user template, printing them out
 Chapter 8. IBM Tivoli Directory Server installation - IBM zSeries 189

to an LDIF file. The LDIF file can then be used to add all users to the TDBM. A
sample program and the implementation instructions can be found in
Appendix C, “Moving RACF users to TBDM” on page 715.
190 Understanding LDAP Design and Implementation

Part 3 In-depth configuration and

tuning

In this part we discuss in-depth configuration and tuning of the IBM Tivoli
Directory Server in a distributed environment, client tools available, schema
management, group and role management, replication, access control, securing
the directory, performance tuning, and how to monitor the IBM Tivoli Directory
Server.

Part 3
© Copyright IBM Corp. 1998, 2004. All rights reserved. 191

192 Understanding LDAP Design and Implementation

Chapter 9. IBM Tivoli Directory Server
Distributed Administration

This chapter provides an overview of the new ITDS 5.x distributed management
model including the application server that the Web administration tool runs on.
We will also be covering ibmdiradm, ibmslapd, and management tools like
ibmdirctl. We will describe how these tools can be used to manage a single
server as well as multiple servers.

9

© Copyright IBM Corp. 1998, 2004. All rights reserved. 193

9.1 Web Administration Tool graphical user interface
The IBM Tivoli Directory Server Version 5.2 Web Administration Tool is installed
on an application server, such as the embedded version of IBM WebSphere
Application Server - Express (WAS) included with the IBM Tivoli Directory
Server, and administered through a console. Or you can install it on a existing
WebSphere Version 5.0 or later or supported application server. IBM Tivoli
Directory Servers that have been added to the console can be managed through
the Web Administration Tool without having to have the tool installed on each
server. The preferred method of administering the server is by using the Web
Administration Tool.

The Web Administration Tool enables an extremely wide range of tasks, such as:

� Basic server administration tasks, including:

– Starting and stopping the server
– Checking server status
– Managing server connections
– Managing connection properties
– Creating, managing, and removing an administrative group
– Creating, managing, and removing unique attributes

� Setting server properties, including:

– Changing server ports and enabling language tags
– Setting performance
– Setting and controlling searches
– Enabling and disabling transaction support
– Enabling and disabling event notification
– Adding and removing suffixes
– Creating and removing referrals

� Configuring security settings, including:

– Configuring TLS and SSL
– Setting the level of encryption
– Setting password encryption
– Setting password policy
– Setting password lockout
– Setting Kerberos
– Setting certificate revocation verification
– Configuring the DIGEST-MD5 mechanism

� Managing the IBM Directory schema, including:

Managing object classes and attributes
194 Understanding LDAP Design and Implementation

� Managing replication, including:

– Creating and modifying replication topology and replication agreements
– Monitoring replication status

� Managing logs, including:

– Viewing error, DB2, and administration daemon error logs

– Modifying the error, DB2, and administration daemon logging settings

– Viewing, enabling, and disabling the directory and administration daemon
audit logs

� Managing directory entries, including:

– Browsing the tree
– Adding, copying, modifying, and deleting an entry
– Managing language tags
– Adding or deleting auxiliary object class
– Changing group membership
– Searching the directory entries with or without filters

� Managing Access Control Lists, including performing all functions described
in previous sections

� Managing group, roles, and proxy authorization group

� Performing user-specific tasks, including managing realms, templates,
groups, and users

9.2 Starting the Web Administration Tool
To start the Web Administration Tool, you must start the application server in
which it was installed. For the embedded version of IBM WebSphere Application
Server - Express go to the directory where you installed the IBM Tivoli Directory
Server and issue one of the following commands:

� For UNIX-based platforms

<IDSinstalldir>/ldap/appsrv/bin/startServer.sh server1

� For Windows-based platforms:

<IDSinstalldir>\ldap\appsrv\bin\startServer.bat server1

Note: For Solaris this is:

opt/ibmldapc/appsrv/bin/startServer.sh server1
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 195

9.3 Logging on to the console as the console administrator
Before you can start using the Web Administration Tool for the server you want
to manage, ensure that you have the completed the following tasks during the
configuration of that server:

� You must have set the admin DN and password to be able to start a given
server.

� You must have configured a database to be able to start a given server in a
state other than configuration only mode.

� You must have the administration daemon running to be able to start, stop, or
restart a given server remotely.

To log on as the console administrator, refer to Figure 9-1 on page 197 and
perform these steps:

1. Assuming you have installed and started the embedded version of
WebSphere Application Server - Express V5.0.2 that ships with ITDS, change
your login URL to the following:

http://<hostname>:9080/IDSWebApp/IDSjsp/Login.jsp

The login page should appear. At the IBM Tivoli Directory Server Web
Administration login page log in as Console Admin, the default selection in the
LDAP Hostname field.

2. In the Username field type: superadmin

3. In the Password field type: secret

4. Click Login. The IBM Tivoli Directory Server Web Administration Tool
console is displayed.

Note: If you have other application servers running, ensure that the
application server where the Web Administration Tool is installed is not
running on the same port as the other application servers.
196 Understanding LDAP Design and Implementation

Figure 9-1 Logging in as console administrator

9.4 Logging on to the console as the server administrator
To log on as the server administrator perform these steps:

1. At the IBM Tivoli Directory Server Web Administration login page select the
LDAP host name or IP address for your machine from the drop-down menu.

2. Enter the admin DN and the password for that server (you set these up during
the server configuration process).

3. Click Login.

Note: When using the Web Administration Tool, do not open additional
login panels from the file options of the browser. Only one instance of the
Web Administration can function on a single browser instance. They
cannot share the same cookies. Additional login panels must be opened
from new instances of the browser.

� For Unix-based systems:

Launch new windows from the command line using the & option. For
example:

mozilla &

� For Windows-based systems:

Internet Explorer - Open additional Internet Explorer windows using the
Start window or an Internet Explorer short cut from the desktop.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 197

The IBM Tivoli Directory Server Web Administration Tool console is displayed
with various server management tasks. The server management tasks vary
depending upon the capabilities of the server.

9.5 Logging on as member of administrative group or as LDAP
user

To log on as a member of the administrative group or an LDAP user, perform
these steps:

1. At the IBM Tivoli Directory Server Web Administration login page select the
LDAP host name or IP address for your machine from the drop-down menu.

2. Enter the your username (in the form of a DN) and password for that server.

3. Click Login.

The IBM Tivoli Directory Server Web Administration Tool console is displayed
with various server management tasks. The server management tasks vary
depending upon your authority or the capabilities of the server or both.

9.6 Logging off the console
To log off of the console, click Logout in the navigation area. The Logout
successful panel displays the message:

If you have been accidentally logged out then you will need to re-login by
clicking here.

Click the word here in this message to return to the IBM Tivoli Directory Server
Web Administration login page.

9.7 Starting and stopping the server
The server can be started or stopped using either the Web Administration Tool or
the command line.

Note: The Web Administration Tool does not support logging on to a given
server using replication supplier credentials.

Note: The Web Administration Tool does not support logging on to a given
server using replication supplier credentials.
198 Understanding LDAP Design and Implementation

9.7.1 Using Web Administration

The current status of the server, either started, stopped, or started in
configuration mode, is indicated by the icons in the upper left-hand corner of the
server status area. The current status is also described in the first sentence of
the work area, for example: The Directory Server is currently running.

To change the running state of the server, perform these steps:

1. Click Server Administration in the Web Administration navigation area and
then click Start/Stop/Restart Server in the expanded list.

2. The message area displays the current state of the server (stopped, running,
or running in configuration only mode). Depending on the state of the server,
running or stopped, buttons are enabled for you to change the state of the
server as shown in Table 9-1.

– If the server is running, you can click Stop to stop the server, or Restart to
stop and then start the server.

– If the server is stopped, you can click Start to start the server.

– Click Close to return to the Introduction panel.

Table 9-1 Buttons available based on server status

3. A message is displayed when the server successfully starts or stops. If you
need to perform server configuration maintenance, select the Start / Restart
in configuration only mode check box. In this mode only the system
administrator can bind to the server. All other connections are refused until
the server is restarted with the DB2 backends enabled (the Start / Restart in
configuration only mode check box deselected).

Note: The administration daemon (ibmdiradm) must be running.

Server status Buttons available

Stopped Start, Close

Running Stop, Restart, Close

Running in configuration mode Stop, Restart, Close

Note: Configuration maintenance can be done while the server is running.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 199

9.7.2 Using the command line or Windows Services icon
Use the following command to start and stop the server:

ibmdirctl [-h <hostname>] [-D <adminDN>] [-w <password>] \
[-p <portnumber>] start|stop|restart|status -- [ibmslapd options]

For Windows systems use the ibmdirctl command, or perform the following
steps:

1. From the desktop, double-click the My Computer icon.

2. Double-click the Control Panel icon.

3. Double-click the Services icon.

4. To start the server select IBM Tivoli Directory V5.2 and click Start.

5. To stop the server select IBM Tivoli Directory V5.2 and click Stop.

9.8 Console layout
The IBM Tivoli Directory Server Web Administration Tool console consists of five
areas:

� Banner area

The banner area located at the top of the panel contains the application
name, IBM Tivoli Directory Server Web Administration Tool, and the IBM
Logo.

� Navigation area

The navigation area, located on the left side of the panel, displays
expandable categories for various console or server tasks. The tasks
available vary depending on your authority or the capabilities of the server
you are logging onto or both.

� Work area

The work area displays the tasks associated with the selected task in the
navigation area. For example, if Managing server security is selected in the
navigation area, the work area displays the Server Security page and the tabs
containing tasks related to setting up server security.

� Server status area

The server status area, located at the top of the work area, indicates the
status and the name of the server being administered. It also has two icon
links, one to the Start/Stop/Restart procedure and the other to general help

Note: The administration daemon (ibmdiradm) must be running.
200 Understanding LDAP Design and Implementation

information. When you select a task from the navigation area, the name of the
selected task, a link to the error log files, and a link to the task help are also
displayed.

� Task status area

The task status area, located beneath the work area, displays the status of
the current task.

9.9 Configuration only mode
The IBM Tivoli Directory Server supports LDAP access to the server’s
configuration settings. An administrator can use the LDAP protocol to query and
update the configuration for the server. This feature enables remote
administration. For the remote access to be more robust and reliable, the server
does not depend on successful initialization of the database backends. It is
possible to start the server in configuration only mode with only the
cn=configuration suffix active. As long as the configuration backend is
available, the server starts and accepts LDAP requests. Configuration only mode
gives an administrator remote access to the server even when errors are
encountered during startup.

The following features are supported in configuration only mode:

� Access to the configuration file and log files
� Auditing
� Event notification
� Kerberos
� SASL
� SSL

The following features are not supported in configuration only mode:

� Access to the database
� Changelog
� Password policy
� Replication
� Schema changes
� Transactions

Note: If you are logged on as the console administrator, this area displays
Console administrator and provides an icon link to the table of contents
for task helps.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 201

9.9.1 Minimum requirements for configuration-only mode
The following specify the minimum requirements for configuration-only mode:

� The configuration file must be in the correct LDIF format and the server must
be able to locate and read the file.

� The server must be able to read and load the schema according to the
configuration file.

� The server must be able to load the configuration plug-in.

9.9.2 Starting LDAP in configuration-only mode
The following methods will start the LDAP server in configuration only mode:

� Using Web Administration:

Check the Configuration only mode when starting the server through the Web
Administration Tool.

� Using the command line:

Specify -a or -A on server startup.

ibmslapd -a

or

ibmdirctl -h <hostname> -D <adminDN> -w <adminpw>-p <portnumber> \
start -- -a

9.9.3 Verifying the server is in configuration-only mode

To determine if the server is running in configuration only mode, use one of the
following methods.

� Using Web Administration:

If the server has been started in configuration only mode the || icon located
between the stop and start icons is highlighted.

� Using the command line:

Issue a search of the root DSE for the attribute
ibm-slapdisconfigurationmode. If this attribute is set to true, the server is
running in configuration only mode.

ldapsearch -s base -b " " objectclass=* ibm-slapdisconfigurationmode

Note: Any failure during server startup will also cause the server to start in
configuration only mode.
202 Understanding LDAP Design and Implementation

9.10 Setting up the console
After you have started the application server, you need to set up the console that
is going to manage your directory servers. From the IBM Tivoli Directory Server
Web Administration login page, log in as the console administrator and perform
the following tasks.

9.10.1 Managing the console
At the IBM Tivoli Directory Server Web Administration Tool console the following
tasks can be done to manage the console.

Changing the console administrator login
To change superadmin to a different administrator ID, refer to Figure 9-2 and
perform the following steps:

1. Expand Console administration in the navigation area

2. Click Change console administrator login.

3. Enter the new administrator ID.

4. Enter the current administrator password. The password, secret, is the same
for the new administrator ID, until you change it.

Figure 9-2 Changing console administrator login

Note: Only one administrator ID is allowed. The superadmin ID is replaced
by the new ID that you specified.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 203

Changing the console administration password
To change the administrator password to another password:

1. Expand Console administration in the navigation area

2. Click Change console administrator password.

3. Enter the current password.

4. Enter the new password.

5. Enter the new password again to confirm that there are no typographical
errors.

6. Click OK.

Adding, modifying, and removing servers in the console
Use the following procedures to add, edit, or delete servers in the console.

Adding a server to the console
To add a server to the console, refer to Figure 9-3 and perform the following
steps:

1. Expand Console administration in the navigation area.

2. Click Manage console servers. A table for listing of server host names and
port numbers is displayed.

3. Click Add.

4. Enter the host name address or the IP address of the server. For example:

servername.austin.ibm.com

5. Specify the port numbers or accept the defaults.

6. Specify if the server is SSL enabled.

7. Click OK to apply the changes or click Cancel to exit the panel without
making any changes.

Figure 9-3 Adding a server to the console
204 Understanding LDAP Design and Implementation

Modifying a server in the console
To change the port number or SSL enablement of a server, refer to Figure 9-4
and Figure 9-5, and perform the following steps:

1. Expand Console administration in the navigation area.

2. Click Manage console servers. A listing of server host names and port
numbers is displayed.

3. Select the radio button next to the server you want to modify.

4. Click Edit.

5. You can change the port numbers.

6. You can change whether the server is SSL enabled with the SSL enabled
check box.

7. Click OK to apply the changes or click Cancel to exit the panel without
making any changes.

Figure 9-4 Manage console servers

Figure 9-5 Modifying a server in the console
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 205

Removing a server from the console
To remove a server from the console, refer to Figure 9-4 on page 205, and
perform the following steps:

1. Expand Console administration in the navigation area.

2. Click Manage console servers. A listing of server host names and port
numbers is displayed.

3. Select the radio button next to the server you want to remove.

4. Click Delete.

5. Click OK to delete the server or click Cancel to exit the panel without making
any changes.

Managing console properties
To change the settings for the console properties, perform the following steps:

1. Expand Console administration in the navigation area.

2. Click Manage console properties.

3. Click Component management to specify the components that are enabled
for all servers in the console. By default all the components are enabled.

4. Click Session properties to set the time-out limit for the console session.
The default setting is 60 minutes.

5. Click SSL key database to set up the console so that it can communicate
with other LDAP servers using the Secure Sockets Layer (SSL), if necessary.
Set the key database path and file name, the key password, the trusted
database path and file name, the trusted password in the appropriate fields.
The supported file type is jks.

6. When you have finished setting up the console, click Logout to exit.

Note: You might not see a management component or some of its tasks,
even if it is enabled, if you do not have the correct authority on the server
or the server does not have the needed capabilities, or both.

Note: A session might be valid for three to five minutes more than what
you have set. This is because the invalidations are performed by a
background thread in the application server that acts on a timer interval.
This timer interval extends the session time out duration.
206 Understanding LDAP Design and Implementation

Component management
Component management allows you to enable or disable management
components across all servers in the console. By default all the components are
enabled. The components managed from this panel are:

� User properties
� Server administration
� Schema management
� Directory management
� Replication management
� Realms and templates
� Users and groups

Figure 9-6 shows the component management panel. To enable a component,
select the check box next to the component. To disable a component, clear the
check box next to it.

Figure 9-6 Manage console properties

Note: An enabled management component, or some of the tasks associated
with the enabled management component, might not be accessible to a user if
one of the following conditions is true:

� The LDAP server the user is logging into does not support the capabilities
required by the management component.

� The user does not have sufficient access rights on the LDAP server.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 207

9.10.2 Creating an administrative group
An administrative group provides administrative capabilities without having to
share a single ID and password among the administrators. Members of the
administrative group have their own unique IDs and passwords. The
administrative group member DNs must not match each other and they must
also not match the IBM Tivoli Directory Server administrator’s DN. Conversely,
the IBM Tivoli Directory Server administrator DN must not match the DN of any
administrative group member. This rule also applies to the Kerberos or
Digest-MD5 IDs of the IBM Tivoli Directory Server administrator and the
administrative group members. These DNs must not match any of the IBM Tivoli
Directory Server’s replication supplier DNs. This also means that IBM Tivoli
Directory Server’s replication supplier DNs must not match any of the
administrative group member DNs or the IBM Tivoli Directory Server
administrator DN.

The members of the administrative group have all the capabilities of the directory
administrator with the following exceptions:

� Only the IBM Tivoli Directory Server administrator has the ability to add or
remove members from the administrative group. In addition only the IBM
Tivoli Directory Server administrator can modify the DN, password, Kerberos
ID, or Digest-MD5 ID of any administrative group member. However, a
member of the administrative group can modify his own password, but cannot
modify his own DN, Kerberos ID, or Digest-MD5 ID. An administrative group
member cannot see the password of any other administrative group member
or the IBM Tivoli Directory Server administrator.

� Only the IBM Tivoli Directory Server administrator has the ability to add or
remove the cn=Keberos,cn=Configuration and the
cn=Digest,cn=Configuration entries in the configuration backend.
Administrative group members can modify all the attributes in these entries
except for the directory administrator’s Keberos ID and Digest-MD5 ID.

� Only the IBM Tivoli Directory Server administrator has the ability to modify or
update any of the audit log settings. Members of the administrative group are
able only to view the audit log and the audit log settings.

� Only the IBM Tivoli Directory Server administrator has the ability to clear the
audit log.

Note: The IBM Tivoli Directory Server’s replication supplier DNs can match
each other.
208 Understanding LDAP Design and Implementation

9.10.3 Enabling and disabling the administrative group
Enabling and disabling the administrative group can be done through the Web
administration tool and the command line. You must be the IBM Tivoli Directory
Server administrator to perform this operation.

Using Web Administration
To enable or disable the administrative group using the Web Administration Tool,
perform the following steps:

1. Expand the Server administration category in the navigation area. Click
Manage administrative group.

2. To enable or disable the administrative group, click the check box next to
Enable administrative group. If the box is checked, the administrative group is
enabled.

3. Click OK.

Using the command line
To perform the same operations using the command line, issue the following
command:

ldapmodify -D <adminDN> -w<adminPW> -i<filename>

Where the file used is similar to Example 9-1.

Example 9-1 File used for administrative group modification

dn: cn=Configuration
cn: Configuration
changetype: modify
replace: ibm-slapdAdminGroupEnabled
#specify TRUE to enable or FALSE to disable the administrative group
#TRUE has been preselected for you.
ibm-slapdAdminGroupEnabled: TRUE
objectclass: top

Note: In this task and the Manage administrative group tasks that follow, the
operation buttons are disabled for members of the administrative group. Mem-
bers of the administrative group can only view the Administrative group mem-
bers table on the Manage administrative group panel.

Note: If you disable the administrative group, any member who is logged in
can continue administrative operations until that member is required to
rebind. To stop any additional operations by already bound administrative
group members, perform an unbind operation.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 209

objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdTop

To update the settings dynamically, issue the following ldapexop command:

ldapexop -D cn=root -w root -op readconfig -scope single \
cn=Configuration ibm-slapdAdminGroupEnabled

9.10.4 Adding members to the administrative group
Members can be added to the administrative group through either the Web
Administration Tool or the command line. You must be the IBM Tivoli Directory
Server administrator to perform this operation.

Using Web Administration
To add a member to the administrative group, perform the following steps:

1. On the Manage administrative group panel, click Add.

2. On the Add administrative group member panel, enter the member’s
administrator DN (this must be a valid DN syntax).

3. Enter the member’s password.

4. Enter the member’s password again to confirm it.

5. Optionally, enter the member’s Kerberos ID. The Kerberos ID must be in
either ibm-kn or ibm-KerberosName format. The values are case insensitive,
for example, ibm-kn=root@TEST.AUSTIN.IBM.COM is equivalent to
ibm-kn=ROOT@TEST.AUSTIN.IBM.COM.

6. Optionally, enter the member’s Digest-MD5 user name.

7. Click OK.

The member administrator DN, Digest-MD5 username, if specified, and
Kerberos ID, if specified, are displayed in the Administrative group members list
box.

Note: This field is only available for the AIX and Windows NT and Windows
2000 platforms. It is displayed only if the Kerberos supported capabilities
OID (1.3.18.0.2.32.30) is found on the server.

Note: The Digest-MD5 user name is case sensitive. Repeat this procedure
for each member you want to add to the administrative group.
210 Understanding LDAP Design and Implementation

Using the command line
To perform the same operations using the command line, issue the following
command:

ldapadd -D <adminDN> -w<adminPW> -i<filename>

Where the file used is similar to Example 9-2.

Example 9-2 File used to add user to administrative group

dn: cn=AdminGroup, cn=Configuration
cn: AdminGroup
objectclass: top
objectclass: container
dn: cn=admin1, cn=AdminGroup, cn=Configuration
cn: admin1
ibm-slapdAdminDN: <memberDN>
ibm-slapdAdminPW: <password>
#ibm-slapdKrbAdminDN and ibm-slapdDigestAdminUser are optional attributes.
ibm-slapdKrbAdminDN: <KerberosID>
ibm-slapdDigestAdminUser: <DigestID>
objectclass: top
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdAdminGroupMember

To update the settings dynamically, issue the following ldapexop command:

ldapexop -D cn=root -w root -op readconfig -scope subtree \
cn=AdminGroup,cn=Configuration

9.10.5 Modifying an administrative group member
Modifying an administrative group member can be done through either the Web
Administration Tool or the command line. You must be the IBM Tivoli Directory
Server administrator to perform this operation.

Note: Kerberos support is only available for the AIX and Windows NT, Win-
dows 2000, and Windows 2003 platforms. The Kerberos ID column in the is
displayed in the Administrative group members list box only, if the kerberos
supported capabilities OID (1.3.18.0.2.32.30) is found on the server.

Note: If you already have a member created in the administrative group, omit
the first entry in Example 9-2.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 211

Using Web Administration
To modify an administrative group member’s information, on the Manage
administrative group panel:

1. Select the member whose information you want to modify.

2. Click Edit.

3. Enter the member’s administrator DN (this must be a valid DN syntax).

4. Change the member’s password.

5. Enter the member’s password again to confirm it.

6. Enter or change the member’s Kerberos ID. The Kerberos ID must be in
either ibm-kn or ibm-KerberosName format. The values are case insensitive,
for example, ibm-kn=root@TEST.AUSTIN.IBM.COM is equivalent to
ibm-kn=ROOT@TEST.AUSTIN.IBM.COM.

7. Enter or change the member’s Digest-MD5 user name. The Digest-MD5 user
name is case sensitive.

8. Click OK.

Repeat this procedure for each member you want to modify in the administrative
group.

Using the command line
To perform the same operations using the command line, issue the following
command:

ldapmodify -D <adminDN> -w<adminPW> -i<filename>

Where the file used is similar to Example 9-3.

Example 9-3 File used to modify an administrative group member

dn: cn=admin1, cn=AdminGroup, cn=Configuration
cn: admin1
changetype: modify
replace: ibm-slapdAdminDN
ibm-slapdAdminDN: cn=<memberDN>

Note: This field is only available for the AIX and Windows NT and
Windows 2000 platforms. It is displayed only, if the Kerberos supported
capabilities OID(1.3.18.0.2.32.30) is found on the server.

Note: If you are member of the administrative group, you can change your
password using the User properties → Change password panel.
212 Understanding LDAP Design and Implementation

-
replace: ibm-slapdAdminPW
ibm-slapdAdminPW: <password>
-
replace: ibm-slapdKrbAdminDN
ibm-slapdKrbAdminDN: <KerberosID>
-
replace: ibm-slapdDigestAdminUser
ibm-slapdDigestAdminUser: <DigestID>

To update the settings dynamically, issue the following ldapexop command:

ldapexop -D cn=root -w root -op readconfig -scope subtree \
cn=AdminGroup,cn=Configuration

9.10.6 Removing a member from the administrative group
Removing a member from the administrative group can be done through the
Web administration tool or the command line. You must be the IBM Tivoli
Directory Server administrator to perform this operation.

Using server administration
To remove a member of the administrative group, on the Manage administrative
group panel:

1. Select the member you want to remove.

2. Click Delete.

3. You are prompted to confirm the removal.

4. Click OK to delete the member or Cancel to return to the Manage
administrative group panel without making any changes.

Repeat this procedure for each member you want to remove from the
administrative group.

Using the command line
To perform the same operations using the command line, issue the following
command:

ldapdelete -D <adminDN> -w<adminPW> -i<filename>

Where the file used is similar to Example 9-4.

Example 9-4 File used to remove a member of the administrative group

#list additional DNs here, one per line
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 213

dn: cn=admin1, cn=AdminGroup, cn=Configuration

To remove multiple members, list the DNs. Each DN must be on a separate line.

To update the settings dynamically, issue the following ldapexop command:

ldapexop -D cn=root -w root -op readconfig -scope subtree \
cn=AdminGroup,cn=Configuration

9.11 ibmslapd command parameters
The ibmslapd command has two parameters on UNIX systems and an additional
two parameters on Windows systems. The following parameters are common to
both platforms:

-h <debug_mask>

This causes ibmslapd to generate debug output to stdout. The debug_mask is a
bit mask that controls which output is generated with values up to 65535. This
parameter is for use by IBM service personnel. See “Server debug mode” on
page 214 for more information on the use of this parameter.

-f <path_to_configuration_file>

This specifies the location of the configuration file used when starting the server.
This parameter is used if you want to use a customized configuration file. If not
specified, ibmslapd defaults to the platform dependent location where the
configuration file was installed.

Additional parameters for Windows systems are:

� -i <servicename>

This installs IBM Directory as service on the server.

� -u <servicename>

This removes IBM Directory as service from the server.

Server debug mode
If the error logs do not provide enough information to resolve a problem, you can
run the IBM Tivoli Directory Server in a special debug mode that generates very
detailed information. The server executable ibmslapd must be run from a
command prompt to enable debug output. Be careful not to run in debug mode
for long periods of time. This will generate a large amount of data and could easy
fill up the max file size of 2 Gb. When this happens, the LDAP will not accept any
new connections or log any more data to the file. The way to fix this would be to
stop and re-start ibmslapd. When doing this make sure you copy or rename the
214 Understanding LDAP Design and Implementation

trace file before you restart ibmslapd. If you do not rename it or copy it, then it will
be erased and overwritten with the new trace file.

The syntax is as follows:

ldtrc on
ibmslapd -h bitmask

Where the specified bitmask value determines which categories of debug output
are generated, as shown in Table 9-2.

For example, specifying a bitmask value of 65535 turns on full debug output and
generates the most complete information. When you are finished, issue the
following command at a command prompt:

ldtrc off

It is recommended that you contact IBM Service for assistance with interpreting
the debug output and resolving of the problem.

Table 9-2 ibmslapd bitmask values and descriptions

Hex Decimal Value Description

0x0001 1 LDAP_DEBUG_TRACE Entry and exit from
routines

0x0002 2 LDAP_DEBUG_PACKETS Packet activity

0x0004 4 LDAP_DEBUG_ARGS Data arguments from
requests

0x0008 8 LDAP_DEBUG_CONNS Connection activity

0x0010 16 LDAP_DEBUG_BER Encoding and decoding
of data

0x0020 32 LDAP_DEBUG_FILTER Search filters

0x0040 64 LDAP_DEBUG_MESSAGE Messaging subsystem
activities and events

0x0080 128 LDAP_DEBUG_ACL Access Control List
activities

0x0100 256 LDAP_DEBUG_STATS Operational statistics

0x0200 512 LDAP_DEBUG_THREAD Threading statistics

0x0400 1024 LDAP_DEBUG_REPL Replication statistics

0x0800 2048 LDAP_DEBUG_PARSE Parsing activities
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 215

9.12 Directory administration daemon
The directory administration daemon (ibmdiradm) enables remote management
of the IBM Tivoli Directory Server. It must be installed on the machine where the
IBM Tivoli Directory Server is installed and must be running continuously. The
directory administration daemon accepts requests by way of LDAP extended
operations and supports starting, stopping, restarting, and status monitoring of
the IBM Tivoli Directory Server. By default, the IBM Directory administration
daemon listens on two ports, port 3538 for non-SSL connections and port 3539
for SSL connections, if SSL communication is enabled.

9.12.1 The ibmdiradm command
To start the administration daemon, use the ibmdiradm command.

Synopsis
ibmdiradm [-h debug_mask] [-f path_to_configuration_file] \
[-s ssl_port] [-p nonssl_port] [-i servicename | -u servicename]

Description
Starts the administration daemon.

Options
The options are:

� -h debug_mask

Causes ibmdiradm to generate administration daemon debug output to
stdout. The debug_mask is a bit mask that controls which output is generated
with values up to 65535. This parameter is for use by IBM service personnel.

0x1000 4096 LDAP_DEBUG_PERFORMANCE Relational backend
performance
statistics

0x2000 8192 LDAP_DEBUG_RDBM Relational backend
activities (RDBM)

0x4000 16384 LDAP_DEBUG_REFERRAL Referral activities

0x8000 32768 LDAP_DEBUG_ERROR Error conditions

0xffff 65535 LDAP_DEBUG_ANY All levels of debug

Hex Decimal Value Description
216 Understanding LDAP Design and Implementation

See “Server debug mode” on page 214 for additional information on debug
levels.

� -f path_to_configuration_file

Specifies the location of the configuration file used when starting the
administration daemon server. This parameter is used if you want to use a
customized configuration file. If not specified, ibmdiradm defaults to the
platform-dependent location where the configuration file was installed.

� -s ssl_port

Specifies the SSL port.

� -p nonssl_port

Specifies the non-SSL port.

The following two parameters are for Windows systems only:

� -i servicename

Adds the administration daemon as a Windows service.

� -u servicename

Removes the administration daemon as a Windows service.

Stopping the administration daemon
For UNIX-based systems, run the following commands:

ps -ef |grep ibmdiradm
kill -p pid_obtained_by_previous_commnand

For Windows systems:

1. Through the Control Panel, open the Services window.

2. Click Directory Admin Daemon.

3. Click Action → Stop.

9.12.2 Starting the directory administration daemon

For UNIX-based and Windows-based systems issue the command:

ibmdiradm

Note: By default, the administration daemon is running when you install the
IBM Tivoli Directory Server.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 217

For Windows-based systems the directory administration daemon can be started
from the control panel (Control Panel → Services, select IBM Directory
Admin Daemon, click Start).

9.12.3 Stopping the directory administration daemon
If you have already configured a directory administration DN and password, you
can use the ibmdirctl command to stop the administration daemon. This
command is not platform specific.

ibmdirictl -D <adminDN> -w <adminPW> admstop

For UNIX-based systems the directory administration daemon can also be
stopped by:

ps -ef | grep ibmdiradm
kill -p <pid obtained by previous command>

For Windows-based systems the directory administration daemon can also be
stopped through the control panel (Control Panel → Services, select IBM
Directory Admin Daemon, click Stop).

9.12.4 Administration daemon error log
The admin daemon error log logs messages pertaining to the ITDS 52
administration daemon. ibmdiradm is a lightweight version of ibmslapd, which
would be needed in case you need to control the server remotely. ibmdiradm
runs as a daemon on the server and helps remote clients to pass on the
start/stop/restart requests to the server. It listens on port 3538 by default for
non-SSL communications and over port 3539 by default for the SSL
communications. On Windows, the administration daemon is also installed as a
service, in addition to the command line version of ibmdiradm. The name of the
service is IBM Tivoli Directory Admin Daemon V5.2. The basic use of
ibmdiradm is that it is a prerequisite service/daemon for a remote Web
Administration GUI to communicate with the server (ibmslapd). If the Web
Administration GUI is local to ibmslapd, then there is no necessity of ibmdiradm
to be running for the GUI to communicate to the server.

To control the ibmdiradm you would need to use another command-line utility,
known as ibmdirctl. The details of ibmdirctl will be provided in the next section
(Figure 9.13 on page 227), but for now refer to Figure 9-7 on page 219 to see
which utility controls the other.

Note: If you enable SSL communication, the directory administration daemon
must be stopped and restarted for SSL to take effect.
218 Understanding LDAP Design and Implementation

Figure 9-7 Figure depicting the processes for regulating ibmdiradm & ibmslapd

The next question would be why do we need the administration log at all? Well,
the answer is quite simple. There are occasions when you need to control your
server remotely. There may be issues associated with the remote handling of
server, like the ibmdiradm is not able to start ibmslapd. The administration
daemon log is handy in such situations, as we can get to know the probable
causes of failure. The problem may be that the server is not configured properly,
due to which the server is compelled to start in configuration mode. In such a
situation ibmdiradm would flash an error saying that it was not able to start the
server. You may check out the administration daemon log for getting the relevant
details and consequently fix the problem.

Modifying administration daemon error log settings
There are two ways to update the administration daemon error log settings.

Using the Web Administration
Refer to Figure 9-8 on page 220, and perform the following steps:

1. Expand Logs in the navigation area, click Modify admin daemon log
settings.

2. Enter the path and file name for the administration daemon error log.
Typically this is the ibmdiradm.log file located in the var/ldap/ directory.
Ensure that the file exists on the LDAP server and that the path is valid.

3. Click OK to apply your changes or click Cancel to return to the IBM Tivoli
Directory Server Web Administration Welcome panel without making any
changes.

4. If you click OK, a message is displayed to remind you that you need to restart
the server. Click OK to return to the IBM Tivoli Directory Server Web
Administration Welcome panel.

Note: var/ldap/ibmdiradm.log is the default administration daemon error
log for UNIX systems and installpath\var\ibmdiradm.log is the default
administration daemon error log for Windows systems.

Controls

ibmdiradmibmdirctl ibmslapd

Controls
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 219

5. You must stop the server for changes to take effect. After stopping the server
you must also stop and start the administration daemon locally to
resynchronize the ports.

For UNIX systems:

ibmdirctl -D <AdminDN> -w <Adminpw> admstop
ibmdiradm

For Windows systems:

– If you are running ibmdiradm as a service:

Through the Control Panel, open the Services window.

i. Click Directory Admin Daemon.
ii. Click Action → Stop.
iii. Click Directory Admin Daemon.
iv. Click Action → Start.

– If you are running ibmdiradm as a separate process, you just need to kill
the current process of ibmdiradm and run it again.

Restart the server.

Figure 9-8 Settings for the admin daemon log

Using the command line
Issue the command:

ldapmodify -D <adminDN> -w >adminPW> -i <filename>

Where <filename> contains:

dn: cn=Admin, cn=Configuration
changetype: modify
replace: ibm-slapdErrorLog
ibm-slapdErrorLog: <newpathname>

You must stop the server for changes to take effect. After stopping the server you
must also stop and start the administration daemon locally to resynchronize the
220 Understanding LDAP Design and Implementation

ports. Start the server. The sequence of the commands to do the same is as
follows:

ibmdirctl -D <adminDN> -w <adminPW> -p 389 stop
ibmdirctl -D <adminDN> -w <adminPW> admstop
ibmdiradm
ibmdirctl -D <adminDN> -w <adminPW> start

Viewing the administration daemon error log
Use the following procedures to view the administration daemon error log.

Using Web Administration
Refer to Figure 9-9, and perform the following steps:

1. Expand Logs in the navigation area, then click View admin daemon log.

2. The panel displays the first page of the administration daemon log and the
navigation arrows at the bottom of the panel enable you to go to the next
page or to the previous page. From the menu, you can select a specific page,
for example Page 6 of 16, and click Go to display that page of the
administration daemon log.

3. From the Web administration tool you can also:

a. Click Refresh to update the entries in the log.

b. Click Clear log to delete all entries in the administration daemon log.

c. Click Close to return to the IBM Tivoli Directory Server Web
Administration Welcome panel.

Figure 9-9 Contents of the admin daemon log

Using the command line
To view the administration daemon error log issue the following command:

more /var/ldap/ibmdiradm.log

Where /var/ldap/ibmdiradm.log is your administration daemon error log.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 221

Dynamically view and clear administration daemon error log
To dynamically view and clear the administration daemon error log, the following
commands can be used from the command line. See Example 9-5 and
Example 9-6 for sample output from these commands.

ldapexop -D <adminDN> -w <adminPW> -op readlog -log ibmdiradm -lines all
ldapexop -D <adminDN> -w <adminPW> -op clearlog -log ibmdiradm

Example 9-5 ldapexop command viewing the log

E:\>ldapexop -D cn=root -w secret -op readlog -log ibmdiradm -lines all
Feb 22 00:21:06 2004 Attempt to bind failed; errno 22 (Invalid argument).
Feb 22 00:21:06 2004 SocketInit failed for port 3538.
Feb 22 00:21:06 2004 Terminating server.
Mar 03 20:39:11 2004 Open of SSL key database file F:\Keys\server.kdb failed.
Mar 03 20:39:11 2004 Terminating server.
Mar 04 08:46:56 2004 Open of SSL key database file F:\Keys\server.kdb failed.
Mar 04 08:46:56 2004 Terminating server.
Mar 04 09:01:11 2004 Open of SSL key database file F:\Keys\server.kdb failed.
Mar 04 09:01:11 2004 Terminating server.
Mar 04 09:05:58 2004 Open of SSL key database file F:\Keys\server.kdb failed.
Mar 04 09:05:58 2004 Terminating server.
Mar 04 09:08:10 2004 Open of SSL key database file F:\Keys\server.kdb failed.
Mar 04 09:08:10 2004 Terminating server.
Mar 04 09:08:40 2004 Open of SSL key database file F:\Keys\server.kdb failed.
Mar 04 09:08:40 2004 Terminating server.

As seen in the example above, there were issues with the key database file,
which was specified during SSL configuration. Hence ibmslapd could not be
started by ibmdiradm. Consequently the logs of ibmdiradm are populated.

Example 9-6 ldapexop command clearing the log

E:\>ldapexop -D cn=root -w secret -op clearlog -log ibmdiradm
ibmdiradm log file cleared.
E:\>ldapexop -D cn=root -w secret -op readlog -log ibmdiradm -lines all
Mar 18 08:18:51 2004 Log file cleared.

Administration daemon audit logging
We can audit the operations or transactions that are performed between clients
and the directory server via the administration daemon, ibmdiradm. This has

Note: /var/ldap/ibmdiradm.log is the default administration daemon error log
for UNIX systems and installpath\var\ibmdiradm.log is the default
administration daemon error log for Windows systems.
222 Understanding LDAP Design and Implementation

again the same uses as we had seen for audit log. We can get a detailed set of
timestamped activities occurring on the server. Timestamps obviously play a vital
role during problem determination.

Administration daemon audit log and administration audit log
To enable the administration daemon audit log you can use the we
administration tool, or the command line.

Using Web Administration
Refer to Figure 9-10 on page 224, and perform the following steps to enable the
administration audit log and modify the administration audit log settings:

1. Expand Logs in the navigation area, click Modify admin daemon audit log
settings.

2. Select Enable admin daemon audit logging to use the audit log utility with
the administration daemon.

3. Enter the path and file name for the administration daemon audit log.
Typically this is the adminAudit.log file located in the /var/ldap/ directory.
Ensure that the file exists on the ldap server and that the path is valid.

4. Click OK to apply your changes or click Cancel to return to the IBM Tivoli
Directory Server Web Administration Welcome panel without making any
changes.

5. If you click OK, a message is displayed to remind you that you need to restart
the server. Click OK to return to the IBM Tivoli Directory Server Web
Administration Welcome panel.

Note: Members of the administrative group can view the administration
daemon audit log and settings but not modify them. Only the root
administrator is enabled to access. Change or clear the administration
daemon audit log files.

Note: The default setting is enabled. You only need to select the check box
if you have previously disabled the administration daemon audit log.

Note: /var/ldap/adminAudit.log is the default administration daemon audit
log for UNIX systems and installpath\var\adminAudit.log is the default
administration daemon audit log for Windows systems.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 223

6. You must stop the server for changes to take effect. After stopping the server
you must also stop and start the administration daemon locally to
resynchronize the ports.

For UNIX systems:

ibmdirctl -D <AdminDN> -w <Adminpw> admstop
ibmdiradm

For Windows systems:

– If you are running ibmdiradm as a service:

Through the Control Panel, open the Services window.

i. Click Directory Admin Daemon.
ii. Click Action → Stop.
iii. Click Directory Admin Daemon.
iv. Click Action → Start.

– If you are running ibmdiradm as a separate process, you just need to kill
the current process of ibmdiradm and run it again.

Restart the server.

Figure 9-10 Settings for the admin daemon audit log

Using the command line
Issue the command:

ldapmodify -D <adminDN> -w <adminPW> -i <filename>

Where <filename> contains:

dn: cn=Admin Audit, cn=Configuration
changetype: modify
replace: ibm-audit
ibm-audit: true
-

224 Understanding LDAP Design and Implementation

replace: ibm-auditLog
ibm-auditLog: <newpathname>

You must stop the server for changes to take effect. After stopping the server you
must also stop and start the administration daemon locally to resynchronize the
ports. Restart the server.

ibmdirctl -D <AdminDN> -w <adminPW> -p 389 stop
ibmdirctl -D <AdminDN> -w <adminPW> admstop
ibmdiradm
ibmdirctl -D <AdminDN> -w <adminPW> start

Disabling the administration daemon audit log
To disable audit logging perform the steps in one of the following methods:

Using Web Administration
To use this:

1. Expand Logs in the navigation area, click Modify admin daemon audit log
settings.

2. Deselect Enable admin daemon audit logging.

3. Click OK to apply your changes or click Cancel to return to the IBM Tivoli
Directory Server Web Administration Welcome panel without making any
changes.

The panel where you would be making these settings is same as the one shown
in Figure 9-10 on page 224.

Using the command line
Issue the command:

ldapmodify -D <adminDN> -w <adminPW> -i <filename>

Where <filename> contains:

cn=Admin Audit, cn=Configuration
changetype: modify
replace: ibm-audit
ibm-audit: false

Note: If you are using administration daemon audit logging in
configuration-only mode, the DN specified is dn: cn=audit,
cn=configuration. Any changes made to this DN are overwritten with the dn:
cn=audit, cn=localhost values when the server is started in normal mode.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 225

Viewing the administration daemon audit log
Use one of the following procedures to view the administration daemon audit log.

Using Web Administration
Refer to Figure 9-11, and perform the following steps:

1. Expand Logs in the navigation area, then click View admin daemon audit
log.

2. The panel displays the first page of the administration daemon audit log and
the navigation arrows at the bottom of the panel enable you to go to the next
page or to the previous page. From the menu, you can select a specific page,
for example Page 6 of 16, and click Go to display that page of the
administration daemon audit log.

3. From the Web administration tool, you can:

a. Click Refresh to update the entries in the log.

b. Click Clear log to delete all entries in the administration daemon audit log.

c. Click Close to return to the IBM Tivoli Directory Server Web
Administration Welcome panel.

Figure 9-11 Contents of the admin daemon audit log

Using the command line
To view the administration daemon audit log issue the following command:

more /var/ldap/adminAudit.log

Where var/ldap/adminAudit.log is your administration daemon log.

Note: /var/ldap/adminAudit.log is the default administration daemon log for
UNIX systems and installpath\var\adminAudit.log is the default administration
daemon log for Windows systems.
226 Understanding LDAP Design and Implementation

To dynamically view and clear the administration daemon audit log, the following
commands can be used from the command line. See Example 9-7 and
Example 9-8 for sample output from these commands.

ldapexop -D <adminDN> -w <adminPW> -op readlog -log adminAudit -lines all
ldapexop -D <adminDN> -w <adminPW> -op clearlog -log adminAudit

Example 9-7 ldapexop command to view the administration audit log

E:\>ldapexop -D cn=root -w secret -op readlog -log adminAudit -lines all | head
-5
2004-03-03-06:29:54.55220+05:00--V3 Bind--bindDN: CN=ROOT--client:
127.0.0.1:34056--connectionID: 12--received:
2004-03-03-06:29:54.55220+05:00--Success
2004-03-03-06:29:54.55220+05:00--V3 Unbind--bindDN: CN=ROOT--client:
127.0.0.1:34056--connectionID: 12--received:
2004-03-03-06:29:54.55220+05:00--Success
2004-03-03-06:29:59.55225+05:00--V3 Bind--bindDN: CN=ROOT--client:
127.0.0.1:34312--connectionID: 13--received:
2004-03-03-06:29:59.55225+05:00--Success
2004-03-03-15:09:03.076+05:00--Audit logging started.
2004-03-04-03:16:53.43747+05:00--Audit logging started.
2004-03-04-03:31:08.44602+05:00--Audit logging started.

As seen in Example 9-7, the messages logged appear the same as they were for
the error log. This log is, however, pertaining to transactions with ibmslapd
through ibmdiradm.

Example 9-8 ldapexop command to clear the administration audit log

E:\>ldapexop -D cn=root -w secret -op clearlog -log adminAudit
adminAudit log file cleared.

E:\>ldapexop -D cn=root -w secret -op readlog -log adminAudit -lines all
Mar 18 08:25:20 2004 Log file cleared.

9.13 The ibmdirctl command
This is the administration daemon control program. The administration daemon
(ibmdiradm) must be running.

Note: Only the administrator may use this utility.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 227

Syntax
The syntax is:

ibmdirctl [-D adminDN] [-h hostname] [-K keyfile] [-N key_name]
[-p port] [-v] [-w adminPW | ?] [-Z] [-?]
command -- [ibmslapd options]

Where command is {start|stop|restart|status|admstop}.

Description
The administration daemon control program, ibmdirctl, is used to start, stop,
restart or query the status of the IBM Tivoli Directory Server. It can also be used
to stop the administration daemon.

To display syntax help for ibmdirctl, type ibmdirctl -?.

Options
The options are:

� -D adminDN

Use adminDN to bind to the LDAP directory. The adminDN is a
string-represented DN (see LDAP Distinguished Names).

� -h hostname

Specify an alternate host on which the ldap server and the admin daemon are
running.

� -K keyfile

Specifies the file to use for keys.

� -N key_name

Specifies the private key name to use in keyfile.

� -p port

Specify an alternate TCP port where the admin daemon is listening. The
default LDAP port is 3538.

� -v

Specifies to run in verbose mode.

� -w adminPW | ?

Use adminPW as the password for authentication. Use the ? to generate a
password prompt. Using this prompt prevents your password from being
visible through the ps command. Refer to
228 Understanding LDAP Design and Implementation

� -?

Displays the help screen

� command

– start - Starts the server
– stop - Stops the server
– restart - Stops then starts the server
– status - Queries the status the server
– admstop - Stops the IBM Tivoli Directory Server administration daemon

� -- ibmslapd options

The ibmslapd options are any options the ibmslapd process takes at startup
time, typically:

– -a | -A - Starts the server in configuration only mode

– -n | -N - Does not start the server, if the server is unable to start with the
database backends (no configuration only mode)

To start the server in configuration-only mode issue the command:

ibmdirctl -h mymachine -D myDN -w mypassword -p 3538 start -- -a

To stop the server issue the command:

ibmdirctl -h mymachine -D myDN -w mypassword -p 3538 stop

To stop and start the LDAP Server with out showing the password:

C:\>ibmdirctl -D cn=root -w ? stop
Enter password ==> <password is not shown when typed>
Stop operation succeeded
C:\>ibmdirctl -D cn=root -w ? start

Note: The stop command may be issued directly to the LDAP server.

If the admstop command is issued successfully, the IBM Tivoli Directory
Server Administration Daemon must be restarted manually.

Note: If ibmslapd options are requested, they must be preceded by the --.
The ibmslapd options are ignored if the stop command is issued.

Note: The -n and -N options prevent the server from starting if the server is
unable to start with the database backends (not in configuration only
mode).
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 229

Enter password ==> <password is not shown when typed>
Start operation succeeded

9.14 Manual installation of IBM WAS - Express
If you use the InstallShield GUI to install the Web Administration Tool, you can
select the embedded version of IBM WebSphere Application Server - Express for
installation. In this case, configuration is also done automatically. If you use
native installation methods, you can install and configure the embedded version
of IBM WebSphere Application Server - Express manually. If you already have
the embedded version of IBM WebSphere Application Server - Express V5.0.2
installed, you must configure manually before you can use the Web
Administration Tool.

9.14.1 Manually installing the Web Administration Tool
To manually install the embedded version of WebSphere Application Server -
Express, use the following procedure:

1. After you download and unzip (or untar) the IBM Tivoli Directory Server zip or
tar file, change directories to the directory where you expanded the file.

2. Type the following command at a command prompt:

On Windows platforms:

install.bat -installRoot embWASE_installpath -hostName localhost

On UNIX platforms:

install.sh -installRoot embWASE_installpath -hostName localhost

Where embWASE_installpath is the directory where you are installing the
embedded version of IBM WebSphere Application Server - Express. By
convention, this directory is the appsrv subdirectory of the directory where
IBM Tivoli Directory Server is installed, but you can use any directory.

After installing the Web Administration Tool, copy the Web Administration Tool to
the embedded version of IBM WebSphere Application Server - Express directory
by using the following commands:

mkdir embWASE_installpath/installableApps/
cp installpath/idstools/IDSWebApp.war embWASE_installpath/installableApps/

Where:

� embWASE_installpath is the directory where you are installing the embedded
version of WebSphere Application Server - Express.

� installpath is the directory where IBM Tivoli Directory Server is installed.
230 Understanding LDAP Design and Implementation

Install the Web Administration Tool into the embedded version of IBM
WebSphere Application Server - Express by using the following command:

� On Windows systems:

"embWASE_installpath\bin\wsadmin.bat" -conntype NONE -c "$AdminApp \
install {embWASE_installpath\installableApps\IDSWebApp.war} \
{-configroot \"embWASE_installpath\config\" \
-node DefaultNode -usedefaultbindings -nodeployejb -appname \
IDSWebApp.war -contextroot \"IDSWebApp\"}"

� On UNIX systems:

embWASE_installpath/bin/wsadmin.sh -conntype NONE -c "\$AdminApp \
install {embWASE_installpath/installableApps/IDSWebApp.war} \
{-configroot \"embWASE_installpath/config\" \
-node DefaultNode -usedefaultbindings -nodeployejb -appname \
IDSWebApp.war -contextroot \"IDSWebApp\"}"

9.14.2 Manually uninstalling the Web Administration Tool
To manually uninstall Web Administration Tool from the embedded version of
IBM WebSphere Application Server - Express, use the following procedure:

1. Be sure that the application server is started.

2. Type the following at a command prompt to uninstall the Web Administration
Tool:

– On Windows platforms:

embWASE_installpath\bin\wsadmin.bat -conntype NONE -c "$AdminApp \
uninstall IDSWebApp.war"

Note: Type the command on one line.

Note: Type the command on one line.

Note: If you install the Web Administration Tool and the embedded version of
WebSphere Application Server - Express through the InstallShield GUI, these
commands are run automatically.

Note: Type the command on one line.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 231

– On UNIX platforms:

embWASE_installpath/bin/wsadmin.sh -conntype NONE -c "\$AdminApp
uninstall IDSWebApp.war"

Where embWASE_installpath is the path where you installed the
embedded version of WebSphere Application Server - Express.

9.14.3 Default ports used by IBM WAS - Express
The embedded version of WebSphere Application Server - Express uses four
default port settings:

Http Transport (port 1): 9080
Http Transport (port 2): 9443
Bootstrap/rmi port: 2809
Soap connector port: 8880

If a conflict exists with another application using one or more of these default
ports, you can use a text editor to change from the default ports to unused ports.

Http Transport port 1
Find the line containing the port number 9080 in the following files and replace
the 9080 with the port number that you want:

$WASHOME\appsrv\config\cells\DefaultNode\nodes\DefaultNode\servers\server1\
server.xml
$WASHOME\appsrv\config\cells\DefaultNode\virtualhosts.xml

Where $WASHOME is the directory where the embedded version of WebSphere
Application Server - Express is installed.

Http Transport port 2
Find the line containing the port number 9443 in the following files and replace
the 9443 with the port number that you want:

$WASHOME\config\cells\DefaultNode\nodes\DefaultNode\servers\server1\server.
xml
$WASHOME\config\cells\DefaultNode\virtualhosts.xml

Where $WASHOME is the directory where the embedded version of WebSphere
Application Server - Express is installed.

Note: Type the command on one line.
232 Understanding LDAP Design and Implementation

Bootstrap/rmi port
Find the line containing the port number 2809 in the following file and replace the
2809 with the port number that you want:

$WASHOME\config\cells\DefaultNode\nodes\DefaultNode\serverindex.html

Where WASHOME is the directory where the embedded version of WebSphere
Application Server - Express is installed.

Soap connector port
Find the line containing the port number 8880 in the following file and replace the
8880 with the port number that you want:

$WASHOME\config\cells\DefaultNode\nodes\DefaultNode\serverindex.html

Where WASHOME is the directory where the embedded version of WebSphere
Application Server - Express is installed.

HTTP and HTTPS Ports
The embedded version of WebSphere Application Server - Express, V5.0.2
comes with HTTPS set up by default on port 9443. To use HTTPS, you must
change your login URL to the following:

https://<hostname>:9443/IDSWebApp/IDSjsp/Login.jsp

For non-HTTPS connections, continue to use the URL:

http://<hostname>:9080/IDSWebApp/IDSjsp/Login.jsp

Additionally, if you want to change the application server’s SSL certificate, you
can create new key and trust store database files for the embedded version of
WebSphere Application Server - Express to use. By default, the key and trust
store database files are separate and are located in the <WASHOME>/etc
directory. These files are named DummyServerKeyFile.jks and
DummyServerTrustFile.jks respectively.

After you have created your new Java keystore files, you can change the key and
trust store database files that WAS uses by modifying the
<WASHOME>/config/cells/DefaultNode/security.xml file to use your new file
names, passwords, and file formats. In Example 9-9, refer to the highlighted lines
that indicate what gets modified in the security.xml file.

Example 9-9 security.xml file

<repertoire xmi:id="SSLConfig_1" alias="DefaultSSLSettings">
<setting xmi:id="DefaultSSLSettings"

keyFileName="${USER_INSTALL_ROOT}/etc/DummyServerKeyFile.jks"
keyFilePassword="WebAS" keyFileFormat="JKS"
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 233

trustFileName="${USER_INSTALL_ROOT}/etc/DummyServerTrustFile.jks"
trustFilePassword="WebAS" trustFileFormat="JKS"
clientAuthentication="false" securityLevel="HIGH"
enableCryptoHardwareSupport="false">
<cryptoHardware xmi:id="CryptoHardwareToken_1" tokenType=""
libraryFile="" password=""/>
<properties xmi:id="Property_4" name="com.ibm.ssl.protocol" value="SSLv3"/>
<properties xmi:id="Property_5" name="com.ibm.ssl.contextProvider"
value="IBMJSSE"/>
</setting>
</repertoire>

9.15 Installing in WebSphere Version 5.0 or later

If you use WebSphere, you must install the Web Administration Tool into Web-
Sphere. Use the following instructions as a guide:
1. Install WebSphere, using the installation information provided with it.

2. Install the Web Administration Tool using either the InstallShield GUI or the
installation utility for your operating system. The file containing the Web
Administration Tool is named IDSWebApp.war, and it is in the idstools
subdirectory of the installation directory that was specified during installation.

3. Install the Web Administration Tool application into WebSphere, using the
information provided with WebSphere. For example, if you use the
Administrative Console, on the Install New Application window, set the Local
path to installdirectory/idstools/IDSWebApp.war, and the Context root to
/IDSWebApp. installdirectory is the directory you specified when installing the
Web Administration Tool.

4. Start the Web Administration Tool (for example, through the Administrative
Console).

5. From a Web browser, type the following address:

http://localhost:9080/IDSWebApp/IDSjsp/Login.jsp

The IBM Tivoli Directory Server Web Administration login page window is
displayed.
234 Understanding LDAP Design and Implementation

Note: This address works only if you are running the browser on the
computer on which the Web Administration Tool is installed. If the Web
Administration Tool is installed on a different computer, replace localhost
with the hostname or IP address of the computer where the Web
Administration Tool is installed.

One problem found was if you are running the browser on the computer on
which the Web Administration Tool is installed and you are using an IP
address or hostname as part of the URL used to access the Web
Administration Tool you might get errors trying to connect. To fix this use
localhost:9080 instead of the IP address or hostname and you will not have
any problems.
 Chapter 9. IBM Tivoli Directory Server Distributed Administration 235

236 Understanding LDAP Design and Implementation

Chapter 10. Client tools

Normally we have different ways of performing certain activities. We can either
use the command-line utilities or we can use a GUI for similar activities. A GUI or
a graphical user interface is a handy tool in cases like:

� You have taken up a new product for study/use.

� The command-line utilities fail to give a proper understanding of the system
topology.

The GUI provides the user a graphical feel of a product. For example, if a person
wants to see the topology of a set of interconnected systems, he can have a
much better view of the same through the GUI, rather than on the command line.
However, there are situations where the command-line utilities seem to dominate
over the GUI. Some of the disadvantages of the GUI can be listed as:

� Very little chances of automation

� Slow response

These drawbacks are overcome using the command line utilities.The command
line utilities can be judiciously incorporated in scripts to have the desired
tasks/tests automated. The responses from the command line clients are much
faster as regards their GUI counterparts.

Let us talk in terms of the IBM Tivoli Directory Server. Suppose you want to
continuously monitor the directory server, for the number of operations
completed at a given instant of time. It will not be a good idea to manually refresh

10
© Copyright IBM Corp. 1998, 2004. All rights reserved. 237

the Web Administration page every 10–15 seconds, to see what the number of
completed operations are at different instants of time. However, it would be a
good idea to put the monitor search (ldapsearch -D<admin DN> -w <admin PW>
-s base -b cn=monitor objectclass=* | grep -i operations) in a shell script,
set a delay of 10–15 seconds, and allow it to run for the duration you want. No
more user intervention is required and the results can be stored in a file, which
can be analyzed at will. There are a lot more advantages of using the
command-line utilities. We will be seeing these advantages in this chapter.

To begin with let us see what clients are shipped with the directory server and
what can be done using them.

The client tools for the IBM Tivoli Directory Server come in two flavors. You can
have the GUI as well as the command line utilities.

As far as the GUI is considered, the ITDS 5.2 Web Administration tool, which is
shipped along with the product, acts as the graphical client for the directory
server. However, that will not be explained here in its entirety. The relevant
chapters will keep referring to the ways in which a particular activity can be done
using the Web Administration tool. This chapter will mainly focus on the
command line client utilities.

The LDAP clients that we will be seeing in this chapter are:

� ldapchangepwd
� ldapdelete
� ldapexop
� ldapmodify and ldapadd
� ldapmodrdn
� ldapsearch
238 Understanding LDAP Design and Implementation

10.1 The ldapchangepwd command
ldapchangepwd is the command line tool for modifying a user’s password. Here is
the synopsis of the ldapchangepwd command.

10.1.1 Synopsis
ldapchangepwd -D binddn -w passwd | ? -n newpassword | ? [-C charset] [-d
debuglevel][-G realm][-h ldaphost] [-K keyfile] [-m mechanism] [-M] [-N
certificatename] [-O maxhops] [-p ldapport] [-P keyfilepw] [-R] [-U username]
[-v] [-V version] [-y proxydn] [-Y] [-Z] [-?]

10.1.2 Options
The options are:

� -C charset

Specifies that the DNs supplied as input to the ldapchangepwd utility are
represented in a local character set, as specified by charset. Use -C charset
to override the default, where strings must be supplied in UTF-8. You may
refer the ITDS 5.2 Administration Guide to get to know the character sets that
we support.

You can download the administration guide from:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

� -d debuglevel

Set the LDAP debugging level to debuglevel. You may refer Chapter 18,
“Debugging IBM Tivoli Directory Server related issues” on page 589, for
further information on what debugging levels can be set for the clients. The
level is the same as applicable to ibmslapd (the directory server process)
while running it in debug mode.

� -D binddn

Use binddn to bind to the LDAP directory. binddn is a string-represented DN.
When used with -m DIGEST-MD5, it specifies the authorization ID. It can be
either a DN or an authorized string that starts with u: or dn:.

� -G realm

Specify the name of the realm. When used with the -m DIGEST-MD5, the
value is passed to the server during the bind.

Note: The supported values for charset are the same values supported for
the charset tag that is optionally defined in Version 1 LDIF files.
 Chapter 10. Client tools 239

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

� -h ldaphost

Specify an alternate host on which the LDAP server is running. This option is
useful in the event that your client is installed on a different system than
directory server.

� -K keyfile

Specify the name of the SSL or TLS key database file with default extension
of kdb. If the key database file is not in the current directory, specify the fully
qualified key database filename. If a key database filename is not specified,
this utility will first look for the presence of the SSL_KEYRING environment
variable with an associated filename. If the SSL_KEYRING environment
variable is not defined, the default keyring file will be used, if present.

A default keyring file, ldapkey.kdb, and the associated password stash file,
ldapkey.sth, are installed in the /lib directory under LDAPHOME, where
LDAPHOME is the directory where the directory server was installed.
LDAPHOME varies by operating system platform:

– AIX operating systems - /usr/ldap
• HP-UX operating systems - /usr/IBMldap

– Linux operating systems - /usr/ldap
– Solaris operating systems - /opt/IBMldapc
– Windows operating systems - C:\Program Files\IBM\LDAP

See IBM Directory C-Client SDK Programming Reference for more
information about default key database files, and default Certificate
Authorities. This document can be downloaded from:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

If a keyring database file cannot be located, a “hard-coded” set of default
trusted certificate authority roots is used. The key database file typically
contains one or more certificates of certificate authorities (CAs) that are
trusted by the client. These types of X.509 certificates are also known as
trusted roots. For more information on managing an SSL or TLS key
database, refer to Chapter 15, “Securing the directory” on page 431.

Note: This is the default install location. The actual LDAPHOME is
determined during installation. Currently it is possible to specify a different
installation path only for Solaris and Windows. The other platforms are
mandatorily installed at the default location.
240 Understanding LDAP Design and Implementation

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

This parameter effectively enables the -Z switch.

� -m mechanism

Use mechanism to specify the SASL mechanism to be used to bind to the
server. The ldap_sasl_bind_s() API will be used. The -m parameter is ignored
if -V 2 is set. If -m is not specified, simple authentication is used.

� -M

Manage referral objects as regular entries.

� -n newpassword | ?

Specifies the new password. Use the ? to generate a password prompt. Using
this prompt prevents your password from being visible through the ps
command.

� -N certificatename

Specify the label associated with the client certificate in the key database file.
If the LDAP server is configured to perform server authentication only, a client
certificate is not required. If the LDAP server is configured to perform client
and server authentication, a client certificate might be required.
certificatename is not required if a certificate/private key pair has been
designated as the default. Similarly, certificatename is not required if there is
a single certificate/private key pair in the designated key database file. This
parameter is ignored if neither -Z nor -K is specified.

� -O maxhops

Specify maxhops to set the maximum number of hops that the client library
takes when chasing referrals. The default hopcount is 10.

� -p ldapport

Specify an alternate TCP port where the LDAP server is listening. The default
LDAP port is 389. If -p is not specified and -Z is specified, the default LDAP
SSL port 636 is used.

� -P keyfilepw-

Specify the key database password. This password is required to access the
encrypted information in the key database file, which may include one or
more private keys. If a password stash file is associated with the key
database file, the password is obtained from the password stash file, and the
-P parameter is not required. This parameter is ignored if neither -Z nor -K is
specified.

� -R

Specifies that referrals are not to be automatically followed.
 Chapter 10. Client tools 241

� -U username

Specifies the username. This is required with -m DIGEST-MD5 and ignored
when any other mechanism is used. The value username depends on what
attribute the server is configured to use. It might be a uid or any other value
that is used to locate the entry.

� -v

Use verbose mode, with many diagnostics written to standard output.

� -V version

Specifies the LDAP version to be used by ldapdchangepwd when it binds to
the LDAP server. By default, an LDAP V3 connection is established. To
explicitly select LDAP V3, specify -V 3. Specify -V 2 to run as an LDAP V2
application. An application, like ldapdchangepwd, selects LDAP V3 as the
preferred protocol by using ldap_init instead of ldap_open.

� -w passwd | ?

Use passwd as the password for authentication. Use the ? to generate a
password prompt. Using this prompt prevents your password from being
visible through the ps command.

� -y proxydn

Specifies the DN to be used for proxied authorization. You can refer the
section on ldapsearch for an example of using the -y option.

� -Y

Use a secure TLS connection to communicate with the LDAP server. The -Y
option is only supported when IBM’s GSKit, is installed.

� -Z

Use a secure SSL connection to communicate with the LDAP server. The -Z
option is only supported when the SSL component entry, as provided by
IBM’s GSKit, is installed.

� -?

Displays the syntax help for ldapchangepwd.

10.1.3 Examples
The following examples illustrate the options that we have just discussed.

Example 1
The following command:

C:\>ldapchangepwd -D cn=user1,o=ibm,c=us -w user -n user1
242 Understanding LDAP Design and Implementation

Changes the password of the entry with commonName “user1” from user to
user1.

Example 2
Here is an example for using a different charset than the default. First, let us
verify the codepage of the current database. You can do so with the following
instructions on Windows.

On Windows, you need to work in the DB2 shell, invoked by running the db2cmd
command. In that shell, here are the commands to use:

C:\>set DB2INSTANCE=ldapdb2
C:\>db2start
C:\>db2 connect to ldapdb2

Database Connection Information
Database server = DB2/NT 8.1.2
SQL authorization ID = ADMINIST...
Local database alias = LDAPDB2

C:\>db2 get db cfg for ldapdb2 | grep -i code
Database code page = 1208
Database code set = UTF-8
Database country/region code = 1

The output from these commands show that the current database is UTF-8.

The next command:

C:\>ldapchangepwd -D cn=user1,o=ibm,c=us -w user1 -C ISO-8859-1 -n user2
changing password for entry cn=user1,o=ibm,c=us

Changes the password of the entry with the commonName “user1” from user1 to
user2. Note that ldapchangepwd tells the server that the dn that is passed to it
was specified in the ISO-8859-1 character set.

Example 3
Let us run the ldapchangepwd command with the minimum debuglevel of 1, just to
see the kind of debug output it shows up. Here is what you get when you try to
use invalid credentials to change the password:

C:\>ldapchangepwd -D cn=user1,o=ibm,c=us -w user2 -d 1 -n user3
065:19:42:30 T2652 ldap_sasl_bind
065:19:42:30 T2652 ldap_sasl_bind_direct
065:19:42:30 T2652 put_ctrls_into_ber: ctrls=00304F88

Note: We have used a UNIX utility here called grep, which is not available on
Windows by default. You can take the entire output in a file and search for the
relevant lines.
 Chapter 10. Client tools 243

065:19:42:30 T2652 put_ctrls_into_ber: return(rc=0)
065:19:42:30 T2652 send_initial_request
065:19:42:30 T2652 open_default_connection
065:19:42:30 T2652 new_connection: connect=1
065:19:42:30 T2652 open_ldap_connection
065:19:42:30 T2652 connect_to_host: rainbow:389
065:19:42:30 T2652 sd 716 connected to: 127.0.0.1
065:19:42:30 T2652 new_connection: successful - return(lc=00306520)
065:19:42:30 T2652 send_server_request: msgid=1, bind=NONE
065:19:42:30 T2652 use_connection: lc=00306520, new refcount=2
065:19:42:30 T2652 flush_request: msgid=1
065:19:42:30 T2652 do_ldap_select
065:19:42:30 T2652 ldap_result
065:19:42:30 T2652 wait4msg (infinite timeout)
065:19:42:30 T2652 do_ldap_select
065:19:42:30 T2652 read1msg
065:19:42:30 T2652 got result msgid 1, original id 1
065:19:42:30 T2652 free_request (origid 1, msgid 1)
065:19:42:30 T2652 free_connection: lc=00306520, force=0, unbind=1
065:19:42:30 T2652 free_connection: lc=00306520, not freed, refcnt 1
065:19:42:30 T2652 get_ctrls_from_ber: ctrls_p=0012FE78
065:19:42:30 T2652 get_ctrls_from_ber: Control OID =
1.3.6.1.4.1.42.2.27.8.5.1, critical = No, value follows
065:19:42:30 T2652 get_ctrls_from_ber: control value is NULL.
065:19:42:30 T2652 get_ctrls_from_ber: return(0), ctrls=00306060, 1
controls returned
065:19:42:30 T2652 ldap_msgfree
065:19:42:30 T2652 ldap_controls_free: ctrls=00304F88
065:19:42:30 T2652 ldap_control_free: ctrl=00304F48
065:19:42:30 T2652 ldap_controls_free: ctrls=00000000
065:19:42:30 T2652 ldap_err2string
ldap_simple_bind: Invalid credentials

Example 4
Here is an example where you use the -h hostname argument to indicate the host
where the password change is expected:

C:\>ldapchangepwd -h localhost -D cn=user1,o=ibm,c=us -w user5 -n user6
changing password for entry cn=user1,o=ibm,c=us

Since the default host is localhost, this command is the same as the one shown
in “Example 1” on page 242.

Example 5
This example shows the way password changes are done over SSL:

C:\>ldapchangepwd -D cn=user1,o=ibm,c=us -K F:\KEYS\clientCMS.kdb -P client
-Z -w user6 -n user7
244 Understanding LDAP Design and Implementation

changing password for entry cn=user1,o=ibm,c=us

Here the path of the key file is passed using the -K option, the keyfile password is
passed using the -P option and the SSL flag is turned on using the -Z option (this
is optional in the example shown above, as -K is supposed to enable the -Z
switch by default).

Example 6
This example shows the use of the -N option.

C:\>ldapchangepwd -D cn=user1,o=ibm,c=us -K
f:\Ramakrishna\KEYS\clientCMS.kdb -P client -Z -N client -w user7 -n user8
ldap_simple_bind: Operations error
changing password for entry cn=user1,o=ibm,c=us
Can't contact LDAP server

C:\>ldapchangepwd -D cn=user1,o=ibm,c=us -K
f:\Ramakrishna\KEYS\clientCMS.kdb -P client -Z -N clientCMS -w user7 -n
user8
changing password for entry cn=user1,o=ibm,c=us

This example shows that you are not allowed to change the password in case
you pass the wrong certificate name. In “Example 5” on page 244, the client was
picking up the correct certificate to talk to the server, as that was the only one
available and which acted as the default one.

Example 7
This example shows the use of the -p option:

C:\>ldapchangepwd -D cn=user1,o=ibm,c=us -p 389 -w user8 -n user9
changing password for entry cn=user1,o=ibm,c=us

As seen above the port, over which ldapchangepwd is talking to the server, is 389.
This happens to be the default port. This is configurable, and in the cases where
the default port was changed, the -p option is needed.

Example 8
This example shows the use of flags/options pertaining to referrals. We will get to
know the details on using the -O option, here. You may refer the ldapsearch
section for illustrations on the -M and -R options.

Assuming we have a set of referrals pointing to an entry, as follows:

cn=ref1,o=ibm,c=us -> o=ref,o=ibm,c=us -> cn=user1,o=ibm,c=us

ref1 is a referral to ref, which in turn is a link to cn=user1.
 Chapter 10. Client tools 245

If the ldapchangepwd is run on the entry cn=ref1,o=ibm,c=us with number of hops
=1:

C:\>ldapchangepwd -D cn=ref1,o=ibm,c=us -p 389 -w user9 -O 1 -n user1
ldap_simple_bind: Referral limit exceeded

The example shows that cn=ref1,o=ibm,c=us could not reach the actual target
cn=user1,o=ibm,c=us in the specified number of hops (1).

Now let us remove the restrictions on the referrals:

C:\>ldapchangepwd -D cn=ref1,o=ibm,c=us -p 389 -w user9 -n user1
changing password for entry cn=ref1,o=ibm,c=us

Now the password change takes place successfully.

Example 9
The next example shows the ldapchangepwd command driven in verbose (-v)
mode:

C:\>ldapchangepwd -D cn=ref1,o=ibm,c=us -p 389 -v -w user1 -n user2
ldap_init(NULL, 389)
changing password for entry cn=ref1,o=ibm,c=us
delete userpassword:
 user1
add userpassword:
 user2
ldapchangepwd complete

The example shows a more detailed way as to how ldapchangepwd goes about
changing the password of a specific user.

Example 10
This example shows the usage of the -V option:

C:\>ldapchangepwd -D cn=ref1,o=ibm,c=us -V 2 -w user1 -n user2
ldap_bind_s: Inappropriate authentication

C:\>ldapchangepwd -D cn=ref1,o=ibm,c=us -V 3 -w user2 -n user3
changing password for entry cn=ref1,o=ibm,c=us

As shown above the server refuses the client any service, saying Inappropriate
Authentication, as it is expecting a version 3 call from ldapchangepwd.

Example 11
This example shows the usage of the -w password | ? and -n newpassword | ?
options in place of the password to avoid entering them on the command line:

C:\>ldapchangepwd -D cn=ref1,o=ibm,c=us -w ? -n ? -v
246 Understanding LDAP Design and Implementation

Enter Old password ==>
Enter New password ==>
ldap_init(NULL, 389)
changing password for entry cn=ref1,o=ibm,c=us
delete userpassword:
 user3
add userpassword:
 user4
ldapchangepwd complete

The verbose mode is deliberately turned on here to show how the change in the
password is taking place. In case the passwords are entered along with the
command (without the ? option), the passwords remain in the history of the shell
and it is possible for other users to go through the history and get the passwords.
Also the ps command would be showing the password. To overcome such issues
option of ? is used.

Example 12
The next example shows how the user’s password may be changed over TLS:

C:\>ldapchangepwd -D cn=user1,o=ibm,c=us -Y -w user6 -n user7 -K
F:\Ramakrishna\KEYS\clientCMS.kdb -P client
changing password for entry cn=user1,o=ibm,c=us

The server should be capable of accepting TLS connections in this case.

The root DSE search can be used to verify this:

C:\>ldapsearch -s base objectclass=* | grep security
security=tls

You may refer Chapter 15, “Securing the directory” on page 431, for further
information on TLS.

The -G realm option is effective only when you have set up SASL
communications. That is, it goes hand-in-hand with the -m mechanism option.
Same is the case with the -U username option. The -U options is ignored if -m
option is not specified in the command line. More information on Realms can be
had from the ITDS 5.2 Administration Guide. This document can be found at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

As far as the SASL mechanisms considered, you can have more information on
the same by reading Chapter 15, “Securing the directory” on page 431.
 Chapter 10. Client tools 247

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

10.1.4 SSL, TLS notes
To use the SSL or TLS - related functions associated with this utility, the SSL or
TLS libraries and tools must be installed. The SSL or TLS libraries and tools are
provided with IBM’s Global Security Kit (GSKit), which includes security software
developed by RSA Security Inc.

See the makefile associated with the sample programs for more information on
linking an LDAP application so that it has access to 128-bit and triple-DES
encryption algorithms.

The content of a client’s key database file is managed with the gsk7ikm utility. For
more information on this Java utility, please refer Chapter 15, “Securing the
directory” on page 431. The gsk7ikm utility is used to define the set of trusted
certification authorities (CAs) that are to be trusted by the client. By obtaining
certificates from trusted CAs, storing them in the key database file, and marking
them as “trusted”, you can establish a trust relationship with LDAP servers that
use “trusted” certificates issued by one of the trusted CAs. The gsk7ikm utility can
also be used to obtain a client certificate, so that client and server authentication
can be performed.

If the LDAP servers accessed by the client use server authentication only, it is
sufficient to define one or more trusted root certificates in the key database file.
With server authentication, the client can be assured that the target LDAP server
has been issued a certificate by one of the trusted CAs. In addition, all LDAP
transactions that flow over the SSL or TLS connection with the server are
encrypted including the LDAP credentials that are supplied on the ldap_bind or
ldap_simple_bind_s. For example, if the LDAP server is using a high-assurance
VeriSign certificate, you should obtain a CA certificate from VeriSign, import it
into your key database file, and mark it as trusted. If the LDAP server is using a
self-signed server certificate, the administrator of the LDAP server can supply
you with a copy of the server’s certificate request file. Import the certificate
request file into your key database file and mark it as trusted.

If the LDAP servers accessed by the client use client and server authentication, it
is necessary to:

Note: For information regarding the use of 128-bit and triple DES encryption
by LDAP applications, including the LDAP sample programs, see
“LDAP_SSL” in the IBM Directory C-Client SDK Programming Reference. This
section describes the steps required to build the sample programs and your
applications so that they can use SSL with the strongest encryption algorithms
available. This document can be downloaded from:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html
248 Understanding LDAP Design and Implementation

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

� Define one or more trusted root certificates in the key database file. This
allows the client to be assured that the target LDAP server has been issued a
certificate by one of the trusted CAs. In addition, all LDAP transactions that
flow over the SSL or TLS connection with the server are encrypted, including
the LDAP credentials that are supplied on the ldap_bind or
ldap_simple_bind_s.

� Create a key pair using gsk7ikm and request a client certificate from a CA.
After receiving the signed certificate from the CA, store the certificate in the
client key database file.

10.1.5 Diagnostics
The exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.

10.2 The ldapdelete command
ldapdelete is the command-line tool for deleting a single or a group of
users/entries. The entries to be deleted can be passed through the command
line or through file redirection. Let us go further and see the detailed synopsis of
the ldapdelete command.

10.2.1 Synopsis
ldapdelete [-c] [-C charset] [-d debuglevel][-D binddn] [-f file] [-G realm]
[-h ldaphost] [-i file] [-k] [-K keyfile] [-m mechanism] [-M] [-n] [-N
certificatename] [-O maxops] [-p ldapport] [-P keyfilepw] [-R] [-s][-U
username} [-v] [-V version] [-w passwd | ?] [-y proxydn][-Y] [-Z] [dn]...

10.2.2 Description
ldapdelete is a command-line interface to the ldap_delete library call.

ldapdelete opens a connection to an LDAP server, binds, and deletes one or
more entries. If one or more Distinguished Name (DN) arguments are provided,
entries with those DNs are deleted. Each DN is a string-represented DN. If no
DN arguments are provided, a list of DNs is read from standard input, or from a
file, if the -i flag is used.

To display syntax help for ldapdelete, type:

ldapdelete -?.
 Chapter 10. Client tools 249

10.2.3 Options
ldapdelete has options/arguments like -C charset, -d debuglevel, -D binddn, -G
realm, -h ldaphost, -K keyfile, -m mechanism, -M, -N certificatename, -O
maxhops, -p ldapport, -P keyfilepw, -R, -U username, -v, -V, -w passwd | ?, -y
proxydn, -Y, -Z, which are the same as the ldapchgpwd command and have been
explained in “Options” on page 239. Therefore they are not explained any further
here. The command line arguments for ldapdelete that We will be seeing, in this
section, are as follows:

� -c

Continuous operation mode. Errors are reported, but ldapdelete continues
with modifications. Otherwise the default action is to exit after reporting an
error.

� -f file

Read a series of lines from a file, performing one LDAP delete for each line in
the file. Each line in the file should contain a single distinguished name.

� -i file

Read a series of lines from a file, performing one LDAP delete for each line in
the file. Each line in the file should contain a single distinguished name.

� -k

Specifies to use server administration control.

� -n

Show what would be done, but do not actually modify entries. Useful for
debugging in conjunction with -v.

� -s

Use this option to delete the subtree rooted at the specified entry.

� -dn

Specifies one or more DN arguments. Each DN should be a
string-represented DN.

10.2.4 Examples
Lets see a set of examples illustrating the options/arguments that we have just
discussed above.

Example 1
The following command:

ldapdelete "cn=Delete Me, o=University of Life, c=US"
250 Understanding LDAP Design and Implementation

Attempts to delete the entry with commonName “Delete Me” directly below the
“University of Life” organizational entry. It might be necessary to supply a binddn
and passwd, for deletion to be allowed (see the -D and -w options).

Example 2
Here is an example of using the -c argument.

Assuming the fact that there exists an LDIF file test.ldif, with the contents:

cn=user10,o=ibm,c=us
cn=user4,o=ibm,c=us

And with the directory users as shown below:

C:\>ldapsearch -D cn=root -w secret -b o=ibm,c=us cn=user* dn
cn=user1,o=ibm,c=us
cn=user2,o=ibm,c=us
cn=user3,o=ibm,c=us
cn=user4,o=ibm,c=us

Now if the ldapdelete command is used without the -c option:

C:\>ldapdelete -D cn=root -w secret -f test.ldif
Deleting entry cn=user10,o=ibm,c=us
ldap_delete: No such object

C:\>ldapdelete -D cn=root -w secret -c -f test.ldif
Deleting entry cn=user10,o=ibm,c=us
ldap_delete: No such object
Deleting entry cn=user4,o=ibm,c=us

As seen and expected, -c did not break ldapdelete and it went ahead with the
deletion of the rest of the entries specified in the file.

There are other ways of doing the same operation:

ldapdelete -D cn=root -w secret -c -i test.ldif
ldapdelete -D cn=root -w secret -c < test.ldif

Example 3
This example is an illustration of the Admin Control (-k). Assuming the fact that
there exists a replication topology and attempts to delete some entries on the
replica:

C:\>ldapdelete -D cn=root -w secret cn=user3,o=ibm,c=us
Deleting entry cn=user3,o=ibm,c=us
ldap_delete: DSA is unwilling to perform
ldap_delete: additional info: Data not encrypted
Referral:
ldap://localhost:636
 Chapter 10. Client tools 251

That is, with the normal set of options, we are not able to delete the entry. Now
we can delete the same using the Admin Control as follows:

C:\>ldapdelete -D cn=root -w secret -k cn=user3,o=ibm,c=us
Deleting entry cn=user3,o=ibm,c=us

Example 4
This example shows the use of the -n option:

C:\>ldapdelete -D cn=root -w secret -n -dn cn=user1,o=ibm,c=us
!Deleting entry cn=user1,o=ibm,c=us

C:\>ldapsearch -D cn=root -w secret -b cn=user1,o=ibm,c=us objectclass=* dn
cn=user1,o=ibm,c=us

The example shows that the entry is not physically deleted.

Example 5
This example shows how the dn that is to be deleted can be passed in the same
line as the ldapdelete command, without any input redirection from a file.

C:\>ldapdelete -D cn=root -w secret -k -dn cn=user3,o=ibm,c=us
Deleting entry cn=user3,o=ibm,c=us

Example 6
This example shows the use of the -s option to delete an entire subtree. Here is
how that can be done.

Suppose we want to delete the subtree “cn=sub,o=ibm,c=us” with subentries as
shown below:

C:\>ldapsearch -D cn=root -w secret -b cn=sub,o=ibm,c=us objectclass=* dn
cn=sub,o=ibm,c=us

cn=sub1,cn=sub,o=ibm,c=us

Now here is the command to delete the subtree in a single shot:

C:\>ldapdelete -D cn=root -w secret -s cn=sub,o=ibm,c=us
Deleting entry cn=sub,o=ibm,c=us

C:\>ldapsearch -D cn=root -w secret -b cn=sub,o=ibm,c=us objectclass=* dn
ldap_search: No such object
ldap_search: matched: O=IBM,C=US

Note: If no DN arguments are provided, the ldapdelete command waits to
read a list of DNs from standard input. To break out of the wait, use Ctrl+C or
Ctrl+D.
252 Understanding LDAP Design and Implementation

10.2.5 SSL, TLS notes
The SSL- or TLS-related functions associated with this utility are as like the ones
described with ldapchangepwd.

10.2.6 Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.

10.3 The ldapexop command
ldapexop is the tool for performing the extended operations pertaining to the IBM
Tivoli Directory Server.

10.3.1 Synopsis
ldapexop [-C charset] [-d debuglevel][-D binddn][-e] [-G realm] [-h ldaphost]
[-help][-K keyfile] [-m mechanism] [-N certificatename] [-p ldapport]
[-P keyfilepw] [-?] [-U username] [-v] [-w passwd | ?] [-Y] [-Z]

-op {cascrepl | clearlog | controlqueue | controlrepl | getAttributes |
getlogsize | getusertype | quiesce | readconfig | readlog | stopserver | unbind
| uniqueattr }

10.3.2 Description
The ldapexop utility is a command-line interface that provides the capability to
bind to a directory and issue a single extended operation along with any data that
makes up the extended operation value.

The ldapexop utility supports the standard host, port, SSL, TLS, and
authentication options used by all of the LDAP client utilities. In addition, a set of
options is defined to specify the operation to be performed, and the arguments
for each extended operation

To display syntax help for ldapexop, type:

ldapexop -?

Or:

ldapexop -help
 Chapter 10. Client tools 253

10.3.3 Options

The options for the ldapexop command are divided into two categories:

� General options that specify how to connect to the directory server. These
options must be specified before operation specific options.

� Extended operation option that identifies the extended operation to be
performed.

General options
These options specify the methods of connecting to the server and must be
specified before the -op option.

ldapexop expects general options such as -C charset,-d debuglevel, -D binddn,
-G realm, -h ldaphost, -help, -K keyfile, -m mechanism, -p ldapport,-P keyfilepw,
-?, -U username, -v, -w passwd | ?, -Y, -Z which are the same as the
ldapchangepwd command and have been explained in “Options” on page 239.

There is one general option that needs explanation here.

� -e

This option displays the LDAP library version information and quits. Here is
an example of the output:

C:\>ldapexop -e
SDK Version: 510
Protocol Version: 300
SDK Build Level: Oct 1 2003

Extended operations option
The -op extended-op option identifies the extended operation to be performed.
The extended operation can be one of the following values:

� cascrepl -action <actionvalue> -rc <contextDN> [options]

This extended operation is for controlling the cascading replication. The
requested action is applied to the specified server and also passed along to
all replicas of the given subtree. If any of these are forwarding replicas, they
forward the extended operation to their replicas.

The operation cascades over the entire replication topology.

-action {quiesce | unquiesce | replnow | wait}

This is a required attribute that specifies the action to be performed.

– quiesce

This operation indicates the server to take no further updates till the
relevant subtree is unquiesced. While setting up the topology, it is desired
254 Understanding LDAP Design and Implementation

that the changes should not go through the servers participating in the
topology, so that a data consistency is maintained across all the servers.
Hence there is the option of quiescing the servers. The only way to make
any updates to a quiesced server is through an Admin Control. The
obvious reason for having the option of the Admin Control is that you need
to write to the servers the replication related information and you need a
channel to write to the servers even when they are quiesced. Hence the
necessity and implementation of the Admin Control.

– unquiesce

Resume normal operation, client updates are accepted. Once a topology
is completed the subtree (replication context) can be unquiesced. that is, It
is ready to accept changes again.

– replnow

Replicate all queued changes to all replica servers as soon as possible,
regardless of schedule. In other words this option triggers forceful
replication.

– wait

Wait for all updates to be replicated to all replicas. In other words the
topology will be in a sort of dormant stage or a sort of sleep mode, till the
entire topology has come to a balanced or synchronized state. That is all
the updates in the queues of the relevant Masters/Forwarders have gone
in place.

– -rc contextDn

This is a required attribute that specifies the root of the subtree. rc stands
for replication context. In case you have set up replication, you can edit
the relevant subtree to find that the object class ibm-replicationContext
is added to the subtree, say, for example, o=ibm,c=us, to make it eligible
for replication. The term rc is picked up from this (r)eplication (c)ontext.

options

– -timeout secs

This is an optional attribute that if present, specifies the timeout period in
seconds. If not present, or 0, the operation waits indefinitely. For better
performance of your replication topology it is advisable to set a timeout
period. Some of the servers in the topology may be down. Consequently
the updates to these down servers may not be sent till the servers are up.
Hence there is no point in waiting indefinitely for the changes to pass to all
the servers. Keeping a timeout would mean that you are allocating the
necessary resources for the necessary amount of time and not more. If
there are any anomalies in the topology at a given instant of time, they can
be detected using the other options of the ldapexop command.
 Chapter 10. Client tools 255

For example:

ldapexop -op cascrepl -action -quiesce -rc "o=acme,c=us" -timeout 60

This command is meant to quiesce the subtree o=acme,c=us that is,
prevent it from taking any further updates, other than from the
administration control. The operation is supposed to quit if it does not
complete in 60 seconds.

� clearlog -log <logname>

This extended operation is used to clear the log files from the command line.
The log files which can be cleared by the ldapexop command are listed
below, as an argument to the -log option to ldapexop.

-log {audit | bulkload | cli | slapd | ibmdiradm | adminDaemon | debug}

This is a required attribute that specifies which log file to be cleared. The
parameters to the -log, as shown above, are mostly self-explanatory as to
what it’ll clear. The only log that needs a mention is the debug log. When you
use ldapexop to clear the debug log then the file pointed to by
LDAP_DEBUG_FILE is cleared. This environment variable is supposed to
store the file name so that when you are collecting the server debug trace the
same can be redirected to it. For example:

ldapexop -op clearlog -log debug

� controlqueue -skip <skipvalue> -ra <agreementDN>

This extended operation, as its name indicates, is used for controlling the
replication queue, as identified by the replication agreement.

– -skip {all | change-id}:

This is a required attribute.

• all

This option indicates to skip all pending changes for this agreement.

• change-id

This option identifies the single change to be skipped. If the server is
not currently replicating this change, the request fails. In other words, if
there are 100 entries in the replication queue, you are allowed to skip
just the 100th. entry in the queue. There is no direct option, whereby
you can skip any nth. entry in the replication queue. The entry to be
skipped always has to be the front of the queue.

– -ra agreementDN

This is a required attribute that specifies the DN of the (r)eplication
(a)greement. The objectclass pertaining to the replication agreement is
ibm-replicationAgreement. ra is derived from this objectclass.
256 Understanding LDAP Design and Implementation

For example:

ldapexop -op controlqueue -skip all -ra "cn=server3,
ibm-replicaSubentry=master1-id,ibm-replicaGroup=default,o=acme,c=us"

ldapexop -op controlqueue -skip 2185 -ra
"cn=server3,ibm-replicaSubentry=master1-id,ibm-replicaGroup=default,
o=acme,c=us"

� controlrepl -action <actionvalue> {-rc <contextDN> | -ra <agreementDN>}

This extended operation is useful for controlling the replication activities
associated with a specific subtree or associated with a specific recipient of
replication.

– -action {suspend | resume | replnow}

This is a required attribute that specifies the action to be performed. This
option is used either to suspend, resume or forcefully replicate changes
over a specific queue as identified by the other options passed.

– -rc contextDn | -ra agreementDn

The -rc contextDn is the DN of the replication context. The action is
performed for all agreements for this context. The -ra agreementDn is the
DN of the replication agreement. The action is performed for the specified
replication agreement. that is, to say if the -rc option is specified then that
will affect all the queues associated with this subtree. And if -ra is specified
then only that queue which corresponds to this agreementDN, will be
affected.

For example:

ldapexop -op controlrepl -action suspend -ra "cn=server3,
ibm-replicaSubentry=master1-id,ibm-replicaGroup=default,o=acme,c=us"

This is an example to suspend the replication activities associated with the
queue, where the supplier is the one pointed to by master1-id and the
recipient is the one pointed to be server3.

� getattributes -attrType <type> -matches bool <value>

This is an extended operation whereby we can fetch the attributes of a
specific type as understood by the rest of the options that go along. Let us
see the detailed specifics on the same:

-attrType {operational | language_tag | attribute_cache | unique |
configuration}

This is a required parameter for the getattributes extended operation. It
specifies type of attribute being requested.
 Chapter 10. Client tools 257

– operational

These are the set of attributes tracking the operations of the directory
server. The clients are not supposed to play around with these attributes,
as doing so may force the server to give incorrect information. The
examples of the operational attributes are the attributes pertaining to
ACLs, the attributes storing the timestamps of different events, some
attributes of password policy, etc. For more information refer to
Chapter 11, “Schema management” on page 287.

– language_tags

The term, language tags, defines a mechanism that enables the directory
to associate natural language codes with values held in a directory and
enables clients to query the directory for values that meet certain natural
language requirements.

Here is an example:

ldapsearch -b "o=ibm,c=us" (objectclass=organization)
description;lang-en

The server returns values of an attribute description;lang-en, but does
not return values of an attribute description or description;lang-fr.

If a request is made specifying an attribute without providing a language
code, then all attribute values regardless of their language code are
returned. Further information on this, refer to ITDS v5.2 Administration
Guide, which can be found at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.
html

– attribute_cache

In ITDS 5.2, there is a new concept of an attribute cache. This is designed
for enhanced performance of the directory server. The attribute cache will
store information pertaining to attributes. There is a setting by means of
which you can select/deselect the set of attributes that can be cached.
Like if you wish that the uid attribute should be cached, whenever there is
a search on uid, just make the necessary settings and information
pertaining to uid would be cached. Hence next time you need to get a
specific set of results the attribute cache will also be screened, thus
enhancing performance.

– unique

Each attribute in the LDAP schema maps to a single table. By adding any
attribute to the list of unique attributes, the relevant column in the table
corresponding to the attribute is made unique. Consequently if you make
postaladdress as unique, it will not be possible for more than one object, in
this directory server, to have the same postaladdress.
258 Understanding LDAP Design and Implementation

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

– configuration

These are basically attributes pertaining to the configuration of the server.

� -matches bool {true | false}

Specifies whether the list of attributes returned matches the attribute type
specified by the -attrType option.

For example:

ldapexop -op getattributes -attrType unique -matches bool true

Returns a list of all attributes that have been designated as unique attributes.

ldapexop -op getattributes -attrType unique -matches bool false

Returns a list of all attributes that have been not been designated as unique
attributes.

� getlogsize -log <logname>

This extended operation is used to request log file size, precisely in terms of
the number of lines in the log file. This is very much like the ‘wc -l’ command
on UNIX. However, ldapexop is more sophisticated way of doing such things
though as you need not specify the name of the log file, just the type of the log
is sufficient.

-log {audit | bulkload | cli | slapd | ibmdiradm | adminDaemon | debug}

This is a required attribute that specifies the log file to be queried The size of
the log file, in lines, is written to standard output.

For example:

ldapexop -op getlogsize -log slapd
2000 lines

� getusertype

This extended operation is used to get to know the profile/privileges of a given
user. This extended operation returns the user type based on the bound DN.
For example:

ldapexop - D <AdminDN> -w <Adminpw> -op getusertype

Returns:

User : root_administrator
Role(s) : server_config_administrator directory_administrator

The description on the “User type and user roles” for extended operations is
coming up shortly in the same section.
 Chapter 10. Client tools 259

� quiesce -rc <contextDN> [options]

quiesce or unquiesce subtree extended operation. This extended operation is
used to quiesce or unquiesce the servers associated with a specific subtree.
The subtree is indicated by the -rc parameter.

-rc contextDN: This is a required attribute that specifies the DN of the
replication context (subtree) to be quiesced or unquiesced.

The option is -end. This is an optional attribute that if present, specifies to end
the quiesce state, or in other words unquiesce the subtree. If not specified the
default is to quiesce the subtree. For example:

ldapexop -op quiesce -rc "o=acme,c=us"
ldapexop -op quiesce -end -rc "o=ibm,c=us"

� readconfig -scope <scopevalue>

This extended operation helps the server to dynamically read updates to the
configuration file. Let us go into the specifics of the same:

-scope { entire | single <entry DN> <attribute> | entry <entry DN> |
subtree <entry DN> }

This is a required attribute. This specifies the scope of the configuration file
that needs to be re-read by the server, which is currently up.

– entire

This option specifies to reread the entire configuration file.

– single <entry DN><attribute>

This option specifies to read the single entry and attribute as specified.

– entry <entry DN>

This option specifies that the server is supposed to read the specified
entry.

– subtree <entry DN>

This option specifies that the server is supposed to read the entry and the
entire subtree under it.

For example:

ldapexop -op readconfig -scope entire
ldapexop -op readconfig -scope single "cn=configuration"
ibm-slapdAdminPW

By means of the above example you are asking the server to dynamically
take note of the new admin password.

There is a set of attributes which can be dynamically re-read by the directory
server. If you change any other attributes and even if you ask the server to
re-read the entire configuration file, changes will not take effect dynamically.
260 Understanding LDAP Design and Implementation

The following is a list of attributes that can be changed dynamically. You do
not have to restart the server for these changes to take effect:

– cn=Configuration

• ibm-slapdadmindn
• ibm-slapdadminpw
• ibm-slapderrorlog
• ibm-slapdpwencryption
• ibm-slapdsizelimit
• ibm-slapdsysloglevel
• ibm-slapdtimelimit

– cn=Front End, cn=Configuration

• ibm-slapdaclcache
• ibm-slapdaclcachesize
• ibm-slapdentrycachesize
• ibm-slapdfiltercachebypasslimit
• ibm-slapdfiltercachesize
• ibm-slapdidletimeout

– cn=Event Notification, cn=Configuration

• ibm-slapdmaxeventsperconnection
• ibm-slapdmaxeventstotal

– cn=Transaction, cn=Configuration

• ibm-slapdmaxnumoftransactions
• ibm-slapdmaxoppertransaction
• ibm-slapdmaxtimelimitoftransactions

– cn=ConfigDB, cn=Config Backends, cn=IBM Directory, cn=Schemas,
cn=Configuration

• ibm-slapdreadonly

– cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas,
cn=Configuration

• ibm-slapdbulkloaderrors
• ibm-slapdclierrors
• ibm-slapdpagedresallownonadmin
• ibm-slapdpagedreslmt
• ibm-slapdpagesizelmt
• ibm-slapdreadonly
• ibm-slapdsortkeylimit
• ibm-slapdsortsrchallownonadmin
• ibm-slapdsuffix
 Chapter 10. Client tools 261

� readlog -log <logname> -lines <value>

This extended operation is used to read log files. This extended operation is
used to read a set of lines from the relevant log files or read the entire file. Let
us go into the further specifics pertaining to this option.

-log audit | bulkload | cli | slapd | ibmdiradm | debug

This is a required attribute that specifies the log file to be queried.

-lines {<first><last> | all}

This is a required attribute that specifies either the number of the first and the
last lines to be read from the file or it specifies that all lines are to be read.
Lines are numbered starting at 0. The specified lines are written to standard
output. For example:

ldapexop -op readlog -log audit -lines 10 20
ldapexop -op readlog -log slapd -lines all

� stopserver

This extended operation helps in stopping the IBM Tivoli Directory Server. For
example:

ldapexop -op stopserver

� unbind {-dn <specificDN> | -ip <sourceIP> | -dn <specificDN> -ip <sourceIP> |
all}

This extended operation is useful for disconnecting connections based on
DN, IP, DN/IP or all connections, as needed. All the connections without any
operations and all connections with operations on the work queue are ended
immediately. If a worker is currently working on a connection, it is ended as
soon as the worker completes that one operation.

– -dn <specificDN>

By specifying just the dn, ldapexop will end a connection by DN only. This
request results in the purging of all the connections bound on the specified
DN.

– -ip <sourceIP>

By specifying just the IP, ldapexop will end a connection by IP only. This
request results in the purging of all the connections from the specified IP
source.

– -dn <specificDN> -ip <sourceIP>

By specifying both the dn and the ip, ldapexop will end a connection
determined by a DN/IP pair. This request results in the purging of all the
connections bound on the specified DN and from the specified IP source.
262 Understanding LDAP Design and Implementation

– -all

Issues a request to end all the connections. This request results in the
purging of all the connections except the connection from where this
request originated. This attribute cannot be used with the -dn and/or -ip.
parameters.

The unbind option is mostly useful for disconnecting unwanted connections,
that may pose a risk, as like Denial of Service, or which are likely to hamper
the directory performance. For example:

ldapexop -op unbind -dn cn=john
ldapexop -op unbind -ip 9.182.173.43
ldapexop -op unbind -dn cn=john -ip 9.182.173.43
ldapexop -op unbind -all

� uniqueattr -a <attributeType>

This extended operation is used to identify all the nonunique values for a
particular attribute.

-a <attribute>

Specify the attribute for which all conflicting values are to be listed.

For example:

ldapexop -op uniqueattr -a "uid"

The following line is added to the configuration file under the
cn=Directory,cn=RDBM Backends,cn=IBM
Directory,cn=Schema,cn=Configuration entry for this extended operation:

ibm-slapdPlugin:extendedop /bin/libback-rdbm.dll initUniqueAttr

SSL, TLS notes
The SSL or TLS - related functions associated with this utility are as like the ones
described with ldapchangepwd above.

Note: Duplicate values for binary, operational, configuration attributes, and
the objectclass attribute are not displayed. These attributes are not
supported extended operations for unique attributes.

Note: If no DN arguments are provided, the ldapexop command waits to read
a list of DNs from standard input. To break out of the wait, use Ctrl+C or
Ctrl+D.
 Chapter 10. Client tools 263

Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.

User type and user roles for extended operations
The following are the users and their roles for extended operations.

� User

Root administrator: This user is an administrative user whose “simple and
External” with “SSL or TLS” bind credentials are stored under the
cn=Configuration entry. This user’s Kerberos bind credentials (optional) are
stored under the cn=Kerberos,cn=Configuration entry. This user’s
Digest-MD5 bind credentials (optional) are stored under the
cn=Digest,cn=Configuration entry. In addition, this type of user can bind to
the Admin Daemon.

� Role(s)

– Server configuration administrator

This user has unrestricted access to all information in the configuration
backend and can start/stop the server. The user can issue dynamic
configuration updates.

– Directory administrator

This user has unrestricted access to directory data outside the
configuration backend (schema, and RDBM backends). This user can
search for one or two attributes in the configuration backend. This user
may not have any authority to the operating specific backends (OS/400
system projection backend, z/OS RACF SDBM).

– Administrative group member

This user is basically an administrative user whose “simple or External”
with “SSL or TLS, Kerberos (optional), and Digest-MD5 (optional)”
credentials are stored under an entry in the subtree
cn=Admingroup,cn=Configuration. In addition, this type of user can bind to
the Admin Daemon.

� Role(s)

– Server configuration group member

This user has access to all configuration information except the
administrator and admin group credentials. This user has the ability to
start and stop the server. The user does not have the ability to add or
remove members from the administrative group. The user is not be able to
modify the DN, password, Kerberos ID, or Digest-MD5 ID of any
administrative group member entry under
264 Understanding LDAP Design and Implementation

cn=AdminGroup,cn=Configuration. If the user is an Administrative Group
Member the user is able to modify his own password, but is not able to
modify his own DN, Kerberos ID, or Digest-MD5 ID. This user is also not
able to see the password of any other administrative group member or the
IBM Tivoli Directory Server administrator. In addition, this user is not able
to add, delete, or modify the audit log settings (the entire
cn=Audit,cn=Configuration entry) or clear the audit log. The user is not
able to add or delete the cn=Kerberos,cn=Configuration or
cn=Digest,cn=Configuration entries, but is able to search all attributes
under these entries. The user is able to modify all attributes under these
entries except the Kerberos and Digest-MD5 root administrator bind
attributes. These users are not able to search or modify the
ibm-slapdAdminDN, ibm-slapdAdminGroupEnabled or
ibm-slapdAdminPW attributes under the cn=Configuration entry. The user
can issue dynamic configuration updates.

– Directory administrator

This user has unrestricted access to directory data outside the
configuration backend (schema, and RDBM backends). This user can
search for one or two attributes in the configuration backend. This user
may not have any authority to the operating specific backends (OS/400
system projection backend, z/OS RACF SDBM).

– LDAP user type

This user is a regular LDAP user whose credentials are stored in the DIT
of the LDAP Server. The user’s “simple and external” with “SSL or TLS”
bind DN is the DN of an entry in the DIT. The user’s password is stored in
the userpassword attribute of this entry.

� Role(s)

LDAP User Role: A user having almost no access to the configuration
backend. This user can search for one or two attributes in the configuration
backend. The user’s access to directory data (schema, and RDBM backends)
is controlled by ACLs.

10.4 The ldapmodify and ldapadd commands
This client tool helps in modifying existing entries in the directory or adding new
ones. ldapmodify is not used for modifying the RDN values of entries. There is a
separate client tool for this which will be explained in “The ldapmodrdn
command” on page 270.
 Chapter 10. Client tools 265

10.4.1 Synopsis
ldapmodify [-a] [-b] [-c] [-C charset] [-d debuglevel][-D binddn][-g] [-G
realm] [-h ldaphost] [-i file] [-k] [-K keyfile] [-m mechanism] [-M] [-N
certificatename] [-O maxhops] [-p ldapport] [-P keyfilepw] [-r] [-R] [-U
username] [-v] [-V] [-w passwd | ?] [-y proxydn] [-Y] [-Z]

ldapadd [-a] [-b] [-c] [-C charset] [-d debuglevel][-D binddn][-g] [-G realm]
[-h ldaphost] [-i file] [-k] [-K keyfile] [-m mechanism] [-M] [-N
certificatename] [-O maxhops] [-p ldapport] [-P keyfilepw] [-r] [-R] [-U
username] [-v] [-V] [-w passwd | ?] [-y proxydn] [-Y] [-Z]

10.4.2 Description
ldapmodify is a command-line interface to the ldap_modify and ldap_add library
calls. ldapadd is implemented as a renamed version of ldapmodify. When
invoked as ldapadd, the -a (add new entry) flag is turned on automatically.

ldapmodify opens a connection to an LDAP server, and binds to the server. You
can use ldapmodify to modify or add entries. The entry information is read from
standard input or from file through the use of the -i option.

To display syntax help for ldapmodify or ldapadd, type:

ldapmodify -?

Or:

ldapadd -?

10.4.3 Options
Options like -C charset, -c, -d debuglevel, -D binddn, -G realm, -h ldaphost, -K
keyfile, -k, -m mechanism, -M, -N certificatename, -O maxhops, -p ldapport, -P
keyfilepw, -R, -U username, -v, -V, -w passwd | ?, -y proxydn, -Y and -Z have
already been discussed for the ldapchangepwd command in 10.1.2, “Options” on
page 239.

Here are the options that are additional:

� -a

Add new entries. The default action for ldapmodify is to modify existing
entries. If invoked as ldapadd, this flag is always set.

� -b

Assume that any values that start with a ‘/’ are binary values and that the
actual value is in a file whose path is specified in place of the value.
266 Understanding LDAP Design and Implementation

� -g

Specifies not to strip the trailing spaces on attribute values.

� -i file

Read the entry modification information from an LDIF file instead of from
standard input. If an LDIF file is not specified, you must use standard input to
specify the update records in LDIF format.

� -r

Replace existing values by default.

Input format
The contents of the file (or the standard input if no -i flag is given on the
command line) should conform to the LDIF format.

Alternative input format
An alternative input format is supported for compatibility with older versions of
ldapmodify. This format consists of one or more entries separated by blank lines,
where each entry looks like the following:

Distinguished Name (DN)
attr=attrvalue
[attr=attrvalue ...]

Where attr is the name of the attribute and value is the attrvalue.

By default, values are added. If the -r command line flag is given, the default is to
replace existing values with the new one. It is permissible for a given attribute to
appear more than once, for example, to add more than one value for an attribute.
Also note that you can use a trailing ‘\\’ to continue values across lines and
preserve new lines in the value itself.

attr should be preceded by a - to remove a value. The = and value should be
omitted to remove an entire attribute.

attr should be preceded by a + to add a value in the presence of the -r flag.

10.4.4 Examples
Lets see a set of examples illustrating the options/arguments that we have just
discussed above.
 Chapter 10. Client tools 267

Example 1
Assuming that the file /tmp/entrymods exists and has the following contents:

dn: cn=Modify Me, o=University of Higher Learning, c=US
changetype: modify
replace: mail
mail: modme@student.of.life.edu
-
add: title
title: Grand Poobah
-
add: jpegPhoto
jpegPhoto: /tmp/modme.jpeg
-
delete: description
-

The command:

ldapmodify -b -r -i /tmp/entrymods

will replace the contents of the Modify Me entry’s mail attribute with the value
modme@student.of.life.edu, add a title of Grand Poobah, and the contents of the
file /tmp/modme.jpeg as a jpegPhoto, and completely remove the description
attribute. These same modifications can be performed using the older ldapmodify
input format, by modifying the file /tmp/entrymods as:

cn=Modify Me, o=University of Higher Learning, c=US
mail=modme@student.of.life.edu
+title=Grand Poobah
+jpegPhoto=/tmp/modme.jpeg
-description

And by using the command:

ldapmodify -b -r -i /tmp/entrymods

Example 2
Assuming that the file /tmp/newentry exists and has the following contents:

dn: cn=John Doe, o=University of Higher Learning, c=US
objectClass: person
cn: John Doe
cn: Johnny
sn: Doe
title: the world’s most famous mythical person
mail: johndoe@student.of.life.edu
uid: jdoe
268 Understanding LDAP Design and Implementation

The command:

ldapadd -i /tmp/entrymods

adds a new entry for John Doe, using the values from the file /tmp/newentry.

Example 3
Assuming that the file /tmp/newentry exists and has the contents:

dn: cn=John Doe, o=University of Higher Learning, c=US
changetype: delete

The command:

ldapmodify -i /tmp/entrymods

removes John Doe’s entry.

Example 4
Assuming that the file /tmp/newentry exists and has the contents:

dn: cn=Modify Me, o=University of Higher Learning, c=US
changetype: modify
replace: description
description:abc

The command:

ldapmodify -g -i /tmp/entrymods

retains the trailing spaces in the description field, that is, abc, as they are
entered. It would be difficult to search for the spaces here! You may want to try
this example in your environments to see that the trailing spaces are actually
maintained.

10.4.5 SSL, TLS notes
The SSL or TLS - related functions associated with this utility are as like the ones
described in “The ldapchangepwd command” on page 239.

Note: If no DN arguments are provided, the ldapmodify command waits to
read a list of DNs from standard input. To break out of the wait, use Ctrl+C or
Ctrl+D.
 Chapter 10. Client tools 269

10.4.6 Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.

10.5 The ldapmodrdn command
This tool is specifically designed to modify the RDN part of an entry’s dn.

10.5.1 Synopsis
ldapmodrdn [-c] [-C charset] [-d debuglevel][-D binddn] [-G realm] [-h
ldaphost] [-i file] [-k] [-K keyfile] [-m mechanism] [-M] [-n] [-N
certificatename] [-O hopcount] [-p ldapport] [-P keyfilepw] [-r] [-R] [-U
username] [-v] [-V] [-w passwd | ?] [-y proxydn] [-Y] [-Z] [dn newrdn | [-i
file]]

10.5.2 Description
ldapmodrdn is a command-line interface to the ldap_modrdn library call.

ldapmodrdn opens a connection to an LDAP server, binds, and modifies the RDN
of entries. The entry information is read from standard input, from file through the
use of the -f option, or from the command-line pair of dn and RDN.

Refer to “LDAP distinguished name syntax (DNs)” on page 43 for information
about RDNs and DNs.

To display syntax help for ldapmodrdn, type:

ldapmodrdn -?

10.5.3 Options
The options like -c, -C charset, -d debuglevel, -D binddn, -G realm, -h ldaphost,
-k, -K keyfile, -m mechanism, -M, -n, -N certificatename, -O hopcount, -p
ldapport, -P keyfilepw, -R, -U username, -v, -V, -w passwd | ?, -y proxydn, -Y, -Z
are already explained or would be explained in one of the other sections. Hence
we are not taking them in this section. The illustrations can be applied to
ldapmodrdn as was to the earlier client utilities.

� -i file

Read the entry modification information from the file instead of from standard
input or the command-line (by specifying ran and newrdn). Standard input
can be supplied from a file, as well using redirection (“< file”).
270 Understanding LDAP Design and Implementation

� -r

Remove old RDN values from the entry. Default action is to keep old values.

� dn newrdn

See the following section, “Input format for dn newrdn” for more information.

Input format for dn newrdn
If the command-line arguments dn and newrdn are given, newrdn replaces the
RDN of the entry specified by the DN, dn. Otherwise, the contents of file (or
standard input if no - i flag is given) consist of one or more entries:

Distinguished Name (DN)
Relative Distinguished Name (RDN)

One or more blank lines may be used to separate each DN and RDN pair.

10.5.4 Examples
Here are a few examples of using the ldapmodrdn command.

Example 1
Assuming that the file /tmp/entrymods exists and has the contents:

cn=user, o=ibm, c=US
cn=NewUser

Note the output of the command:

C:\>ldapmodrdn -D cn=root -w secret -i test.ldif
copying cn=user, o=ibm, c=US to cn=NewUser

Example 2
Assuming that the file /tmp/entrymods exists and has the contents:

cn=NewUser, o=ibm, c=US
cn=user

Observe the output of the command:

C:\>ldapmodrdn -D cn=root -w secret -r -i test.ldif
moving cn=NewUser, o=ibm, c=US to cn=user

In both examples the RDN is changed. It is changed from user to NewUser in
example 1 and NewUser to user in example 2. However the thing to note is that
by using -r we are moving the current value to a new one with an RDN change
and in case we do not use the -r option we are copying the contents from one dn
to another. Thus using -r is supposed to yield better modrdn performance.
 Chapter 10. Client tools 271

10.5.5 SSL, TLS notes
The SSL or TLS - related functions associated with this utility are as like the ones
described with ldapchangepwd in “The ldapchangepwd command” on page 239.

10.5.6 Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.

10.6 The ldapsearch command
This is the most widely used client tool. The obvious reason being that the LDAP
protocol is a read-optimization protocol and ldapsearch is a tool for
reading/fetching data from the LDAP server.

10.6.1 Synopsis
ldapsearch [-a deref] [-A] [-b searchbase] [-B] [-C charset] [-d debuglevel]
[-D binddn] [-F sep] [-G realm] [-h ldaphost] [-i file] [-K keyfile] [-l
timelimit] [-L] [-m mechanism] [-M] [-n] [-N certificatename] [-o attr_type]
[-O maxhops] [-p ldapport] [-P keyfilepw] [-q pagesize] [-R] [-s scope] [-t]
[-T seconds] [-U username] [-v] [-V version] [-w passwd | ?] [-z sizelimit] [-y
proxydn] [-Y] [-Z] filter [-9 p] [-9 s] [attrs...]

10.6.2 Description
ldapsearch is a command-line interface to the ldap_search library call.

ldapsearch opens a connection to an LDAP server, binds, and performs a search
using the filter. The filter should conform to the string representation for LDAP
filters (see ldap_search in the IBM Tivoli Directory Server Version 5.2 C-Client
SDK Programming Reference for more information on filters).

You can get this document at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

Note: If no DN arguments are provided, the ldapmodrn command waits to
read a list of DNs from standard input. To break out of the wait, use Ctrl+C or
Ctrl+D.
272 Understanding LDAP Design and Implementation

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

If ldapsearch finds one or more entries, the attributes specified by attrs are
retrieved and the entries and values are printed to standard output. If no attrs are
listed, all attributes are returned.

To display syntax help for ldapsearch, type ldapsearch -?.

10.6.3 Options
The options like -C charset, -d debuglevel, -D binddn, -e, -G realm, -h ldaphost,
-K keyfile, -m mechanism, -n, -O maxhops, -p ldapport, -P keyfilepw, -U
username, -w passwd | ?, -Y, -Z have already been discussed in 10.1, “The
ldapchangepwd command” on page 239. The options that are specific to the
ldapsearch command are:

� -a deref

Specify how aliases dereferencing is done. deref should be one of:

– never: Aliases are never dereferenced.
– always: Aliases are always dereferenced.
– search: Aliases are deferenced when searching.
– find: Aliases are dereferenced only when locating the base object.

� -A

Retrieve attributes only (no values). This is useful when you just want to see if
an attribute is present in an entry and are not interested in the specific values.

� -b searchbase

Use searchbase as the starting point for the search instead of the default. If -b
is not specified, this utility will examine the LDAP_BASEDN environment
variable for a searchbase definition. If neither is set, the default base is set to
““, which is a null search. A null search returns all the entries in the entire
Directory Information Tree (DIT). This search requires a -s subtree option.
Otherwise, an error message is displayed. Be aware that null based search
requests consume a lot of resource.

� -B

Do not suppress display of non-ASCII values. This is useful when dealing with
values that appear in alternate character sets such as ISO-8859.1. This
option is implied by the -L option.

� -F sep

Use sep as the field separator between attribute names and values. The
default separator is ‘=’, unless the -L flag has been specified, in which case
this option is ignored.
 Chapter 10. Client tools 273

� -i file

Read a series of lines from a file, performing one LDAP search for each line.
In this case, the filter given on the command line is treated as a pattern where
the first occurrence of %s is replaced with a line from file. If file is a single “-”
character, then the lines are read from standard input.

For example, in the command,

ldapsearch -V3 -v -b “o=ibm,c=us” -D “cn=admin” -w ldap -i filter.input
%s dn

The file filter.input file might contain the following filter information:

(cn=*Z)
(cn=*Z*)
(cn=Z*)
(cn=*Z*)
(cn~=A)
(cn>=A)
(cn<=B)

The command performs a search of the subtree o=ibm,c=us for each of the
filters beginning with cn=*Z. When that search is completed, the search
begins for the next filter cn=*Z* and so forth until the search for the last filter
cn<=B is completed.

� -l timelimit

Wait at most timelimit seconds for a search to complete.

� -L

Display search results in LDIF format. This option also turns on the -B option,
and causes the -F option to be ignored.

� -M

Manage referral objects as regular entries.

� -N certificatename

Specify the label associated with the client certificate in the key database file.

Note: Each filter must be specified on a separate line.

Note: The -i < file> option replaces the -f < file> option. The -f option is still
supported, although it is deprecated.
274 Understanding LDAP Design and Implementation

� -o attr_type

To specify an attribute to use for sort criteria of search results, you can use
the -o (order) parameter. You can use multiple -o parameters to further define
the sort order. In the following example, the search results are sorted first by
surname (sn), then by given name, with the given name (givenname) being
sorted in reverse (descending) order as specified by the prefixed minus sign
(-):

-o sn -o -givenname

Thus, the syntax of the sort parameter is as follows:

[-]<attribute name>[:<matching rule OID>]

Where:

– attribute name is the name of the attribute you want to sort by.

– matching rule OID is the optional OID of a matching rule that you want to
use for sorting.

– The minus sign (-) indicates that the results must be sorted in reverse
order.

– The criticality is always critical.

The default ldapsearch operation is not to sort the returned results.

� -q pagesize

To specify paging of search results, two new parameters can be used: -q
(query page size), and -T (time between searches in seconds).

In the following example, the search results return a page (25 entries) at a
time, every 15 seconds, until all the results for that search are returned. The
ldapsearch client handles all connection continuation for each paged results
requested for the life of the search operation.

-q 25 -T 15

If the -v (verbose) parameter is specified, ldapsearch lists how many entries
have been returned so far, after each page of entries returned from the
server, for example, 30 total entries have been returned.

Note: If the LDAP server is configured to perform server authentication
only, a client certificate is not required. If the LDAP server is configured to
perform client and server Authentication, a client certificate might be
required. certificatename is not required if a default certificate/private key
pair has been designated as the default. Similarly, certificatename is not
required if there is a single certificate/private key pair in the designated key
database file. This parameter is ignored if neither -Z nor -K is specified.
 Chapter 10. Client tools 275

Multiple -q parameters are enabled such that you can specify different page
sizes throughout the life of a single search operation. In the following
example, the first page is 15 entries, the second page is 20 entries, and the
third parameter ends the paged result/search operation:

-q 15 -q 20 -q 0

In the following example, the first page is 15 entries, and all the rest of the
pages are 20 entries, continuing with the last specified -q value until the
search operation completes:

-q 15 -q 20

The default ldapsearch operation is to return all the entries in a single
request.

No paging is done for the default ldapsearch operation.

� -R

Specifies that referrals are not to be automatically followed.

� -s scope

Specify the scope of the search. scope should be one of:

– base - Search is limited to the base.

– one - Search is limited to one-level below the base and does not include
the base.

– sub - Search covers the base as well as its descendants.

� -t

Write retrieved values to a set of temporary files. This is useful for dealing
with non-ASCII values such as jpegPhoto or audio.

� -T seconds

Time between searches (in seconds). The -T option is only supported when
the -q option is specified.

� -y proxydn

Specifies the DN to be used for proxied authorization. The earlier sections did
not illustrate this feature. We will have an example in the Examples section
down below on the use of this option.

Note: If you specify a null search, either by not specifying a -b option or
specifying -b ““, you must the -s option. The default scope is disabled for a
null search.
276 Understanding LDAP Design and Implementation

� -z sizelimit

Limit the results of the search to at the most sizelimit entries. This makes it
possible to place an upper bound on the number of entries that are returned
for a search operation.

� -9 p

Sets criticality for paging to false. The search is handled without paging.

Here is an excerpt from the ITDS 52 Administration guide, which guides us for
setting/unsetting this option

The LDAP server returns all referrals to the client at the end of a search
request, the same as a search without any controls. That means that if the
server has 10 pages of results returned, all the referrals are returned on the
10th page, not at the end of each page. When chasing referrals, the client
application needs to send in an initial paged results request, with the cookie
set to null, to each of the referral servers. It is up to the application using the
client services to decide whether or not to set the criticality as to the support
of paged results, and to handle a lack of support of this control on referral
servers as appropriate based on the application. Additionally, the LDAP
server does not ensure that the referral server supports paged results
controls. Multiple lists could be returned to the client application, some not
paged. It is at the client application’s decision as to how to best present this
information to the end user. Possible solutions include: Combine all referral
results before presenting to the end user; show multiple lists and the
corresponding referral server host name; take no extra steps and show all
results to the end user as they are returned from the server. The client
application must turn off referrals to get one truly paged list, otherwise when
chasing referrals with the paged results search control specified,
unpredictable results might occur.

� -9 s

Sets criticality for sorting to false. The search is handled without sorting.

Here is an excerpt from the ITDS 52 Administration guide, which guides on
the setting/unsetting of this option:

The LDAP server returns all referrals to the client at the end of a search
request. It is up to the application using the client services to decide whether
to set the criticality of the sorted search request, and to handle a lack of
support of those controls on referral servers as appropriate based on the
application. Additionally, the LDAP server does not ensure that the referral
server supports the sorted search control. Multiple lists could be returned to
the client application, some not sorted. It is the client application’s decision as
to how best to present this information to the end user. Possible solutions
include: combine all referral results before presenting to the end user; show
multiple lists and the corresponding referral server host name; take no extra
 Chapter 10. Client tools 277

steps and show all results to the end user as they are returned from the
server. The client application must turn off referrals to get one truly sorted list,
otherwise when chasing referrals with sorted search controls specified,
unpredictable results might occur.

For more information on the paging/sorting criticality issues you may refer the
ITDS 5.2 Administration Guide. The link for the same is provided in the earlier
sections.

� filter

Specifies a string representation of the filter to apply in the search. Simple
filters can be specified as attributetype=attributevalue. More complex filters
are specified using a prefix notation according to the following Backus Naur
Form (BNF)

<filter> ::=’(‘<filtercomp>’)’
<filtercomp> ::= <and>|<or>|<not>|<simple>
<and> ::= ‘&’ <filterlist>
<or> ::= ‘|’ <filterlist>
<not> ::= ‘!’ <filter>
<filterlist> ::= <filter>|<filter><filtertype>
<simple> ::= <attributetype><filtertype><attributevalue>
<filtertype> ::= ‘=’|’~=’|’<=’|’>=’

The ‘~=’ construct is used to specify approximate matching. The
representation for <attributetype> and <attributevalue> are as described in
“RFC 2252, LDAP V3 Attribute Syntax Definitions”. In addition,
<attributevalue> can be a single * to achieve an attribute existence test, or
can contain text and asterisks (*) interspersed to achieve substring matching.

For example, the filter “mail=*”” finds any entries that have a mail
attribute.The filter “mail=*@student.of.life.edu” finds any entries that have a
mail attribute ending in the specified string. To put parentheses in a filter,
escape them with a backslash (\) character.

‘

Please refer RFC 2254, “A String Representation of LDAP Search Filters” for
a more complete description of allowable filters.

Note: A filter like "cn=Bob *", where there is a space between Bob and the
asterisk (*), matches “Bob Carter” but not “Bobby Carter” in IBM Directory.
The space between “Bob” and the wildcard character (*) affects the
outcome of a search using filters.
278 Understanding LDAP Design and Implementation

Output format
If one or more entries are found, each entry is written to standard output in the
form:

Distinguished Name (DN)
attributename=value
attributename=value
attributename=value
...

Multiple entries are separated with a single blank line. If the -F option is used to
specify a separator character, it will be used instead of the ‘=’ character. If the -t
option is used, the name of a temporary file is used in place of the actual value. If
the -A option is given, only the “attributename” part is written.

10.6.4 Examples
Here are some examples of the ldapsearch command.

Example 1
The command:

ldapsearch "cn=john doe" cn telephoneNumber

Performs a subtree search (using the default search base) for entries with a
commonName of “john doe”. The commonName and telephoneNumber values is
retrieved and printed to standard output. The output might look something like
this, if two entries are found:

cn=John E Doe, ou="College of Literature, Science, and the Arts",
ou=Students, ou=People, o=University of Higher Learning, c=US
cn=John Doe
cn=John Edward Doe
cn=John E Doe 1
cn=John E Doe
telephoneNumber=+1 313 555-5432

cn=John B Doe, ou=Information Technology Division,
ou=Faculty and Staff, ou=People, o=University of Higher Learning, c=US
cn=John Doe
cn=John B Doe 1
cn=John B Doe
telephoneNumber=+1 313 555-1111

Example 2
The command:

ldapsearch -t "uid=jed" jpegPhoto audio
 Chapter 10. Client tools 279

This performs a subtree search using the default search base for entries with
user id of “jed“. The jpegPhoto and audio values are retrieved and written to
temporary files. The output might look like this, if one entry with one value for
each of the requested attributes is found:

cn=John E Doe, ou=Information Technology Division,ou=Faculty and
Staff,ou=People, o=University of Higher Learning, c=US
audio=/tmp/ldapsearch-audio-a19924
jpegPhoto=/tmp/ldapsearch-jpegPhoto-a19924

Example 3
This command:

ldapsearch -L -s one -b "c=US" "o=university*" o description

This will perform a one-level search at the c=US level for all organizations whose
organizationName begins with university. Search results will be displayed in the
LDIF format (You may refer the LDAP Data Interchange Format in the ITDS 52
Administration Guide for the detailed specifics on LDIF format. The link is
provided in the earlier sections). The organizationName and description attribute
values will be retrieved and printed to standard output, resulting in output similar
to this:

dn: o=University of Alaska Fairbanks, c=US
o: University of Alaska Fairbanks
description: Preparing Alaska for a brave new tomorrow
description: leaf node only

dn: o=University of Colorado at Boulder, c=US
o: University of Colorado at Boulder
description: No personnel information
description: Institution of education and research

dn: o=University of Colorado at Denver, c=US
o: University of Colorado at Denver
o: UCD
o: CU/Denver
o: CU-Denver
description: Institute for Higher Learning and Research

dn: o=University of Florida, c=US
o: University of Florida
o: UFl
description: Shaper of young minds

Example 4
This command:

ldapsearch -b "c=US" -o ibm-slapdDN "objectclass=person" ibm-slapdDN
280 Understanding LDAP Design and Implementation

This performs a subtree level search at the c=US level for all persons. When this
special attribute is used for sorted searches, the search results are sorted by the
string representation of the Distinguished Name (DN). The output might look
something like this:

cn=Al Edwards,ou=Widget Division,ou=Austin,o=IBM,c=US
cn=Al Garcia,ou=Home Entertainment,ou=Austin,o=IBM,c=US
cn=Amy Nguyen,ou=In Flight Systems,ou=Austin,o=IBM,c=US
cn=Arthur Edwards,ou=Widget Division,ou=Austin,o=IBM,c=US
cn=Becky Garcia,ou=In Flight Systems,ou=Austin,o=IBM,c=US
cn=Ben Catu,ou=In Flight Systems,ou=Austin,o=IBM,c=US
cn=Ben Garcia Jr,ou=Home Entertainment,ou=Austin,o=IBM,c=US
cn=Bill Keller Jr.,ou=In Flight Systems,ou=Austin,o=IBM,c=US
cn=Bob Campbell,ou=In Flight Systems,ou=Austin,o=IBM,c=US

Example 5
Here is an example to see the behavior of the -M and -R flags, pertaining to
referrals. Assumption is that there exists a custom object class, which inherits
from the referral class and also has the userPassword attribute in it. The custom
object class is named myreferral and cn=myref,o=ibm,c=us is an object of the
same. cn=myref,o=ibm,c=us refers to cn=user1,o=ibm,c=us.

C:\>ldapsearch -D cn=myref,o=ibm,c=us -w user1 -s base -b
cn=myref,o=ibm,c=us objectclass=*
cn=user1,o=ibm,c=us
objectclass=organizationalPerson
objectclass=person
objectclass=top
sn=1
cn=user1

C:\>ldapsearch -D cn=myref,o=ibm,c=us -w user1 -M -s base -b
cn=myref,o=ibm,c=us objectclass=*
ldap_simple_bind: Invalid credentials

C:\>ldapsearch -D cn=myref,o=ibm,c=us -w myref -M -s base -b
cn=myref,o=ibm,c=us objectclass=*
cn=myref,o=ibm,c=us
objectclass=myreferral
objectclass=referral
objectclass=top
ref=ldap://localhost/cn=user1,o=ibm,c=us
cn=myref

C:\>ldapsearch -D cn=myref,o=ibm,c=us -w myref -R -s base -b
cn=myref,o=ibm,c=us objectclass=*
ldap_simple_bind: Referral returned
 Chapter 10. Client tools 281

C:\>ldapsearch -D cn=root -w secret -R -s base -b cn=myref,o=ibm,c=us
objectclass=*
ldap_search: Referral returned
Unfollowed referral: ldap://localhost/cn=user1,o=ibm,c=us

As shown above, if you try to chase a referral with the binddn as the dn of the
referral and the bind password as that of the target (cn=user1,o=ibm,c=us) you
do reach there. However, if you treat cn=myref,o=ibm,c=us as a normal entry
(-M) then the bind password of the referral is expected and not of the target
object. And lastly if the referrals aren’t chased (-R) then you get back a referral
from the server, which is displayed only when bound as an administrator.

Example 5
Assuming the fact that cn=alias2,o=ibm,c=us is an alias of an entry
cn=alias1,o=ibm,c=us which in turn is an alias of cn=user1,o=ibm,c=us, here is
what We will get on the different options of dereferencing:

� deref: always

C:\>ldapsearch -D cn=root -w secret -a always -b cn=alias1,o=ibm,c=us
objectclass=* dn
cn=user1,o=ibm,c=us

C:\>ldapsearch -D cn=root -w secret -a always -b cn=alias2,o=ibm,c=us
objectclass=* dn
cn=user1,o=ibm,c=us

� deref: searching with searchbase as a non-alias

C:\>ldapsearch -D cn=root -w secret -a searching -b o=ibm,c=us
objectclass=* dn | grep -i alias
<No output>

� deref: finding with searchbase as a non-alias

C:\>ldapsearch -D cn=root -w secret -a finding -b o=ibm,c=us objectclass=*
dn | grep -i alias
cn=alias1,o=ibm,c=us
cn=alias2,o=ibm,c=us

� deref: searching with searchbase as a alias

C:\>ldapsearch -D cn=root -w secret -a searching -b cn=alias2,o=ibm,c=us
objectclass=* dn
cn=user1,o=ibm,c=us

� deref: finding with searchbase as a alias

C:\>ldapsearch -D cn=root -w secret -a finding -b cn=alias2,o=ibm,c=us
objectclass=* dn
cn=user1,o=ibm,c=us
282 Understanding LDAP Design and Implementation

� deref: never

C:\>ldapsearch -D cn=root -w secret -a never -b cn=alias2,o=ibm,c=us
objectclass=* dn
cn=alias2,o=ibm,c=us

The above examples clearly demonstrate the different ways the aliases can be
treated by ldapsearch. Also, it is noteworthy that the difference in the output from
-deref : searching and -deref : finding is based on the fact whether the
searchbase is an alias or not.

Example 6
The following command shows the use of the -A option:

C:\>ldapsearch -D cn=root -w secret -a never -b cn=alias2,o=ibm,c=us -A
objectclass=*
cn=alias2,o=ibm,c=us
aliasedobjectname
objectclass
cn

Example 7
Here we bring out the difference between using the -B switch and not using it:

C:\>ldapsearch -D cn=root -w secret -a never -b cn=user,o=ibm,c=us -B
objectclass=* jpegPhoto
cn=user,o=ibm,c=US
jpegPhoto=BMμ?

C:\>ldapsearch -D cn=root -w secret -a never -b cn=user,o=ibm,c=us
objectclass=* jpegPhoto
cn=user,o=ibm,c=US
jpegPhoto=NOT ASCII

As shown above, if -B switch is used, the binary data will also appear in the
ldapsearch output, though it is not apparently meaningful.

Example 8
This example brings out the difference between using the -F sep option and not
using it:

C:\>ldapsearch -D cn=root -w secret -b cn=user,o=ibm,c=us objectclass=* sn
cn=user,o=ibm,c=US
sn=j
C:\>ldapsearch -D cn=root -w secret -b cn=user,o=ibm,c=us -F :
objectclass=* sncn=user,o=ibm,c=US
sn:j
 Chapter 10. Client tools 283

Example 9
This example shows the use of the -l option.

Consider the following search:

ldapsearch -D cn=root -w secret -l 1 -b o=ibm,c=us objectclass=*

Currently o=ibm,c=us has 10,000 entries below it. However, the ldapsearch is
given a total time limit of 1second for returning all the results. After that time
exceeds and if ldapsearch has not finished with all the desired entries, the
following message is flashed and the search stops:

ldap_search: Timelimit exceeded

Example 10
With the assumption that there exists an entry cn=user1,o=ibm,c=us with two
children as cn=h1,cn=user1,o=ibm,c=us and cn=h2,cn=user1,o=ibm,c=us, this
example shows the use of the -o option:

C:\>ldapsearch -D cn=root -w secret -o cn -s sub -b cn=user1,o=ibm,c=us
objectclass=* dn
cn=h1,cn=user1,o=ibm,c=us
cn=h2,cn=user1,o=ibm,c=us
cn=user1,o=ibm,c=us

C:\>ldapsearch -D cn=root -w secret -o -cn -s sub -b cn=user1,o=ibm,c=us
objectclass=* dn
cn=user1,o=ibm,c=us
cn=h2,cn=user1,o=ibm,c=us
cn=h1,cn=user1,o=ibm,c=us

Example 11
This example shows the differences between the various options associated with
the parameter scope, specified using -s:

C:\>ldapsearch -D cn=root -w secret -s base -b cn=user1,o=ibm,c=us
objectclass=* dn
cn=user1,o=ibm,c=us

C:\>ldapsearch -D cn=root -w secret -s sub -b cn=user1,o=ibm,c=us
objectclass=* dn
cn=user1,o=ibm,c=us
cn=h1,cn=user1,o=ibm,c=us
cn=h2,cn=user1,o=ibm,c=us

C:\>ldapsearch -D cn=root -w secret -s one -b cn=user1,o=ibm,c=us
objectclass=* dn
cn=h1,cn=user1,o=ibm,c=us
cn=h2,cn=user1,o=ibm,c=us
284 Understanding LDAP Design and Implementation

Example 12
This example illustrates the use of the -z flag:

C:\>ldapsearch -D cn=root -w secret -b cn=user1,o=ibm,c=us objectclass=* dn
cn=user1,o=ibm,c=us
cn=h1,cn=user1,o=ibm,c=us
cn=h2,cn=user1,o=ibm,c=us

C:\>ldapsearch -D cn=root -w secret -b cn=user1,o=ibm,c=us -z 1
objectclass=* dn

cn=user1,o=ibm,c=us
ldap_search: Sizelimit exceeded

Example 13
This example illustrates the use of the proxy dn, through the -y flag.

Assuming that there exist 2 users cn=user1,o=ibm,c=us. user2 is not allowed to
see the password of user1, however user2 is in the Proxy group.

C:\>ldapsearch -D cn=user2,o=ibm,c=us -w user2 -s base -b
cn=user1,o=ibm,c=us objectclass=*
cn=user1,o=ibm,c=us
objectclass=organizationalPerson
objectclass=person
objectclass=top
sn=1
cn=user1

C:\>ldapsearch -D cn=user2,o=ibm,c=us -w user2 -y cn=user1,o=ibm,c=us -s
base -b cn=user1,o=ibm,c=us objectclass=*
cn=user1,o=ibm,c=us
objectclass=organizationalPerson
objectclass=person
objectclass=top
sn=1
cn=user1
userpassword={SHA}s9qne0wEqVUbh4HQMZH+CY8yXmc=

Note the difference between the two searches that are fired on the LDAP server
and also the difference in the output that are we seeing.

In the first case user2 is trying to fetch the entire entry of user1, by binding as
user2. The result is that user1 does not reveal the userPassword to user2.

Now in the second case, as user2 is in the Proxy Group, it is able to fire a query
on the entry of user1, as a proxy of user1 (using the -y option) and get the
userPassword.
 Chapter 10. Client tools 285

For information on the Proxy Group, you may refer the ITDS v 52 Administration
Guide. The link for the same is put up in one of the sections above.

10.6.5 SSL, TLS notes
The SSL or TLS - related functions associated with this utility are as like the ones
described with ldapchangepwd in “The ldapchangepwd command” on page 239.

10.6.6 Diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.

10.7 Summary
After seeing these utilities let us have a summary of what was done in this
chapter. This chapter was mainly focussed on learning the following client
utilities:

� ldapchangepwd

� ldapdelete

� ldapexop

� ldapmodify and ldapadd

� ldapmodrdn

� ldapsearch

We also saw the detailed explanations on the options that the above utilities
would take.
286 Understanding LDAP Design and Implementation

Chapter 11. Schema management

This chapter provides an introduction to the IBM Tivoli Directory Server for both
distributed platforms and z/OS. Features and functions described in this chapter
are based on ITDS 5.2 and LDAP for z/OS V1R4, therefore some of the
functionality described may not be available in earlier releases. The topics
covered in this section include:

� What is the schema

� Modifying the schema

� Migrating a schema

� Dynamic schema

11
© Copyright IBM Corp. 1998, 2004. All rights reserved. 287

11.1 What is the schema
A schema is a set of rules that governs the way that data can be stored in the
directory. The schema defines the type of entries allowed, their attribute
structure, and the syntax of the attributes.

Data is stored in the directory using directory entries. A entry consists of an
object class, which is required, and its attributes. Attributes can be either
required or optional. The object class specifies the kind of information that the
entry describes and defines the set of attributes it contains. Each attribute has
one or more associated values. See “Modifying the schema” on page 292 for
additional information about entries.

The schema for the IBM Directory Version 5.2 is predefined, however, you can
modify the schema, if you have additional requirements.

The IBM Tivoli Directory Server Version 5.2 includes dynamic schema support.
The schema is published as part of the directory information, and is available in
the Subschema entry (DN="cn=schema").

The schema has more configuration information than that included in the LDAP
Version 3 Request For Comments (RFCs) or standard specifications. For
example, for a given attribute, you can state which indexes must be maintained.
This additional configuration information is maintained in the subschema entry as
appropriate. An additional object class is defined for the subschema entry
IBMsubschema, which has "MAY" attributes that hold the extended schema
information.

IBM Tivoli Directory Server requires that the schema defined for a naming
context be stored in a special directory entry, "cn=schema". The entry contains all
of the schema defined for the server. To retrieve schema information, you can
perform an ldap_search by using the following:

DN: "cn=schema", search scope: base, filter: objectclass=subschema
or objectclass=*

The schema provides values for the following attribute types:

� objectClasses

� attributeTypes

� IBMAttributeTypes

� matching rules

� LDAP syntaxes
288 Understanding LDAP Design and Implementation

The syntax of these schema definitions is based on the LDAP Version 3 RFCs. A
sample schema can be seen in Example 11-1.

Example 11-1 Sample schema

objectclasses=(1.3.6.1.4.1.1466.101.120.111
 NAME 'extensibleObject'
 SUP top AUXILIARY)

 objectclasses=(2.5.20.1
 NAME 'subschema'
 AUXILIARY MAY
 (dITStructureRules
 $ nameForms
 $ ditContentRules
 $ objectClasses
 $ attributeTypes
 $ matchingRules
 $ matchingRuleUse))
 objectclasses=(2.5.6.1
 NAME 'alias'
 SUP top STRUCTURAL
 MUST aliasedObjectName)

 attributeTypes {
 (2.5.18.10 NAME 'subschemaSubentry' EQUALITY distinguishedNameMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 NO-USER-MODIFICATION
 SINGLE-VALUE USAGE directoryOperation)
 (2.5.21.5 NAME 'attributeTypes'
 EQUALITY objectIdentifierFirstComponentMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.3 USAGE directoryOperation)
 (2.5.21.6 NAME 'objectClasses'
 EQUALITY objectIdentifierFirstComponentMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.37 USAGE directoryOperation)
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE directoryOperation)
}

 ldapSyntaxes {
 (1.3.6.1.4.1.1466.115.121.1.5 DESC 'Binary')
 (1.3.6.1.4.1.1466.115.121.1.7 DESC 'Boolean')
 (1.3.6.1.4.1.1466.115.121.1.12 DESC 'DN')
 (1.3.6.1.4.1.1466.115.121.1.15 DESC 'Directory String')
 (1.3.6.1.4.1.1466.115.121.1.24 DESC 'Generalized Time')
 (1.3.6.1.4.1.1466.115.121.1.26 DESC 'IA5 String')
 (1.3.6.1.4.1.1466.115.121.1.27 DESC 'INTEGER')
 (1.3.6.1.4.1.1466.115.121.1.50 DESC 'Telephone Number')
 (1.3.6.1.4.1.1466.115.121.1.53 DESC 'UTC Time')
 }
 Chapter 11. Schema management 289

 matchingRules {
 (2.5.13.2 NAME 'caseIgnoreMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
 (2.5.13.0 NAME 'objectIdentifierMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)
 (2.5.13.30 NAME 'objectIdentifierFirstComponentMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)
 (2.5.13.4 NAME 'caseIgnoreSubstringsMatch'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 }

As shown in the preceding example, it is not required that all of the attribute
values of a given attribute type be provided in a single production.

11.1.1 Available schema files
Several schema files are shipped with the Tivoli IBM Directory Server and the
z/OS IBM Directory Server to be used as a base for a directory, to allow for
product integration, and to provide an area for custom schema changes and
additions.

Modifying schema files directly is not recommended. However, additional
information concerning adding and modifying Schema objectclasses and
attributes can be found in “Modifying the schema” on page 292.

Table 11-1 reviews the schema files that ship with the product.

Table 11-1 Schema files

File name Description

V3.Schema.at Schema attribute file, specific to the operation of IBM
Directory Server. Includes configuration information,
password policy enforcement, and replication.

V3.Schema.oc Schema objectclass file, specific to the operation of IBM
Directory Server. Includes configuration information,
password policy enforcement, and replication.

V3.ibm.at Schema attribute file for IBM related products and
technologies. One example is the AIX Authentication
schema.

V3.ibm.oc Schema objectclass file for IBM related products and
technologies. One example is the AIX Authentication
schema.
290 Understanding LDAP Design and Implementation

11.1.2 Schema support
The IBM Directory supports standard directory schema as defined in the
following:

� The Internet Engineering Task Force (IETF) LDAP Version 3 RFCs, such as
RFC 2252 and 2256

� The Directory Enabled Network (DEN)

� The Common Information Model (CIM) from the Desktop Management Task
Force (DMTF)

� The Lightweight Internet Person Schema (LIPS) from the Network Application
Consortium

IBM Tivoli Directory Server 5.2 includes the LDAP Version 3 defined schema in
the default schema configuration. It also includes the DEN schema definitions as
well as a set of extended common schema definitions that other IBM products
share when they exploit the LDAP directory. They include:

� Objects for white page applications such as eperson, group, country,
organization, organization unit and role, locality, state, and so forth

� Objects for other subsystems such as accounts, services and access points,
authorization, authentication, security policy, and so forth

11.1.3 OID
An object identifier (OID) is a string, of decimal numbers, that uniquely identifies
an objectclass or attribute. An OID is required for all objectclasses and attributes
that are defined in the LDAP directory. There are two ways to handle new OIDs.
They can be found at the Internet Assigned Number Authority Web site,
http://www.iana.org/iana/, or be generated through a text OID assignment. An
OID can be assigned the value of the objectclass or attribute name appended

V3.user.at Industry standard LDAP schema including attributes for
person, organizationalperson, and inetorgperson.

V3.user.oc Industry standard LDAP schema including objectclasses for
person, organizationalperson, and inetorgperson.

V3.modifiedschema Custom schema additions should be placed in this file.

File name Description

Note: z/OS LDAP schema extensions can be found in the /usr/lpp/ldap/etc
folder.
 Chapter 11. Schema management 291

http://www.iana.org/iana/

with an ‘-oid’. For example, a new attribute, myattribute, can be assigned the OID
myattribute-oid.

11.1.4 Inheritance
IBM Tivoli Directory Server version 5.2 supports object inheritance for object
class and attribute definitions. A new objectclass can be defined with parent
classes (multiple inheritance) and the additional or changed attributes.Each entry
is assigned to a single structural object class. All object classes inherit from the
abstract object class top. They can also inherit from other object classes.

As already discussed, the structure of an objectclass determines the list of
required and allowed attributes for a particular entry. An object class can only
inherit from object classes that precede it. For example, the objectclass
organizationalPerson is able to inherit the attributes of the person objectclass,
automatically inheriting the required and permitted attributes for that objectclass
as well as any additional permissions specific to organizationalPerson.

11.2 Modifying the schema
The schema for the IBM Tivoli Directory Server Version 5.2 is predefined,
however, you can modify the schema, if necessary. It is a good idea to take a
look at what the current schema initially looks like. this can be done with a simple
ldapsearch command. The following command exports the schema to an LDIF
file called schemaout.ldif.

ldapsearch -L -h <ipaddress> -p <port> -b “cn=schema, <suffix>”
objectclass=* > schemaout.ldif

It should be noted that editing objectclasses and attributes directly is not
recommended. A more accommodating option is to utilize objectclass
inheritance, creating a new objectclass which inherits all properties of the desired
objectclass with customized attributes and modifications contained within its
definition.

11.2.1 IBMAttributetypes
The IBMAttributeTypes attribute can be used to define schema information not
covered by the LDAP Version 3 standard for attributes. In the command line
examples below, each attribute added has an example of how an
IBMAttributetype can be added/modified/etc along side initial actions. This is
effective in allowing attributes to include indexing extensions. Below is a
template that an IBMAttributeType must comply with grammatically:

IBMAttributeTypesDescription = "(" whsp
292 Understanding LDAP Design and Implementation

numericoid whsp
["DBNAME" qdescrs] ; at most 2 names (table, column)
["ACCESS-CLASS" whsp IBMAccessClass whsp]
["LENGTH" wlen whsp] ; maximum length of attribute
["EQUALITY" [IBMwlen] whsp] ; create index for matching rule
["ORDERING" [IBMwlen] whsp] ; create index for matching rule
["APPROX" [IBMwlen] whsp] ; create index for matching rule
["SUBSTR" [IBMwlen] whsp] ; create index for matching rule
["REVERSE" [IBMwlen] whsp] ; reverse index for substring
whsp ")"

11.2.2 Working with objectclasses
Working with objectclasses allows a user to customize his or her directory
beyond the base LDAP installation. Below are instructions for adding, modifying,
and deleting an objectclass. All instructions are command line based and may be
used with either the distributed LDAP or z/OS LDAP directory servers.

Adding an objectclass
To add an object class using the command line, issue the following command:

ldapmodify -D <adminDN> -w <adminPW> -i <filename>

Where <filename> contains:

dn: cn=Schema
changetype: modify
add: objectclasses
objectclasses: (<myobjectClass-oid> NAME <myObjectClass> DESC <An
objectclass I defined for my LDAP application> SUP <objectclassinheritance>
<objectclasstype> MUST (<attribute1> $ <attribute2>) MAY (<attribute1> $
<attribute2>))

Editing an objectclass
View the object classes contained in the schema issue the command:

ldapsearch -b cn=schema -s base objectclass=* objectclasses

To edit an object class using the command line, issue the following command:

ldapmodify -D <adminDN> -w <adminPW> -i <filename>

Where <filename> contains:

dn: cn=schema
changetype: modify
replace: objectclasses
objectclasses: (<myobjectClass-oid> NAME ’<myObjectClass>’ DESC ’<An
objectclass I defined for my LDAP application>’ SUP
 Chapter 11. Schema management 293

’<newsuperiorclassobject>’ <newobjectclasstype> MUST (<attribute1> $
<attribute2>) MAY (<attribute1> $ <attribute2>))

Deleting an objectclass
View the object classes contained in the schema issue the command:

ldapsearch -b cn=schema -s base objectclass=* objectclasses

Select the object class you want to delete and issue the following command:

ldapmodify -D <adminDN> -w <adminPW> -i <filename>

Where <filename> contains:

dn: cn=schema
changetype: modify
delete: objectclasses
objectclasses: (<myobjectClass-oid> NAME ’<myObjectClass>’ DESC ’<An
object class I defined for my LDAP application>’ SUP
’<objectclassinheritance>’ <objectclasstype > MUST (<attribute1> $
<attribute2>) > MAY (<attribute1> $ <attribute2>))

11.2.3 Working with attributes
Every object class includes a number of required attributes and optional
attributes. Required attributes are the attributes that must be present in entries
using the object class. Optional attributes are the attributes that may be present
in entries using the object class.

Below are instructions for adding, modifying, and deleting an attribute. All
instructions are command line based and may be used with either the distributed
LDAP or z/OS LDAP directory servers.

Adding an attribute
The following example adds an attribute type definition for an attribute called
myattribute.

ldapmodify -D <admindn> -w <adminpw> -i myschema.ldif

Where the myschema.ldif file contains:

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (myAttribute-oid NAME (‘myAttribute’)

DESC ‘An attribute I defined for my LDAP application’
EQUALITY 2.5.13.2 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
USAGE userApplications)

-

294 Understanding LDAP Design and Implementation

add: ibmattributetypes
ibmattributetypes: (myAttribute-oid DBNAME (‘myAttrTable’ ‘myAttrColumn’
)

ACCESS-CLASS normal LENGTH 200)

Editing an attribute
This example adds indexing to the attribute, so that searching on it is faster. Use
the ldapmodify command and the LDIF file to change the definition:

ldapmodify -D <admindn> -w <adminpw> -i myschemachange.ldif

Where the myschemachange.ldif file contains:

dn: cn=schema
changetype: modify
replace: attributetypes
attributetypes: (myAttribute-oid NAME (‘myAttribute’) DESC ‘An attribute
I defined for my LDAP application’ EQUALITY 2.5.13.2 SYNTAX
1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)
-
replace: ibmattributetypes
ibmattributetypes: (myAttribute-oid DBNAME (‘myAttrTable’ ’myAttrColumn’
) ACCESS-CLASS normal LENGTH 200 EQUALITY SUBSTR)

Deleting an attribute
This example deletes the attribute ‘myattribute’ from the directory schema.

ldapmodify -D <admindn> -w <adminpw> -i myschemadelete.ldif

Where the myschemadelete.ldif file includes:

dn: cn=schema
changetype: modify
delete: attributetypes
attributetypes: (myAttribute-oid NAME (’myAttribute’) DESC ’An attribute
I defined for my LDAP application’ EQUALITY 2.5.13.2 SYNTAX
1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)
-
delete: ibmattributetypes
ibmattributetypes: (myAttribute-oid DBNAME (’myAttrTable’ ’myAttrColumn’
) ACCESS-CLASS normal LENGTH 200 EQUALITY SUBSTR)

Note: Both portions of the definition (attributetypes and ibmattributetypes)
must be included in the replace operation, even though only the
ibmattributetypes section is changing.
 Chapter 11. Schema management 295

11.2.4 Disallowed schema changes
Not all schema changes are allowed.

Change restrictions include the following:

� Any change to the schema must leave the schema in a consistent state.

� An attribute type that is a supertype of another attribute type may not be
deleted.

� An attribute type that is a MAY or a MUST attribute type of an object class
may not be deleted.

� An object class that is a superclass of another may not be deleted.

� Attribute types or object classes that refer to nonexisting entities (for example,
syntaxes or object classes) cannot be added.

� Attribute types or object classes cannot be modified in such a way that they
end up referring to nonexisting entities (for example, syntaxes or object
classes).

Changes to the schema that affect the operation of the server are also not
allowed. The following schema definitions are required by the directory server.
They must not be changed.

Object classes
The following object class definitions must not be modified:

� accessGroup
� accessRole
� alias
� referral
� replicaObject
� top

Attributes
The following attribute definitions must not be modified:

� Operational attributes
� Restricted attributes
� Root DSE attributes
� Schema definition attributes
� Configuration attributes
� User application attributes
� Syntaxes
� Matching rules
296 Understanding LDAP Design and Implementation

11.3 Indexing
Index rules attached to attributes make it possible to retrieve information faster. If
only the attribute is given, no indexes are maintained. ITDS provides the
following indexing rules:

� Equality
� Ordering
� Approximate
� Substring
� Reverse

Indexing rules specifications for attributes: Specifying an indexing rule for an
attribute controls the creation and maintenance of special indexes on the
attribute values. This greatly improves the response time to searches with filters
which include those attributes. The five possible types of indexing rules are
related to the operations applied in the search filter.

Equality
Applies to the following search operations:

equalityMatch '='

For example:

"cn = John Doe"

Ordering
Applies to the following search operation:

� greaterOrEqual '>='
� lessOrEqual '<='

For example:

"sn >= Doe"

Approximate
Applies to the following search operation:

approxMatch '~='

For example:

"sn ~= doe"
 Chapter 11. Schema management 297

Substring
Applies to the search operation using the substring syntax:

substring '*'

For example:

"sn = McC*"
"cn = J*Doe"

Reverse
Applies to the following search operation:

'*' substring

For example:

"sn = *baugh"

At a minimum, it is recommended that you specify equal indexing on any
attributes that are to be used in search filters.

11.4 Migrating the schema
Schema migrations are used most commonly when replicas servers are being
set up, or additional LDAP environments are being created. These migrations
allow the modifications made to a schema, adding, deleting, modifying any
objectclasses or attributes, to be carried through to all new directories.

When IBM Tivoli Directory Server 5.2 is being used, the command line
instructions should be followed. When z/OS LDAP is used, the schema2ldif
utility can be used.

11.4.1 Exporting the schema
In this section we discuss exporting the schema.

From the command line
The following command will dump the existing schema into a file called
schemaout in LDIF format.

ldapsearch -h <ipaddress> -L -D cn=<admindn> -w <password> -b
"cn=schema,<suffix>” objectclass=* > schemaout.ldif
298 Understanding LDAP Design and Implementation

Schema2LDIF utility
The schema2ldif utility offered by the z/OS platform is used primarily to migrate
from an RDBM or SDBM schema syntax to a schema syntax that will integrate
well with the TDBM backend. This utility takes .at and .oc files containing
attributes and objectclasses and outputs an ldif files that can be used with the
ldapmodifyschema2ldif -s at.in oc.in -d output.ldif -l log.out command
to be loaded into a TDBM backend LDAP directory.

The schema2ldif file can be found in the folder /usr/lpp/ldap/bin. In the following
example, the schema2ldif command is using two input files, at.in and oc.in, and
creating one ldif file as an output file. The log.out file is the file in which all activity
is logged for this utility. For additional information, including additional options for
this utility, see the z/OS LDAP Server Administration and Use Guide.

schema2ldif -s at.in oc.in -d output.ldif -l log.out

11.4.2 Importing the schema
Both methods of exporting the schema will result in an LDIF file. This LDIF file
can then be used by the following LDAP command to load the schema into the
directory.

ldapmodify -h ldaphost -p ldapport -D adminDN -w passwd -f schemaout.ldif

11.5 Dynamic schema
The IBM Tivoli Directory Server Version 5.2 includes dynamic schema support.
To perform a dynamic schema change, use the ldap_modify API with a DN of
cn=schema. Only one dynamic change to a schema entry can be made at a time.

To delete a schema entity, provide the oid in parentheses: (oid).

To add or replace a schema entity, you MUST provide a LDAP Version 3
definition and you MAY provide the IBM definition. In all cases, you must provide
only the definition or definitions of the schema entity that you want to affect.

For example, to delete the attribute type ‘cn’ (its OID is 2.5.4.3), use
ldap_modify() with:

LDAPMod attr;
LDAPMod *attrs[] = { &attr, NULL };
char *vals [] = { "(2.5.4.3)", NULL };
attr.mod_op = LDAP_MOD_DELETE;
attr.mod_type = "attributeTypes";
attr.mod_values = vals;
ldap_modify_s(ldap_session_handle, "cn=schema", attrs);
 Chapter 11. Schema management 299

To add a new attribute type bar with OID 20.20.20 that has a NAME of length
20chars:

char *vals1[] = { "(20.20.20 NAME fbarf SUP NAME)", NULL };
char *vals2[] = { "(20.20.20 LENGTH 20)", NULL };
LDAPMod attr1;
LDAPMod attr2;
LDAPMod *attrs[] = { &attr1, &attr2, NULL };
attr1.mod_op = LDAP_MOD_ADD;
attr1.mod_type = "attributeTypes";
attr1.mod_values = vals1;
attr2.mod_op = LDAP_MOD_ADD;
attr2.mod_type = "IBMattributeTypes";
attr2.mod_values = vals2;
ldap_modify_s(ldap_session_handle, "cn=schema", attrs);

Note: You cannot change the ACCESS-CLASS type to or from system or
restricted.

Note: Dynamic schema changes can be performed only by a replication
supplier or the administrator DN. When a dynamic schema change is
performed, it is replicated just like any other ldap_modify operation.
300 Understanding LDAP Design and Implementation

Chapter 12. Group and role management

This chapter discusses the way groups and roles are managed in the directory
server. The groups/roles are the easiest means of segregating users with like
profiles/privileges. For example, if you want to give a common permission to a
set of 100 users then it would be difficult if you try manipulating access on an
individual basis. On the other hand if you create a group with these 100 users as
its members and assign the permissions you want to the group, things would be
much more easier. On same lines you can create a role and have that role
assigned to these 100 users. You can set the permissions at the role level and
achieve the same thing as you do by using a group.

There is a very thin boundary between a role and a group. There is just a
conceptual difference between the two. Even the objectclass used to define a a
nd a Role are same. The Role is just a different view of a Group and vise-versa.
You say a group of engineers. Now it is also possible to create a Role with the
name engineer. Whoever conforms to this Role possesses the attributes
assigned to the Role. In other words, whoever is assigned the role of system
administrator possesses the privileges assigned to the role system
administrator. It is as like saying whoever belongs to the group of system
administrators would be carrying the attributes defined for the role system
administrators.

12
© Copyright IBM Corp. 1998, 2004. All rights reserved. 301

12.1 Groups
A group is a list, a collection of names. A groups can be used in attributes as like
aclentry, ibm-fliterAclEntry, and entryowner to implement access control or
in application-specific uses such as a mailing list (Refer Chapter 14, “Access
control” on page 395, for further information on aclentry, ibm-filterAclEntry and
entryowner attributes). Groups can be defined as either static, dynamic, or
nested.

12.1.1 Static groups
A static group defines each member individually using the structural objectclass
groupOfNames, groupOfUniqueNames, accessGroup, or accessRole, or by using the
auxiliary objectclass ibm-staticgroup. The objectclass groupOfNames has its
member attribute as a required attribute. The objectclass groupOfUniqueNames has
its uniqueMember attribute as a required attribute. The objectclasses accessGroup,
accessRole and ibm-staticgroup have their attribute member as an optional one
and hence can be empty/null (with no members) while creating the group. Note
that attributes member and uniqueMember attributes are multivalued.

A typical group entry is:

dn: cn=Dev.Staff,ou=Austin,c=US
objectclass: accessGroup
cn: Dev.Staff
member: cn=John Doe,o=IBM,c=US
member: cn=Jane Smith,o=IBM,c=US
member: cn=James Smith,o=IBM,c=US

Each group object contains a multivalued attribute consisting of member DNs.

Upon deletion of an access group, the access group is also deleted from all
ACLs to which it has been applied.

Let us see how a static group is created. There are two ways of doing the same.

Using Web Administration Tool
Using the Web Administration Tool:

1. Connect to the desired server using the Web Administration Tool.

2. If you have not done so already, expand the Directory management
category in the navigation area.

3. Click Add an entry.

4. Select one of the Structural object classes from the list box. You may select
any of the four objectclasses: groupOfNames, groupOfUniqueNames,
302 Understanding LDAP Design and Implementation

accessGroup, or accessRole. You also have an option to select any other
objectclass in this step and go to the next page.

5. If you have already specified one of the above four groups as your
objectclass then you may skip this step, else you can select the auxiliary
class ibm-staticGroup and press Next.

6. In the Relative DN field, enter the relative distinguished name (RDN) of the
group that you are creating, for example, cn=staticgroup.

7. In the Parent DN field, enter the distinguished name of the tree entry you
selected, for example, o=IBM, c=US. You can also click Browse to select the
Parent DN from the list. You can also expand the selection to view other
choices lower in the subtree. Specify your choice and click Select to specify
the Parent DN that you want. The Parent DN defaults to the entry selected in
the tree.

8. Now you would need to specify the member, if member is a mandatory field
(depends upon the objectclass you have chosen for your static group). If you
do not want to add members at this stage you may skip the step (this is
possible only in case the member/uniquemember attribute is optional).

9. The group is created at this point and you can view it as any other normal
entry.

The above procedure shows that creating a group is as like creating a normal
entry. The only point to remember is that you need to use the objectclasses as
applicable for groups, those mentioned above.

Through the command line
Here is the procedure of creating a static group using an LDIF file.

Assuming that we have an ldif file, test.ldif with the following entries:

dn: cn=staticGroup 1,o=ibm,c=us
objectclass: accessGroup
objectclass: top
cn: staticGroup 1

The following command would add the group for you:

C:\> ldapadd -D <admin DN> -w <admin PW> -i test.ldif
adding new entry cn=staticGroup 1,o=ibm,c=us

Note: If you started this task from the Manage entries panel, this field is
prefilled for you. You selected the Parent DN before clicking Add to start
the process of creating a group.
 Chapter 12. Group and role management 303

You can verify that the group actually exists or not, by browsing through the Web
Administration tool or by firing a search as like:

E:\>ldapsearch -D <admin DN> -w <admin PW> -b "cn=staticgroup 1,o=ibm,c=us"
objectclass=*
cn=staticGroup 1,o=ibm,c=us
objectclass=accessGroup
objectclass=top
cn=staticGroup 1

Now let us see the procedure for adding/removing a member to/from a group.

Using the Web Administration Tool
To use this:

1. If you have not done so already, expand the Directory management
category in the navigation area, then click Manage entries.

2. You can expand the various subtrees and select the entry (group) that you
want to work on. Click Edit attributes from the right-side tool bar.

3. At the Required attributes tab enter the values for the required attributes.

4. Search for the member attribute. Depending upon the objectclass, chosen for
the group, it may be in the tab of Required attributes or in the tab of Optional
attributes.

5. To add members to the group:

a. Click either Multiple values which is by the Member attribute field on the
Required attributes tab, or click Members by the Member attribute field on
the Members tab.

b. In the Member field, enter the DN of the entry you want to add.

c. Click Update/Add (depends upon the panel your in to add the member).

d. Click OK.

6. To remove members from the group:

a. Either click Multiple values by the Members attribute field on either the
Required attributes or the Other attributes tabs.

b. Select the entry you want to remove.

c. Click Remove.

d. Click OK.

Refer to Figure 12-1 on page 305 for the screenshot of the panel where you
would be adding/removing members to/from a group.
304 Understanding LDAP Design and Implementation

Figure 12-1 Add or remove members

Through command line
This syntax is not much different than the ldapmodify syntax you use to modify
an entry.

Adding a member
Assuming the fact that we have an ldif file, test.ldif, with the following contents:

dn: cn=staticGroup 1,o=ibm,c=us
changetype: modify
add: member
member: cn=member4,o=ibm,c=us

Here is the command you need to execute:

E:\>ldapmodify -D cn=root -w secret -f test.ldif
modifying entry cn=staticGroup 1,o=ibm,c=us

Here is the verification that the member actually got added:

E:\>ldapsearch -D cn=root -w secret -b "cn=staticgroup 1,o=ibm,c=us"
objectclass=* ibm-allmembers
cn=staticGroup 1,o=ibm,c=us
ibm-allmembers=CN=USER1,O=IBM,C=US
ibm-allmembers=CN=MEMBER4,O=IBM,C=US

Do not worry much about the attribute used to fetch the members of the group.
You will be seeing more details on the same, shortly.
 Chapter 12. Group and role management 305

Removing a member
Assuming the fact that we have an ldif file, test.ldif, with the following contents:

dn: cn=staticGroup 1,o=ibm,c=us
changetype: modify
add: member
member: cn=member4,o=ibm,c=us

Here is the command you need to execute:

E:\>ldapmodify -D cn=root -w secret -f test.ldif
modifying entry cn=staticGroup 1,o=ibm,c=us

Here is the procedure you need to use to verify that the member actually got
removed:

E:\>ldapsearch -D cn=root -w secret -b "cn=staticgroup 1,o=ibm,c=us"
objectclass=* ibm-allmembers
cn=staticGroup 1,o=ibm,c=us
ibm-allmembers=CN=USER1,O=IBM,C=US

12.1.2 Dynamic groups
A dynamic group defines its members differently than a static group. Instead of
listing them individually, the dynamic group defines its members using an LDAP
search. The dynamic group uses the structural objectclass groupOfURLs (or
auxiliary objectclass ibm-dynamicGroup) and the attribute, memberURL to define
the search using a simplified LDAP URL syntax.

ldap:///<base DN of search>? ?<scope of search>?<searchfilter>

Where:

� base DN of search

This is the point from which the search begins in the directory. It can be the
suffix or root of the directory such as ou=Austin. This parameter is required.

Note: From the LDAP URL that is shown above it is clear, that the host name
must not be present in the syntax. The remaining parameters are just like
normal ldap URL syntax. Each parameter field must be separated by a ?, even
if no parameter is specified. Normally, a list of attributes to return would be
included between the base DN and scope of the search. This parameter is
also not used by the server when determining dynamic membership, and so
may be omitted, however, the separator ? must still be present.
306 Understanding LDAP Design and Implementation

� scope of search

Specifies the extent of the search. The default scope is base.

– base - Returns information only about the base DN specified in the URL.

– one - Returns information about entries one level below the base DN
specified in the URL. It does not include the base entry.

– sub - Returns information about entries at all levels below and includes the
base DN.

� searchfilter

This is the filter that you want to apply to the entries within the scope of the
search. See the ldapsearch filter option in Chapter 10 for information about
the syntax of the searchfilter. The default is objectclass=*.

The search for dynamic members is always internal to the server, so unlike a full
ldap URL, a host name and port number is never specified, and the protocol is
always ldap (never ldaps). The memberURL attribute may contain any kind of
URL, but the server only uses memberURLs beginning with ldap:/// to determine
dynamic membership.

Examples
A single entry in which the scope defaults to base and the filter defaults to
objectclass=*:

ldap:///cn=John Doe, cn=Employees, o=Acme, c=US

All entries that are 1-level below cn=Employees, and the filter defaults to
objectclass=*:

ldap:///cn=Employees, o=Acme, c=US??one

All entries that are under o=Acme,c=us with the objectclass=person:

ldap:///o=Acme, c=US??sub?objectclass=person

Depending on the object classes you use to define user entries, those entries
might not contain attributes which are appropriate for determining group
membership. You can use the auxiliary object class, ibm-dynamicMember, to
extend your user entries to include the ibm-group attribute. This attribute allows
you to add arbitrary values to your user entries to serve as targets for the filters of
your dynamic groups. For example, the members of this dynamic group are
entries directly under the cn=users,ou=Austin entry that have an ibm-group
attribute of GROUP1:

dn: cn=GROUP1,ou=Austin
objectclass: groupOfURLs
cn: GROUP1
memberURL: ldap:///cn=users,ou=Austin??one?(ibm-group=GROUP1)
 Chapter 12. Group and role management 307

Here is an example member of cn=GROUP1,ou=Austin:

dn: cn=Group 1 member, cn=users, ou=austin
objectclass: person
objectclass: ibm-dynamicMember
sn: member
userpassword: memberpassword
ibm-group: GROUP1

Now let us see the procedure for adding/removing a member to/from a group.

Using the Web Administration Tool
The procedure for adding a dynamic group through the Web Administration tool
is as like the procedure for static groups, except for the fact that:

� You need to use the structural object class groupOfUrls or either of the
auxiliary classes ibm-dynamicGroup or ibm-dynamicMember for creating the
dynamic group.

� You need to mention the LDAP URL for the dynamic members against the
memberURL attribute, in case the objectclass, chosen for the group is either
groupOfUrls or ibm-dynamicGroup.

� In case you have selected ibm-dynamicMember as your auxiliary objectclass,
you need to use the attribute ibm-group as explained earlier.

� Both the memberURL and the ibm-group are multivalued optional attributes.

Refer to Figure 12-2 on page 309 for a screenshot of the panel listing the users
of a dynamic group, based on the LDAP URL you have specified. Please note
that a similar output is expected to verify that the dynamic group creation was
successful.
308 Understanding LDAP Design and Implementation

Figure 12-2 Members evaluated against an LDAP URL

Now let us see the similar procedure via command line.

Using the command line
Assuming that we have an ldif file named test.ldif as like:

cn=dynamicgroup 1,o=ibm,c=us
objectclass=groupOfURLs
objectclass=top
cn=dynamicgroup 1
memberurl=ldap:///o=ibm,c=us??one?cn=user*

Execute the following command to add the group:

E:\>ldapadd -D cn=root -w secret -f test.ldif
adding new entry cn=dynamicgroup 1,o=ibm,c=us

Let us see what are the members, that the group contains:

E:\>ldapsearch -D cn=root -w secret -b "cn=dynamicgroup 1,o=ibm,c=us"
objectclass=* ibm-allmembers
cn=dynamicgroup 1,o=ibm,c=us
 Chapter 12. Group and role management 309

ibm-allmembers=CN=USER1,O=IBM,C=US
ibm-allmembers=CN=USER3,O=IBM,C=US
ibm-allmembers=CN=USER4,O=IBM,C=US

Deleting or removing members is very much like normal entries. You would just
need to modify the relevant attributes that hold the URL to the group members.
You can do this either through the Web Administration Tool or through the
command line.

12.1.3 Nested groups
The nesting of groups enables the creation of hierarchical relationships that can
be used to define inherited group membership. A nested group is defined as a
child group entry whose DN is referenced by an attribute contained within a
parent group entry. A parent group is created by extending one of the structural
group object classes (groupOfNames, groupOfUniqueNames, accessGroup,
accessRole, or groupOfURLs) with the addition of the ibm-nestedGroup auxiliary
object class. After nested group extension, zero or more ibm-memberGroup
attributes may be added, with their values set to the DNs of nested child groups.
For example:

dn: cn=Group 2, cn=Groups, o=IBM, c=US
objectclass: groupOfNames
objectclass: ibm-nestedGroup
objectclass: top
cn: Group 2
description: Group composed of static, and nested members.
member: cn=Person 2.1, cn=Dept 2, cn=Employees, o=IBM, c=US
member: cn=Person 2.2, cn=Dept 2, cn=Employees, o=IBM, c=US
ibm-memberGroup: cn=Group 8, cn=Nested Static, cn=Groups, o=IBM, c=US

Now let us see the procedure for adding/removing a member to/from a group.

Using the Web Administration Tool
The procedure for adding a dynamic group through the Web Administration tool
remains the same as the static group, except for the fact that:

� You need to have one structural objectclass as like the one for static groups /
dynamic groups.

� You need to have one auxiliary objectclass, which happens to be
ibm-nestedGroup.

Note: The introduction of cycles into the nested group hierarchy is not
allowed. If it is determined that a nested group operation results in a cyclical
reference, either directly or through inheritance, it is considered a constraint
violation and therefore, the update to the entry fails.
310 Understanding LDAP Design and Implementation

� The rules for mentioning the static members/dynamic members remain the
same as explained earlier.

� The nested group needs to be mentioned against the ibm-memberGroup
attribute, which happens to be a multi-valued, optional attribute.

Refer Figure 12-3 for a screenshot of the panel listing the users of a nested
group, based on the static members and the member group(s) that you have
specified. Please note that a similar output is expected to verify that the nested
group creation was successful.

Figure 12-3 Member listing of a nested group

The procedure on the command line can be derived on the lines of command line
procedures for static and dynamic groups, it is just a matter of using the right
objectclass, while defining the group.

12.1.4 Hybrid groups
Any of the structural group object classes, mentioned in the earlier sections, can
be extended such that group membership is described by a combination of static,
dynamic, and nested member types.
 Chapter 12. Group and role management 311

For example:

dn: cn=Group 10, cn=Groups, o=IBM, c=US
objectclass: groupOfURLs
objectclass: ibm-nestedGroup
objectclass: ibm-staticGroup
objectclass: top
cn: Group 10
description: Group composed of static, dynamic, and nested members.
memberURL: ldap:///cn=Austin, cn=Employees, o=IBM,
c=US??one?objectClass=person
ibm-memberGroup: cn=Group 9, cn=Nested Dynamic, cn=Groups, o=IBM, c=US
member: cn=Person 10.1, cn=Dept 2, cn=Employees, o=IBM, c=US
member: cn=Person 10.2, cn=Dept 2, cn=Employees, o=IBM, c=US

The methods to create such a group are just the combination of what we have
seen in case of static groups, dynamic groups and nested groups as three
separate cases.

12.1.5 Determining group membership
Two operational attributes can be used to query aggregate group membership.
For a given group entry, the ibm-allMembers operational attribute enumerates
the aggregate set of group membership, including static, dynamic, and nested
members, as described by the nested group hierarchy. For a given user entry,
the ibm-allGroups operational attribute enumerates the aggregate set of groups,
including ancestor groups, to which that user has membership.

A requester may only receive a subset of the total data requested, depending on
how the ACLs have been set on the data. Anyone can request the
ibm-allMembers and ibm-allGroups operational attributes, but the data set
returned only contains data for the LDAP entries and attributes that the requester
has access rights to. The user requesting the ibm-allMembers or ibm-allGroups
attribute must have access to the member or uniquemember attribute values for
the group and nested groups in order to see static members, and must be able to
perform the searches specified in the memberURL attribute values in order to
see dynamic members. Let us take some examples. First let us see a hierarchy
tree, which is going to be used in our examples.
312 Understanding LDAP Design and Implementation

Figure 12-4 Hierarchy of groups and members

Hierarchy examples
For this example as shown in Figure 12-4, m1 and m2 are in the member attribute
of g2. The ACLs for g2 allows user1 to read the member attribute, but user2 does
not have access to the member attribute. The entry LDIF for the g2 entry is as
follows:

dn: cn=g2,cn=groups,o=ibm,c=us
objectclass: accessGroup
cn: g2
member: cn=m1,cn=users,o=ibm,c=us
member: cn=m2,cn=users,o=ibm,c=us
aclentry: access-id:cn=user1,cn=users,o=ibm,c=us:normal:rsc
aclentry:
access-id:cn=user2,cn=users,o=ibm,c=us:normal:rsc:at.member:deny:rsc

The g4 entry uses the default aclentry, which allows both user1 and user2 to read
its member attribute. The LDIF for the g4 entry is as follows:

dn: cn=g4,cn=groups,o=ibm,c=us
objectclass: accessGroup
cn: g4
member: cn=m5, cn=users,o=ibm,c=us

The g5 entry is a dynamic group, which gets its two members from the
memberURL attribute. The LDIF for the g5 entry is as follows:

dn: cn=g5, cn=groups,o=ibm,c=us
objectclass: container
objectclass: ibm-dynamicGroup
cn: g5

g4

g3

g5 g6

m5 m3,m4

g2

m1,m2

g1
 Chapter 12. Group and role management 313

memberURL: ldap:///cn=users,o=ibm,c=us??sub?(|(cn=m3)(cn=m4))

The entries m3 and m4 are members of group g5 because they match the
memberURL attribute. The ACL for the m3 entry allows both user1 and user2 to
search for it. The ACL for the m4 entries does not allow user2 to search for it. The
LDIF for m4 is as follows:

dn: cn=m4, cn=users,o=ibm,c=us
objectclass:person
cn: m4
sn: four
aclentry: access-id:cn=user1,cn=users,o=ibm,c=us:normal:rsc
aclentry: access-id:cn=user2,cn=users,o=ibm,c=us

Example 1
User1 does a search to get all the members of group g1. User1 has access to all
members, so they are all returned.

ldapsearch -D cn=user1,cn=users,o=ibm,c=us -w user1pwd -s base -b cn=g1,
cn=groups,o=ibm,c=us objectclass=* ibm-allmembers

cn=g1,cn=groups,o=ibm,c=us
ibm-allmembers: CN=M1,CN=USERS,O=IBM,C=US
ibm-allmembers: CN=M2,CN=USERS,O=IBM,C=US
ibm-allmembers: CN=M3,CN=USERS,O=IBM,C=US
ibm-allmembers: CN=M4,CN=USERS,O=IBM,C=US
ibm-allmembers: CN=M5,CN=USERS,O=IBM,C=US

Example 2
User2 does a search to get all the members of group g1. User2 does not have
access to members m1 or m2 because they do not have access to the member
attribute for group g2. User2 has access to the member attribute for g4 and
therefore has access to member m5. User2 can perform the search in the group
g5 memberURL for entry m3, so that members are listed, but cannot perform the
search for m4.

ldapsearch -D cn=user2,cn=users,o=ibm,c=us -w user2pwd -s base -b cn=g1,
cn=groups,o=ibm,c=us objectclass=* ibm-allmembers

cn=g1,cn=groups,o=ibm,c=us
ibm-allmembers: CN=M3,CN=USERS,O=IBM,C=US
ibm-allmembers: CN=M5,CN=USERS,O=IBM,C=US

Example 3
User2 does a search to see if m3 is a member of group g1. User2 has access to
do this search, so the search shows that m3 is a member of group g1.

ldapsearch -D cn=user2,cn=users,o=ibm,c=us -w user2pwd -s base -b cn=m3,
cn=users,o=ibm,c=us objectclass=* ibm-allgroups

cn=m3,cn=users,o=ibm,c=us
ibm-allgroups: CN=G1,CN=GROUPS,O=IBM,C=US
314 Understanding LDAP Design and Implementation

Example 4
User2 does a search to see if m1 is a member of group g1. User2 does not have
access to the member attribute, so the search does not show that m1 is a
member of group g1.

ldapsearch -D cn=user2,cn=users,o=ibm,c=us -w user2pwd -s base -b
cn=m1,cn=users,o=ibm,c=us objectclass=* ibm-allgroups

cn=m1,cn=users,o=ibm,c=us

Checking group membership using the Web Administration Tool
To check:

1. Connect to the relevant server through Web Administration Tool.

2. If you have not done so already, expand the Directory management
category in the navigation area.

3. Click Manage entries.

4. Select a user from the directory tree and click the Edit attributes icon that
appears at the right side of the main panel.

5. Click the Memberships tab.

6. That will show you all the groups to which this user/entry belongs to and also
a lot of additional stuff as is explained further.

Refer to Figure 12-5 for the panel which shows the group memberships of a user.

Figure 12-5 Change group membership
 Chapter 12. Group and role management 315

To modify the memberships for the user, the Change memberships panel (as
shown in Figure 12-5 on page 315) displays the Available groups to which the
user can be added, as well as the entry’s Static Group Memberships.

1. Select a group from Available groups and click Add to make the entry a
member of the selected group.

2. Select a group from Static Group Memberships and click Remove in case
you need to remove the entry from the selected group.

3. Click OK to save your changes or click Cancel to return to the previous panel
without saving your changes.

12.1.6 Group object classes
In this section we discuss group object classes.

ibm-dynamicGroup
This auxiliary class allows the optional memberURL attribute. Use it with a
structural class such as groupOfNames to create a hybrid group with both static
and dynamic members.

ibm-dynamicMember
This auxiliary class allows the optional ibm-group attribute. Use it as a filter
attribute for dynamic groups.

ibm-nestedGroup
This auxiliary class allows the optional ibm-memberGroup attribute. Use it with a
structural class such as groupOfNames to enable sub-groups to be nested within
the parent group.

ibm-staticGroup
This auxiliary class allows the optional member attribute. Use it with a structural
class such as groupOfURLs to create a hybrid group with both static and dynamic
members.

12.1.7 Group attribute types
In this section we discuss group attribute types.

Note: The ibm-staticGroup is the only class for which member is optional, all
other classes taking member require at least 1 member.
316 Understanding LDAP Design and Implementation

ibm-allGroups
Shows all groups to which an entry belongs. An entry can be a member directly
by the member, uniqueMember, or memberURL attributes, or indirectly by the
ibm-memberGroup attribute. This Read-only operational attribute is not allowed in
a search filter.

ibm-allMembers
Shows all members of a group. An entry can be a member directly by the member,
uniqueMember, or memberURL attributes, or indirectly by the ibm-memberGroup
attribute. This Read-only operational attribute is not allowed in a search filter.

ibm-group
This is an attribute taken by the auxiliary class ibm-dynamicMember. Use it to
define arbitrary values to control membership of the entry in dynamic groups. For
example, add the value “Bowling Team” to include the entry in any memberURL
that has the filter “ibm-group=Bowling Team”.

ibm-memberGroup
This is an attribute taken by the auxiliary class ibm-nestedGroup. It identifies
sub-groups of a parent group entry. Members of all such sub-groups are
considered members of the parent group when processing ACLs or the
ibm-allMembers and ibm-allGroups operational attributes. The sub-group entries
themselves are not members. Nested membership is recursive.

12.2 Roles
Role-based authorization is a conceptual complement to the group-based
authorization, and is useful in some cases. As a member of a role, you have the
authority to do what is needed for the role in order to accomplish a job. Unlike a
group, a role comes with an implicit set of permissions. There is not any built-in
assumption about what permissions are gained (or lost) by being a member of a
group.

Roles are similar to groups in that they are represented in the directory by an
object. Additionally, roles contain a group of DNs. Roles which are to be used in
access control must have an objectclass of AccessRole. The Accessrole
objectclass is a subclass of the GroupOfNames objectclass.

For example, if there is a collection of DNs such as ‘sys admin’, your first reaction
may be to think of them as the ‘sys admin group’ (since groups and users are the
most familiar types of privilege attributes). However, since there are a set of
 Chapter 12. Group and role management 317

permissions that you would expect to receive as a member of ‘sys admin’ the
collection of DNs may be more accurately defined as the ‘sys admin role’.

12.3 Summary
Now let us go through what we have covered in this chapter:

� We have seen that the directory management becomes much easier by
means of groups and roles.

� We have seen the different types of groups:

– Static groups

– Dynamic groups

– Nested groups

– Hybrid groups

� We have seen how we can determine whether a given user is a member of a
specific group and vice-versa.

� We have seen the objectclasses and attributes pertaining to groups.

� We have seen a set of examples to explain the concept and implementation
of groups and roles.
318 Understanding LDAP Design and Implementation

Chapter 13. Replication

Replication is the technique of duplicating data between multiple directories for
performance, scalability and redundancy. It is a way to bring multiple geographic
areas together into one enterprise directory.

These multiple copies are kept in sync with one or more main directory server
called Supplier or what most call a master or writable server and one or more
Consumers or what most call replica or read only servers.

Through replication, a change made to one directory is propagated to one or
more additional directories. In effect, a change to one directory shows up on
multiple different directories.

Replication provides a directory user with two main advantages:

� Reliability: The consumers act as backup copies of the suppliers and data can
be restored from the consumer in case all data is lost from the supplier due to
some catastrophic failure. With multiple masters you will also have a writable
backup to take over if the first master goes down.

� Performance: Client search requests can be distributed across the
Consumers instead of the single Supplier, thereby reducing the response
time of the Supplier and hence increasing performance. With multiple master
you will also be able to distribute applications to different masters to offload
the writable work on having only one master.

13
© Copyright IBM Corp. 1998, 2004. All rights reserved. 319

13.1 General replication concepts
This section defines the general replication concepts.

13.1.1 Terminology
IBM Directory 4.1 and earlier supported a master-replica replication model.
There are three types of directories for this: masters, replicas, and peers.

1. Master: The master server contains the master directory information from
where updates are propagated to the replicas. All changes are made and
occur on the master server, and the master is responsible for propagating
these changes to the replicas.

2. Replica: An additional server that contains a directory replica. The replicas
must be exact copies of the master. The replica provides a backup to the
master server. Even if the master server crashes, or is unreadable, the replica
can still fulfill search requests and provide access to the data. A replica can
be promoted to a master if the master will no longer be available.

3. Peer to Peer: Peer replication is a replication in which multiple servers are
masters. However, unlike a multi-master environment. no conflict resolution is
done among peer servers. LDAP servers accept the updates provided by
peer servers, and update their own copies of the data. No consideration is
given for the order the updates are received, or whether multiple updates
conflict.

With IBM Directory 5.1 and later there have been a number of changes and
improvements. The master/replica model was changed to a Supplier/Consumer
model. The following identify the supplier/consumer replication methods
available:

1. Cascading replication: A replication topology in which there are multiple tiers
of servers. A peer/master server replicates to a set of read-only (forwarding)
servers which in turn replicate to other servers. Such a topology off-loads
replication work from the master servers.

2. Consumer server: A server which receives changes through replication from
another (supplier) server.

3. Credentials: Identifies the method and required information that the supplier
uses in binding to the consumer. For simple binds, this includes the DN and
password. The credentials are stored in an entry and the DN of this entry is
specified in the replica agreement.

4. Forwarding server: A read-only server that replicates all changes sent to it.
This contrasts to a peer/master server in that it is read only and it can have no
peers.
320 Understanding LDAP Design and Implementation

5. Gateway server: A server that forwards all replication traffic from the local
replication site where it resides to other Gateway servers in the replicating
network. Also receives replication traffic from other Gateway servers within
the replication network, which it forwards to all servers on its local replication
site. Gateway servers must be masters (writable).

6. Master server: A server which is writable (can be updated) for a given
subtree.

7. Nested subtree: A subtree within a replicated subtree of the directory.

8. Peer server: The term used for a master server when there are multiple
masters for a given subtree. A peer server does not replicate changes sent to
it from another peer server; it only replicates changes that are originally made
on it or are received from another client not bound as the Master Server DN.

9. Replica group: The first entry created under a replication context has
objectclass ibm-replicaGroup and represents a collection of servers
participating in replication. It provides a convenient location to set ACLs to
protect the replication topology information. The administration tools currently
support one replica group under each replication context, named
ibm-replicagroup=default.

10.Replica subentry: Below a replica group entry, one or more entries with
objectclass ibm-replicaSubentry may be created; one for each server
participating in replication as a supplier. The replica subentry identifies the
role the server plays in replication: master or read-only. A read-only server
might, in turn, have replication agreements to support cascading replication.

11.Replicated subtree: A portion of the DIT that is replicated from one server to
another. Under this design, a given subtree can be replicated to some servers
and not to others. A subtree can be writable on a given server, while other
subtree’s may be read-only.

12.Replicating network: A network that contains connected replication sites.

13.Replication agreement: Information contained in the directory that defines the
'connection' or 'replication path' between two servers. One server is called the
supplier (the one that sends the changes) and the other is the consumer (the
one that receives the changes). The agreement contains all the information
needed for making a connection from the supplier to the consumer and
scheduling replication.

14.Replication context: Identifies the root of a replicated subtree. The
ibm-replicationContext auxiliary object class may be added to an entry to
mark it as the root of a replicated area. The configuration information related
to replication is maintained in a set of entries created below a replication
context.

15.Replication site: A Gateway server and any master, peer or replica servers
configured to replicate together.
 Chapter 13. Replication 321

16.Schedule: Replication can be scheduled to occur at particular times, with
changes on the supplier accumulated and sent in a batch. The replica
agreement contains the DN for the entry that supplies the schedule.

17.Supplier server: A server which sends changes to another (consumer) server.

13.1.2 How replication functions
Specific entries (suffixes or non-suffix entries) in the directory are identified as
the roots of replicated subtrees by adding the ibm-replicationContext auxiliary
class to them. Any entry added below this root, as its direct or indirect child, will
be replicated to the respective replica servers as defined in the replication
agreement. The replicated subtree continues down the DIT until it reaches
another entry with the ibm-replicationContext auxiliary class. At this point the
former replicated subtree ends and new replicated subtree begins. All the
replicated subtrees get independently replicated and may get replicated to the
same or different replicas using the same or different credentials.

All replicated roots have a replica group entry created directly below them. It
gives a collective view of server participating in replication for the particular
replicated root as all replica subentries and agreements are created below it.

Every server that acts as a supplier has a corresponding ibm-replicaSubentry
entry created below the replica group. This entry contains the mandatory
server-id of the supplier server among other things.

Each replica server is represented by an ibm-replicationAgreement entry
created below the ibm-replicaSubentry. The replication agreement represents a
path from the supplier to the consumer. If we have an
ibm-replicationAgreement entry for server B created directly below the
ibm-replicaSubentry for server A, then B is replica of A for the given subtree.
Hence, any changes made to the given replicated root/subtree at server A will be
propagated to server B.

Any updates directed against a read-only replica are automatically redirected to
the corresponding supplier which then sends the updates to the replica.

Figure 13-1 on page 323 shows the hierarchy of the above mentioned
objectclasses in the DIT.

Note: While adding the objectclasses, additional information as required for
the objectclasses should be entered. Two replicas have been shown in the
figure, but any number of replicas can be configured for a given supplier.
322 Understanding LDAP Design and Implementation

Figure 13-1 Hierarchy of the different object classes required in replication

Starting with IBM Directory Server 5.1, the roles played by a directory server in a
replication topology no more apply to the entire server (DIT) but to a particular
subtree in the Server (DIT). This means, a given directory server can be a Master
/ Peer (Supplier) with respect to one subtree and a replica (Consumer) with
respect to another subtree at the same time.

Another change that was made to the IBM Directory starting with 5.1 was the
adding of ibm-slapd Server Id. This is a single value attribute that identifies the
server for use in replication. By default when you install the directory for the first
time a UUID type number is generated and assigned to that directory. This is
used anytime you need to identify a server in the replication. It can be found in
the ibmslapd.conf file under dn: cn=Configuration

ibm-slapdServerId: 1320e26e-3457-4e9c-8682-4edfd9dd0143

Note: This ServerID can be used but it does present a problem with
troubleshooting and making complex replication agreements. One thing that
you can do is to change this number into a more defined name that you can
used to better understand and create replication agreements. One main thing
that you need to make sure is that these names need to be unique. For
example:

#ibm-slapdServerId: 1320e26e-3457-4e9c-8682-4edfd9dd0143
ibm-slapdServerId: win2k1uid

The best time to do this is when you first install the directory and before you
config the directory with ldapxcfg. Edit the ibmslapd.conf file and add the
following line after ibm-slapdPwEncryption: imask -

ibm-slapdServerId: win2k1uid

Then save the file and go back to ldapxcfg and finish the configuration of the
directory.

o=ibm,c=us ((Replicated Subtree with ibm-replicationContext auxilliary class)

ibm-replicaGroup=default (replica group entry)

ibm-replicaSubentry (this represents the supplier server)

ibm-replicationAgreement (for first replica)

ibm-replicationAgreement (for second replica)
 Chapter 13. Replication 323

13.2 Major replication topologies
The major replication topologies found in IBM Tivoli Directory server can be one
of the following types. But these can be more or less complex depending upon
the number or directory servers participating in the topology.

13.2.1 Simple master-replica topology
It is the simplest of all topologies. It consists of one Master (supplier) directly
propagating the changes to a replica (consumer) server. In case of multiple
masters updating a single replica server, each subtree in the replica should
receive updates from only one master. Otherwise, changes made by one master
on the replica will be overwritten by the other. Two masters writing to the same
subtree in the replica is only possible in case of peer to peer topology.

In Figure 13-2, M1 is the master and R1 and R2 are two replicas.

Figure 13-2 Simple master-replica scenario

13.2.2 Master-forwarder-replica topology (ITDS 5.2 and later)
In this scenario, the master (supplier) does not send the updates to the replica
directly. Another server, called the Forwarder, lies between the Master and the
replica and all changes from the master come via the forwarder to the replica.
Hence, two replication agreements, one from the master to the forwarder and the
other from the forwarder to the replica have to be created. The forwarder is
read-only copy and cannot have peers. The forwarder itself maintains copy of the
data that it receives from the master and then replicates it to the replicas. Such a
replication scenario is also called Cascading Replication.

The advantages of using a forwarder is that the master need not replicate the
changes to all the replicas. It sends the changes to the forwarder and its the
responsibility of the forwarder to push them to all the replicas. Thus the master is
free to do other tasks. Having a forwarder causes redundancy of data to deal

R1 R2

M1
324 Understanding LDAP Design and Implementation

with any catastrophic incident resulting in loss of data. Also, the forwarder can be
promoted to a master in case all data from the master is lost.

A forwarder is created by inserting a replica beneath an existing replica. The
existing replica becomes a forwarder.

In Figure 13-3, M1 is the master, F1 was the previous replica, which is now a
forwarder and R1 is the new replica which was inserted below the existing replica
to convert it into a forwarder.

Figure 13-3 Master-forwarder replica topology

The main advantages of using peer servers in replication is performance
enhancement (by providing local servers for accepting updates in widely
distributed network) and reliability (since a peer server acts as a backup server
for the other peer server).

13.2.3 GateWay Replication Topology (ITDS 5.2 and later)
Gateway servers are special types of peer servers which replicate changes
received only from remote replication sites to all masters/replicas in the local
replication site. A replication site is collection of masters/peers, gateways,
forwarders and replicas. A master/peer is converted into a gateway server by
adding the ibm-replicaGateway auxiliary class to the ibm-replicaSubentry entry
corresponding to the master/peer. A replica or forwarder cannot be a gateway
server.

The main advantage of using gateway servers is to reduce network traffic
between two replication sites. If the replication sites are located in different LANs,
the network traffic between the LANs is reduced. Gateway servers replicate the

R1

Previous replica now
becomes forwarder.

New replica inserted
below the existing
replica.

M1

F1
 Chapter 13. Replication 325

changes to all the servers, including peers, in the local site but not to other
gateway servers.

Figure 13-4 shows an example topology using gateway servers.

Figure 13-4 Replication topology with gateway servers

13.2.4 Peer replication
With any project design that would consist of two or more Peer to Peer servers
for fault tolerant 24x7x365 uptime. All directory operations will be performed on
one Peer server. These changes will be replicated automatically and
immediately to the second or more peers. If the first peer fails, or needs to be
taken offline for maintenance, the application can be reconfigure to route
directory protocol traffic to the another peer. The other peers will queue any
updates they process and forward them to the first peer as soon as it is brought
back online.

Peer replication is an environment in which more that one LDAP server accepts
updates from clients. The servers accept changes from other peer servers and

Replication Site 1

P=Peer Server
G=Gateway Server
R=Read-Only Replica

P1

R1

G1

P2

P4

R2

G2

P3

R3

G3 P5

R4

G4

Replication Site 2

Replication Site 3 Replication Site 4
326 Understanding LDAP Design and Implementation

apply them to their own copies of the DIT. The changes are applied in the order
they receive them. A peer to peer LDAP configuration can often be the most
effective way to deploy the IBM Tivoli Directory Server LDAP to meet the
business requirement for an enterprise directory service to be continually
available for update on a 24x7 basis. A Multiple Peer configuration avoids loss of
directory updates capability due to the failure of a single master server, hardware
failure or site disaster, or the need to take the master LDAP server offline for
service.

Update conflict prevention in peer configurations
Peer replication between IBM Directory Server peers may be used when the
access patterns of the applications that update directory entries are controlled to
prevent update conflicts. The LDAP name space and applications must be
designed to ensure that the same directory entries will not be updated
concurrently by clients on different peers. This is normally done by using a load
balancer type device that can be either hardware or software controlled.

How peer to peer works
When a peer receives an update from a client, it makes the change to its own
DIT and forwards the change to all the other Peer and Replica servers it knows.
A peer must be configured to know about all other peers and replica servers that
should be updated when it accepts an update from a client and how to connect to
them.

Updates that are received from peer servers are not propagated to any other
replica or peer server definitions. When an update is received by a peer server,
the update is applied to the database. If the update was received from a peer
server, the update is applied and processing stops. If the update was made by
another client, the directory is updated, and the update information is propagated
to the other peers and replicas. This prevents peers from continually replicating
an update to each other. Because peer servers do not propagate updates to
other replica definitions.

A peer maintains a copy of each change it accepts from a client in its replication
queue until it receives a positive acknowledgement from all other peers and
replicas that the change has been accepted. If a peer cannot contact another
peer or replica, it will log the problem in its slapd.errors file and keep the change
in its replication queue. It will periodically attempt to connect to the failed server
until the problem is corrected. Therefore, a failed peer server should be
unconfigured if it is not going to be restarted.

At startup, a server queries the database to determine if there are any replica
objects. These objects define replica or peer servers for this particular server.
 Chapter 13. Replication 327

The schema definition for these objects describes how a server can locate and
connect to the replica or peer server, as well as other replication properties.

Configuration for peer to peer in IBM Directory 4.1 and earlier
Within the slapd32.conf file there are currently several parameters relating to
replication. If an ibm-slapdMasterServerDn and ibm-slapdMasterServerPW are
specified, this server is presumed to be a read-only replica. The
ibm-slapdMasterServerDn and ibm-slapdMasterServerPW in the slapd32.conf file
must match the replicaBindDn and replicaCredentials in the replica object
definition found on the master server. A peer server is designated in the
slapd32.conf file with the attributes ibm-slapdPeerDn and ibm-slapdPeerPW in
the cn=Master,cn=Configuration object.

Add a replica definition to all servers within the peer network representing each
of the other peer and replica servers in the network. This is different from the
replica, which does not have any replica definitions within the database. The
ibm-slapdPeerDn and the ibm-slapdPeerPW in a server's slapd32.conf file must
match the replicaBindDn and replicaCredentials in replica objects on the other
peer servers that bind to it. Because these passwords must match, the same
peer replica object definitions can be used on all peer servers.

A server can be either a replica server or a peer server, it can not be both. That
means that the ibm-slapdMasterServerDn parameter in the slapd32.conf file is
mutually exclusive with the ibm-slapdPeerDn configuration file attribute. If both
are defined in the slapd32.conf file, the server does not start and the following
message is logged in the slapd.errors file: Can not specify both masterServerDn
and peerDn

Configuration for Multiple Peer to Peer from a normal master/slave as shown in
the next two figures. The first figure (Figure 13-5 on page 329) shows how the
master/slave was set up the next figure (Figure 13-6 on page 330) shows how
peer to peer will look like when it is configured.

Note: The ibm-slapdPeerDn cannot be the same as the ibm-slapdAdminDn
for peer replication to function correctly. This designates a writable copy of the
database.
328 Understanding LDAP Design and Implementation

Figure 13-5 Original LDAP flow

Firewall

Firewall

UK Servers

Georgia, USA
Servers

NJ, USA
Servers

Replica
V14

Replica
V15

Replica
X02

Replica
X03

Replica
936

Replica
937

Master
935
 Chapter 13. Replication 329

Figure 13-6 Multiple peer LDAP flow

Peer 935 listens on port 636 (using SSL), and is a peer server of Peer X03 and
Peer V15 in (Figure 13-6). Before we put in Replica X03 and Replica V15 as Peer
servers (Figure 13-5 on page 329), you will have an entry dn: cn=Master
Server, cn=Configuration in the slapd32.conf file. This tells us that these
servers are Replicas. What will be needed is to turn off replication, and stop the
server before proceeding.

Peer 1 is configured to recognize Peer 2 and 3 as a peer and the password Peer
2 and 3 will use to bind to Peer 1 by the following LDIF file. This LDIF file updates
the slapd32.conf file. This configuration may also be added to the configuration
file manually. If you do update the file manually, you should always make a
backup copy of the file first. All three machine peers must use the same ID and
passwords.

Firewall

Firewall

UK Servers

Georgia, USA
Servers

NJ, USA
Servers

Replica
V14

Peer
X02

Replica
936

Replica
937

Peer
935

Peer
V15

Peer
X03
330 Understanding LDAP Design and Implementation

dn:cn=Master Server, cn=Configuration
cn:Master Server
ibm-slapdPeerDn:cn=peer
ibm-slapdPeerPW:< same peer password>
objectclass:ibm-slapdReplication
objectclass:top

A replica object is added to the Peer 1 database through the following ldif file.
The replica object is added to the cn=localhost suffix of the database. It specifies
the bind DN and password that Peer 1 will use when it binds as a peer to Peer 2
and 3. You would also add all the replica info of the other replicas in your tree to
this list (not shown).

dn: cn=Peer2, cn=localhost
cn: Peer2
replicaBindDN: cn=peer
replicaCredentials: <same peer password>
replicaPort: 636
replicaHost: <fully-qualified-hostname>
replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

dn: cn=Peer3, cn=localhost
cn: Peer3
replicaBindDN: cn=peer
replicaCredentials: <same peer password>
replicaPort: 636
replicaHost: <fully-qualified-hostname>
replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

If you are not using SSL for your LDAP do the following:

dn: cn=Peer2, cn=localhost
cn: Peer2
replicaBindDN: cn=peer
replicaCredentials: <same peerpassword>
replicaPort: 389
replicaHost: <fully-qualified-hostname>
replicaBindMethod: Simple
replicaUseSSL: FALSE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top
 Chapter 13. Replication 331

dn: cn=Peer3, cn=localhost
cn: Peer3
replicaBindDN: cn=peer
replicaCredentials: <same peerpassword>
replicaPort: 389
replicaHost: <fully-qualified-hostname>
replicaBindMethod: Simple
replicaUseSSL: FALSE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

Peer 2 and 3 listens on port 636 (using SSL), and is a peer server of Peer 1. This
configuration may also be added to the configuration file manually. If you do
update the file manually, you should always make a backup copy of the file first.
All three machine peers must use the same ID and passwords.

dn:cn=Master Server, cn=Configuration
cn:Master Server
ibm-slapdPeerDn:cn=peer
ibm-slapdPeerPW:< same peer password>
objectclass:ibm-slapdReplication
objectclass:top

A replica object is added to the Peer 2 database through the following ldif files. It
specifies the bind DN and password that Peer 2 will use to bind as a peer to Peer
1. This must match the information in the slapd32.conf file for Peer 1. You would
also add all the replica info of the other replicas in your tree to this list (not
shown).

dn: cn=Peer1, cn=localhost
cn: Peer1
replicaBindDN: cn=peer
replicaCredentials: <same peer password>
replicaPort: 636
replicaHost: <fully-qualified-hostname>
replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

dn: cn=Peer3, cn=localhost
cn: Peer3
replicaBindDN: cn=peer
replicaCredentials: <same peer password>
replicaPort: 636
replicaHost: <fully-qualified-hostname>
332 Understanding LDAP Design and Implementation

replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

If you are not using SSL for your LDAP do the following:

dn: cn=Peer1, cn=localhost
cn: Peer1
replicaBindDN: cn=peer
replicaCredentials: <same peer password>
replicaPort: 389
replicaHost: <fully-qualified-hostname>
replicaBindMethod: Simple
replicaUseSSL: FALSE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

dn: cn=Peer3, cn=localhost
cn: Peer3
replicaBindDN: cn=peer
replicaCredentials: <same peer password>
replicaPort: 389
replicaHost: <fully-qualified-hostname>
replicaBindMethod: Simple
replicaUseSSL: FALSE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

A replica object is added to the Peer 3 database through the following ldif files. It
specifies the bind DN and password that Peer 3 will use to bind as a peer to Peer
1. This must match the information in the slapd32.conf file for Peer 1. You would
also add all the replica info of the other replicas in your tree to this list (not
shown).

dn: cn=Peer1, cn=localhost
cn: Peer1
replicaBindDN: cn=peer
replicaCredentials: <same peer password>
replicaPort: 636
replicaHost: <fully-qualified-hostname>
replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top
 Chapter 13. Replication 333

dn: cn=Peer2, cn=localhost
cn: Peer2
replicaBindDN: cn=peer
replicaCredentials: <same peer password>
replicaPort: 636
replicaHost: <fully-qualified-hostname>
replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

If you are not using SSL for your LDAP do the following:

dn: cn=Peer1, cn=localhost
cn: Peer1
replicaBindDN: cn=peer
replicaCredentials: <same peer password>
replicaPort: 389
replicaHost: <fully-qualified-hostname>
replicaBindMethod: Simple
replicaUseSSL: FALSE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

dn: cn=Peer2, cn=localhost
cn: Peer2
replicaBindDN: cn=peer
replicaCredentials: <same peer password>
replicaPort: 389
replicaHost: <fully-qualified-hostname>
replicaBindMethod: Simple
replicaUseSSL: FALSE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

Change replicas and original master server into Peer Servers
First you will have to make sure that the replica is sync up with the master and
there are no changes pending.

On the original master server you will need to put it into read-only mode. And
restart the server. Then break the replication agreement with the replica that
you are going to change into a peer server. For our example this would be UK
Replica V15 and Georgia X03 servers.
334 Understanding LDAP Design and Implementation

Create three ldif's to configure the Peer Servers, one for Peer1 and one for
Peer2 and one for Peer3. See the following LDIF examples in this document (on
page 336). These LDIF examples will include the replica information of the other
4 replicas.

Shut down the slapd process on the original master server NJ 935.

Use ldif2db command to load the following ldif file. Using the ldif2db with the
slapd process shutdown will input the replication peer data into the servers when
they are down. This way when the slapd process is brought back up it will know
of the other servers and set them up in the DB2 database and start saving any
changes in the change tables.

ldif2db -i e:\migration\peer1.ldif

Make needed changes to the slapd32.conf file.

dn:cn=Master Server, cn=Configuration
cn:Master Server
ibm-slapdPeerDn:cn=peer
ibm-slapdPeerPW:< same peer password>
objectclass:ibm-slapdReplication
objectclass:top

Restart slapd process on the new Peer 935 server.

Shut down the slapd process on the Georgia X03 server.

Use the ldif2db command to load the following ldif file.

ldif2db -i e:\migration\peer2.ldif

Make the needed changes to the slapd32.conf file for the Georgia X03 server.

dn:cn=Master Server, cn=Configuration
cn:Master Server
ibm-slapdPeerDn:cn=peer
ibm-slapdPeerPW:< same peer password>
objectclass:ibm-slapdReplication
objectclass:top

Restart slapd process on the new Peer X03 server.

Shut down the slapd process on the UK V15 server.

Use the ldif2db command to load the following ldif file.

ldif2db -i e:\migration\peer3.ldif
 Chapter 13. Replication 335

Make the needed changes to the slapd32.conf file for the UK V15 server.

dn:cn=Master Server, cn=Configuration
cn:Master Server
ibm-slapdPeerDn:cn=peer
ibm-slapdPeerPW:< same peer password>
objectclass:ibm-slapdReplication
objectclass:top

Restart the slapd process on the new Peer V15 server.

Check the slapd.errors file on the Peer 935 server to make sure that it has
connected back up to all the six servers.

Make a change on one of the peers and then check to see that the change went
to the other peers.

Then do it in reverse from each of the other two peers make a different change to
make sure changes are made all three ways.

Reconfigure the remaining replicas in the UK and Georgia to now refer there
write traffic to the new peer server in each of there respective sites. UK replica to
the UK peer and the Georgia replica to the Georgia peer.

Now a test needs to be made to check to make sure that the other sites will work
with out the NJ site. This will be done by bringing down the Peer 935 slapd
process and the Application process and then trying to log into the UK and the
Georgia sites and authenticating to there applications. This is to simulate the
main site (NJ) going down due to power outages.

Peer LDIF files
The following shows the peer LDIF files for NJ, Georgia, and the UK sites:

� NJ Peer 935 Peer1.ldif
dn: cn=xxgasrv03, cn=localhost
cn: xxgasrv03
replicaBindDN: cn=ibmpeer
replicaCredentials: XXXXXXX
replicaPort: 636
replicaHost: xxgasrv03.us.ibm.com
replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

dn: cn=gouksrv15, cn=localhost
cn: gouksrv15
336 Understanding LDAP Design and Implementation

replicaBindDN: cn=ibmpeer
replicaCredentials: XXXXXXX
replicaPort: 636
replicaHost: gouksrv15.uk.ibm.com
replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

dn: cn=usnj936,cn=localhost
cn: usnj936
replicahost: usnj936.us.ibm.com
replicabinddn: cn=usuk936
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
replicausessl: TRUE
replicaupdatetimeinterval: 0
seealso::
description::
objectclass: replicaObject
objectclass: top

dn: cn=usnj937,cn=localhost
cn: usnj937
replicahost: usnj937.us.ibm.com
replicabinddn: cn=usnj937
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
replicausessl: TRUE
replicaupdatetimeinterval: 0
seealso::
description::
objectclass: replicaObject
objectclass: top

dn: cn=xxgasrv02,cn=localhost
cn: xxgasrv02
replicahost: xxgasrv02.us.ibm.com
replicabinddn: cn=xxgasrv02
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
replicausessl: TRUE
replicaupdatetimeinterval: 0
seealso::
description::
 Chapter 13. Replication 337

objectclass: replicaObject
objectclass: top

dn: cn=gouksrv14,cn=localhost
cn: gouksrv14
replicahost: gouksrv14.uk.ibm.com
replicabinddn: cn=gouksrv14
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
replicausessl: TRUE
replicaupdatetimeinterval: 0
seealso::
description::
objectclass: replicaObject
objectclass: top

� Georgia USA Peer X03 Peer2.ldif

dn: cn=usnj935, cn=localhost
cn: usnj935
replicaBindDN: cn=ibmpeer
replicaCredentials: XXXXXXX
replicaPort: 636
replicaHost: usnj935.us.ibm.com
replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

dn: cn=gouksrv15, cn=localhost
cn: gouksrv15
replicaBindDN: cn=ibmpeer
replicaCredentials: XXXXXXX
replicaPort: 636
replicaHost: gouksrv15.us.ibm.com
replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

dn: cn=usnj936,cn=localhost
cn: usnj936
replicahost: usnj936.us.ibm.com
replicabinddn: cn=usnj936
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
338 Understanding LDAP Design and Implementation

replicausessl: TRUE
replicaupdatetimeinterval: 0
seealso::
description::
objectclass: replicaObject
objectclass: top

dn: cn=usnj937,cn=localhost
cn: usnj937
replicahost: usnj937.us.ibm.com
replicabinddn: cn=usnj937
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
replicausessl: TRUE
replicaupdatetimeinterval: 0
seealso::
description::
objectclass: replicaObject
objectclass: top

dn: cn=xxgasrv02,cn=localhost
cn: xxgasrv02
replicahost: xxgasrv02.us.ibm.com
replicabinddn: cn=xxgasrv02
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
replicausessl: TRUE
replicaupdatetimeinterval: 0
seealso::
description::
objectclass: replicaObject
objectclass: top

dn: cn=gouksrv14,cn=localhost
cn: gouksrv14
replicahost: gouksrv14.uk.ibm.com
replicabinddn: cn=gouksrv14
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
replicausessl: TRUE
replicaupdatetimeinterval: 0
seealso::
description::
objectclass: replicaObject
objectclass: top
 Chapter 13. Replication 339

� UK Peer V15 Peer3.ldif

dn: cn=xxgasrv03, cn=localhost
cn: xxgasrv03
replicaBindDN: cn=ibmpeer
replicaCredentials: XXXXXXX
replicaPort: 636
replicaHost: xxgasrv03.us.ibm.com
replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

dn: cn=usnj935, cn=localhost
cn: usnj935
replicaBindDN: cn=ibmpeer
replicaCredentials: XXXXXXX
replicaPort: 636
replicaHost: usnj935.us.ibm.com
replicaBindMethod: Simple
replicaUseSSL: TRUE
replicaUpdateTimeInterval: 0
objectclass: replicaObject
objectclass: top

dn: cn=usnj936,cn=localhost
cn: usnj936
replicahost: usnj936.us.ibm.com
replicabinddn: cn=usnj936
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
replicausessl: TRUE
replicaupdatetimeinterval: 0
seealso::
description::
objectclass: replicaObject
objectclass: top

dn: cn=usnj937,cn=localhost
cn: usnj937
replicahost: usnj937.us.ibm.com
replicabinddn: cn=usnj937
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
replicausessl: TRUE
replicaupdatetimeinterval: 0
340 Understanding LDAP Design and Implementation

seealso::
description::
objectclass: replicaObject
objectclass: top

dn: cn=xxgasrv02,cn=localhost
cn: xxgasrv02
replicahost: xxgasrv02.us.ibm.com
replicabinddn: cn=xxgasrv02
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
replicausessl: TRUE
replicaupdatetimeinterval: 0
seealso::
description::
objectclass: replicaObject
objectclass: top

dn: cn=gouksrv14,cn=localhost
cn: gouksrv14
replicahost: gouksrv14.uk.ibm.com
replicabinddn: cn=gouksrv14
replicacredentials: XXXXXXX
replicaport: 636
replicabindmethod: SIMPLE
replicausessl: TRUE
replicaupdatetimeinterval: 0
seealso::
description::
objectclass: replicaObject
objectclass: top

Peer-to-peer replication topology for ITDS 5.1 and later
Peer servers are Masters which not only propagate changes to replicas and
forwarders below them but also receive changes from other master servers.
Hence, peers are read-write replicas. Starting with ITDS 5.1, peers are
configured in exactly the same way as the master servers and the terms Peer
and Master can be used interchangeably.

Peer servers replicate all client updates but do not replicate updates received
from other masters/peers. Client update refers to updates made by a bind DN
other than the Master ServerDN (represented by ibm-slapdMasterDN attribute in
the config file).

An example peer-to-peer replication topology is shown in Figure 13-7 on
page 342.
 Chapter 13. Replication 341

Figure 13-7 Peer-to-peer replication topology

13.3 Replication agreements
A replication agreement is an entry in the directory with the object class
ibm-replicationAgreement created beneath a replica subentry to define
replication from the server represented by the subentry to another server. These
objects are similar to the replicaObject entries used by ITDS 4.1 and earlier.

The replication agreement consists of the following items:

� A user friendly name, used as the naming attribute for the agreement. This
name might be the consumer server name or some other descriptive string.

� An LDAP URL specifying the server, port number, and whether SSL should
be used.

� The consumer server id, if ITDS 5.1 and later will be defined in the
ibmslapd.conf file as the ibm-slapdServerId, It will show unknown for a server
whose server ID is not known as in a server running on IDS 4.1 and earlier.
The consumer server id is used by the administrative GUI to traverse the
topology. Given the consumer’s server ID, GUI can find the corresponding
subentry and its agreements.

� The DN of an object containing the credentials used by the supplier to bind to
the consumer. Because the replication agreement can be replicated, a DN to
a credentials object is used. This allows the credentials to be stored in a
nonreplicated area of the directory, like the cn=localhost. Replicating the

F1

R1

R2

P1 P2

P1 and P2 are Peer Servers
342 Understanding LDAP Design and Implementation

credentials objects (from which clear text credentials must be obtainable)
represents a potential security exposure. Use of a separate object also
makes it easier to support various authentication methods; new object
classes can be created rather than trying to make sense of numerous optional
attributes.

� An optional DN pointer to an object containing the schedule information for
replication. If the attribute is not present, changes are replicated immediately.

� You can designate that part of a replicated subtree not be replicated by
adding the ibm-replicationContext auxiliary class to the root of the subtree,
without defining any replica subentries.

13.4 Configuring replication topologies
The following section describes the steps required for configuring IBM Tivoli
Directory 5.2 server with the following examples:

1. One master with two replicas. And the directory has two suffixes.

2. One main master with two peer servers for one suffix and two peer servers for
another suffix.

3. Sub tree replication where you take a non-suffix container and have a master
with one replica for that sub tree.

For more configuring other types of topologies please refer to the IBM Tivoli
Directory Server 5.2 administration guide at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

13.4.1 Simple master-replica topology
Configuring a simple master-replica scenario involves the following four steps:

1. Choose one server to act as the master and select the subtree in it to be
replicated. For our example we will be having one master and two replicas
with each replica being a replica on one of the two suffixes.

2. Create credentials to be used by the Master server.

3. Create replica servers.

4. Export data to the replica servers.

Note: The Web Administration Tool also refers to agreements as queues when
referring to the set of changes that are waiting to be replicated under a given
agreement.
 Chapter 13. Replication 343

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.htm

Using the Web Administration Tool

Creating the Master Server
This task designates an entry as the root of an independently replicated subtree
and creates a ibm-replicasubentry representing this server as the single master
for the subtree. To create a replicated subtree, you must designate the subtree
that you want the server to replicate.

Note: If you are trying to make a non-suffix entry the replicated root, for
example a sub container that is under the suffix, the following steps need to be
done before the Add Subtree function is used.

Go to the Manage Entries panel. Select the entry and click Edit ACL. If you
want to add Non-filtered ACLs, select that tab and add an entry cn=this with
the role access-id for both ACLs and owners. Ensure that Propagate ACLs
and Propagate owner are checked. If you want to add Filtered ACLs select
that tab and add an entry cn=this with the role access-id for both ACLs and
owners. Ensure that Accumulate filtered ACLs is unchecked and that
Propagate owner is checked.

For manual loading by way of a ldif. you will need to add the following to the
DN that you want to replicate.

For non-filtered ACLs:

ownersource: <same as the entry DN>
ownerpropagate: TRUE

aclsource: <same as the entry DN>
aclpropagate: TRUE

For filtered ACLs you will need to add the following:

ibm-filteraclinherit: FALSE

The above steps are not required for a suffix entry since a suffix gets all these
ACLs by default.

Note: On the Linux, Solaris, and HP-UX platforms, if a referral fails because
the server being referred to is not running, ensure that the environment
variable LDAP_LOCK_REC has been set in your system environment. No
specific value is required.

set LDAP_LOCK_REC=anyvalue
344 Understanding LDAP Design and Implementation

Figure 13-8 Web Admin Tool - Manage credentials

Creating credentials
Expand the Replication management category in the navigation area of the Web
Administration Tool and click Manage credentials.

1. Select the location that you want to use to store the credentials from the list of
subtrees. The Web Administration Tool allows you to define credentials in
three locations:

– cn=replication,cn=localhost, which keeps the credentials only on the
current server.
 Chapter 13. Replication 345

If you are trying to add a replica under a server, for example server A and
you are connected to a different server with the Web Administration Tool,
server B, the Select credentials field does not display the option
cn=replication,cn=localhost. This is because you cannot read the
information or update any information under cn=localhost of the server A
when you are connected to server B.The cn=replication,cn=localhost is
only available when the server under which you are trying to add a replica
is the same server that you are connected to with the Web Administration
Tool.

– cn=replication,cn=IBMpolicies, which is available even when the server
under which you are trying to add a replica is not the same server that you
are connected to with the Web Administration Tool. Credentials placed
under this location are replicated to the servers.

Note: In most replication cases, locating credentials in
cn=replication,cn=localhost is preferred because it provides greater
security than replicated credentials located on the subtree. If you are
going to do this you will need to export the cn=replication,cn=localhost
like the following:

cn=replication,cn=localhost
objectclass=container
objectclass=top
cn=replication

cn=masterbind,cn=replication,cn=localhost
replicaCredentials=secret01
description=master bind credential
objectclass=ibm-replicationCredentials
objectclass=ibm-replicationCredentialsSimple
objectclass=top
replicaBindDN=cn=masterbind
cn=masterbind

To each of the other replicas so they will have the credentials.n
situations in which credentials located on cn=replication,cn=localhost
are not available.

Note: The location cn=replication,cn=IBMpolicies is only available, if
the IBMpolicies support OID, 1.3.18.0.2.32.18, is present under the
ibm-supportedcapabilities of the root DSE.
346 Understanding LDAP Design and Implementation

– Within the replicated subtree, in which case the credentials are replicated
with the rest of the subtree. Credentials placed in the replicated subtree
are created beneath the ibm-replicagroup=default entry for that subtree.

If no subtrees are displayed, go to “Creating the Master Server” on
page 344 (replicated subtree) for instructions about creating the subtree
that you want to replicate.

2. Click Add.

Figure 13-9 Add credential

3. Enter the name for the credentials you are creating, for example, masterbind,
cn= is prefilled in the field for you, as shown in Figure 13-9.

Figure 13-10 Simple bind
 Chapter 13. Replication 347

4. Select the type of authentication method you want to use and click Next, as
shown in Figure 13-10 on page 347.

– If you selected simple bind authentication:

• Enter the DN that the server uses to bind to the replica, for example,
cn=masterbind.

• Enter the password uses when it binds to the replica, for example,
secret.

• Enter the password again to confirm that there are no typographical
errors.

• If you want, enter a brief description of the credentials.

• Click Finish.

– If you selected Kerberos authentication:

• Enter your Kerberos bind DN.

• Enter the bind password.

• Reenter the bind password to confirm it.

• If you want, enter a brief description of the credentials. No other
information is necessary.

• Click Finish.

By default, the supplier uses its own service principal to bind with the
consumer. For example, if the supplier is named master.our.org.com
and the realm is SOME.REALM, the DN is
ibm-Kn=ldap/master.our.org.com@SOME.REALM. The realm value is
case insensitive. If there is more than one supplier, you must specify
the principal and password to be used by all of the suppliers.

On the server where you created the credentials:

Expand Directory management and click Manage entries.

Select the subtree where you stored the credentials, for example
cn=localhost, and click Expand.

Select cn=replication and click Expand.

Select the kerberos credentials (ibm-replicationCredentialsKerberos)
and click Edit attributes.

Click the Other attributes tab.

Enter the replicaBindDN, for example,
ibm-kn=myprincipal@SOME.REALM.
348 Understanding LDAP Design and Implementation

Enter the replicaCredentials. This is the KDC password used for
myprincipal. This principal and password should be the same as the
ones you use to run kinit from the command line.

On Replica:

Click Manage replication properties in the navigation area.

Select a supplier from the Supplier information drop-down menu or
enter the name of the replicated subtree for which you want to
configure supplier credentials.

Click Edit.

Enter the replication bindDN. In this example,
ibm-kn=myprincipal@SOME.REALM.

Enter and confirm the Replication bind password. This is the KDC
password used for myprincipal.

If you selected SSL with certificate authentication you do not need to
provide any additional information, if you are using the server's
certificate. If you choose to use a certificate other than the server's:

Enter the key file name.

Enter the key file password.

Reenter the key file password to confirm it.

Enter the key label.

If you want, enter a brief description.

Click Finish.

5. Expand the Replication Management category in the navigation area and
click Manage topology.

Figure 13-11 Add replicated subtree

a. Click Add subtree (the window in Figure 13-11 is shown).

b. Enter the DN of the subtree that you want to replicate or click Browse to
expand the entries to select the entry that is to be the root of the subtree.
 Chapter 13. Replication 349

c. The master server referral URL is displayed in the form of an LDAP URL,
for example ldap://<myservername>.<mylocation>.<mycompany>.com.
This is optional and is used only if server contains (or will contain) any
read-only subtrees.

d. To define a referral URL that is returned for updates to any read-only
subtree on the server.

e. You could also just use the servername if you have defined in the hosts
file or are using a DNS.

f. Click OK.

6. The new server is displayed on the Manage topology panel under the heading
Replicated subtrees (Figure 13-12).

Figure 13-12 Manage topology

7. Create the Replica Server.

Figure 13-13 Show topology
350 Understanding LDAP Design and Implementation

Expand the Replication management category in the navigation area and
click Manage topology, as shown in Figure 13-13 on page 350.

a. Select the subtree that you want to replicate and click Show topology.

b. Click the arrow next to the Replication topology selection to expand the list
of supplier servers.

c. Select the supplier server and click Add replica.

Figure 13-14 Add replica

d. On the Server tab of the Add replica window (shown in Figure 13-14):

i. Enter the host name and port number for the replica you are creating.
The default port is 389 for non-SSL and 636 for SSL. These are
required fields.

ii. Select whether to enable SSL communications.

iii. Enter the replica name or leave this field blank to use the host name.

iv. Enter the replica ID. If the server on which you are creating the replica
is running, click Get replica ID to automatically fill this field. This is a
required field, if the server you are adding is going to be a peer or
forwarding server. It is recommended for all IBM Tivoli Directory Server
Version 5.2 replica servers.

v. Enter a description of the replica server.
 Chapter 13. Replication 351

vi. If a credential object is not selected in the Additional Tab, an error
message will be displayed as shown in Figure 13-15.

Figure 13-15 Error message when Additional is not used

Figure 13-16 Additional tab - Select credential

8. On the Additional tab, shown in Figure 13-16, specify the credentials that the
replica uses to communicate with the master. The Web Administration Tool
allows you to define credentials in three places:

a. cn=replication,cn=localhost, which keeps the credentials only on the
server that uses them.

b. cn=replication,cn=IBMpolicies, which is available even when the server
under which you are trying to add a replica is not the same server that you
are connected to with the Web Administration Tool. Credentials placed
under this location are replicate to the servers. The location
cn=replication,cn=IBMpolicies is only available, if the IBMpolicies support
OID, 1.3.18.0.2.32.18, is present under the ibm-supportedcapabilities of
the root DSE.
352 Understanding LDAP Design and Implementation

c. Within the replicated subtree, in which case the credentials are replicated
with the rest of the subtree. Credentials placed in the replicated subtree
are created beneath the ibm-replicagroup=default entry for that subtree.

d. Click Select.

e. Select the location for the credentials you want to use. Preferably this is
cn=replication,cn=localhost.

f. Click Show credentials.

g. Expand the list of credentials and select the one you want to use.

h. Click OK.

Figure 13-17 Replication schedule and capabilities

9. Specify a replication schedule from the drop-down list or click Add to create
one, as shown in Figure 13-17. If you do not specify one it will be default as
immediately See Creating replication schedules (page 381).

10.From the list of supplier capabilities, you can deselect any capabilities that
you do not want replicated to the consumer.

– If your network has a mix of servers of different releases, capabilities are
available on later releases that are not available on earlier releases. Some

Note: Placing credentials in cn=replication,cn=localhost is considered
more secure.
 Chapter 13. Replication 353

capabilities, like filter ACLs and password policy, make use of operational
attributes that are replicated with other changes. In most cases, if these
features are used, you want all servers to support them. If all of the
servers do not support the capability, you do not want to use it. For
example, you would not want different ACLs in effect on each server.
However, there might be cases where you might want to use a capability
on the servers that support it, and not have changes related to the
capability replicated to servers that do not support the capability. In such
cases, you can use the capabilities list to mark certain capabilities to not
be replicated.

– Click OK to create the replica.

Figure 13-18 Add replica message

11.A message is displayed noting that additional actions must be taken, as
shown in Figure 13-18.

– Click OK.

– The topology will now look like Figure 13-19.

Figure 13-19 Topology after the add
354 Understanding LDAP Design and Implementation

12.Copy data to the replica.

After creating the replica, you must now export the topology from the master to
the replica. This is a manual procedure.

On the master server create an LDIF file for the data. To copy all the data
contained on the master server, issue the command:

db2ldif -o c:\masterfile.ldif

Also you will need to issue the following command to get a copy of the
credentials that are in the cn=localhost:

db2ldif -o c:\localhost.ldif -s "cn=replication,cn=localhost"

The ‘-s’ will allow you to just get the data from a single subtree like
cn=replication,cn=localhost.

On the machine which you are configuring as the replica:

1. Ensure that the suffixes used by the master are defined in the ibmslapd.conf
file.

2. Stop the replica server.

3. Copy both ldif files to the replica and issue the commands:

ldif2db -r no -i masterfile.ldif
ldif2db -r no -i localhost.ldif

(The ‘-r no’ says not to replicate the data that is loaded.)

The replication agreements, schedules, credentials and entry data are loaded
on the replica.

4. Start the server.

Note: If you are adding more servers as additional replicas or are
creating a complex topology, do not proceed with Copying data to the
replica (that is, the next step) or Adding the supplier information to the
replica until you have finished defining the topology on the master
server. If you create the masterfile.ldif after you have completed the
topology, it contains the directory entries of the master server and a
complete copy of the topology agreements. When you load this file on
each of the servers, each server then has the same information.

Note: The four operational attributes, createTimestamp, creatorsName,
modifiersName, and modifyTimestamp are exported to the LDIF file unless the
-j option is specified.
 Chapter 13. Replication 355

Adding supplier information to the replica
You need to change the replica's configuration to identify who is authorized to
replicate changes to it, and add a referral to a master.

You can use either of these two options, depending on your situation.

� Set the replication bind DN (and password) and a default referral for all
subtrees replicated to a server using the 'default credentials and referral'. This
might be used when all subtrees are replicated from the same supplier.

� Set the replication bind DN and password independently for each replicated
subtree by adding supplier information for each subtree. This might be used
when each subtree has a different supplier (that is, a different master server
for each subtree).

On the machine where you are creating the replica (that is, connect the Web
admin tool to the replica server) for normal master and replica replication it is
best to use 'default credentials and referral'. We will cover the user of a subtree
later in this section.

1. Expand Replication management in the navigation area and click Manage
replication properties, as shown in Figure 13-20.

Figure 13-20 Manage replication properties

2. Highlight default credentials and referral and click Edit, and the window in
Figure 13-21 on page 357 is shown.
356 Understanding LDAP Design and Implementation

Figure 13-21 Edit default credentials and referral

3. Enter in the suppliers LDAP URL in this format: ldap://supplier name: port
number/.

4. Enter the replication bindDN. In this example, cn=masterbind.

5. Depending on the type of credential, enter and confirm the credential
password. (You previously recorded this for future use.)

– Simple Bind - Specify the DN and password.

– Kerberos - If the credentials on the supplier do not identify the principal
and password, that is, the server's own service principal is to be used,
then the bind DN is ibm-kn=ldap/<yourservername@yourrealm>. If the
credentials has a principal name such as <myprincipal@myrealm>, use
that as the DN. In either case a password in not needed.

– SSL w/ EXTERNAL bind - Specify the subject DN for the certificate and no
password.

6. Click OK.

7. You must restart the replica for the changes to take effect.
 Chapter 13. Replication 357

8. The replica is in a suspended state by default when you create them and no
replication is occurring. After you have finished setting up your replication
topology, you must log onto the Web Admin tool on the Master server and
click Manage queues, the window shown in Figure 13-22 is shown.

Figure 13-22 Manage queues on the master server

9. Select the replica and click Suspend/resume to start replication. It will come
up in Active state first, as shown in Figure 13-23 on page 359.

Note: What this last step really did was to add the following to the
ibmslapd.conf file:

dn: cn=Master Server, cn=configuration
cn: Master Server
ibm-slapdMasterDN: cn=masterbind
ibm-slapdMasterPW: >encrypted password<
ibm-slapdMasterReferral: ldap://win2k1:389/
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdReplication
objectclass: top

This is the reason why you need to re-start the ibmslapd process. This will
be read in when you bring back up ibmslapd.
358 Understanding LDAP Design and Implementation

Figure 13-23 Manage queues select replica

10.Click Queue Details and the window in Figure 13-24 is shown.

Figure 13-24 Queue details

11.Click Last attempted details and then click Refresh. This shows OK, as
shown in Figure 13-25 on page 360
 Chapter 13. Replication 359

Figure 13-25 Queue status last attempted details

Figure 13-26 Queue details pending changes

12.Pending changes shows the count of ‘0’. This means that there are no more
changes pending, as shown in Figure 13-26.

13.See Manage queues, as shown in Figure 13-27 on page 361, for more
detailed information. The replica now receives updates from the master.
360 Understanding LDAP Design and Implementation

Figure 13-27 Manage queues showing both subtrees replication working

14.Doing the same steps for the other suffix, now both suffixes replication is
working with out problems.

13.4.2 Using the command line

Create a LDIF file with the information in Example 13-1 on page 362, named
masterreplica.ldif and then load with the following command after you stop the
master and replicas:

ldif2db -r no -i c:\masterreplica.ldif

Load this Into all the servers in the replication before you load customer data. To
create one or more replicas for one or more subtrees, you need to create a
replica agreement between the master and the replicas. The relationship
between the three servers is that the master is the supplier to the two replicas
and the replicas are a consumer of the master.

In Example 13-1 on page 362 we used the changed ibm-slapdServerId instead
of the ID that would have been generated. The ones we used were win2k1uid,
win2k2id, and win2k3id. If you were using the regular ones that were generated
on install then you would have to use those in place of the ones we used. This
ldif file is built for servers that are ITDS 5.1 and later.

Note: As you can tell from using the Web admin tool that it does take time. It is
better if you use the Web admin tool for only simple replication scenarios and
use command line and LDIF files for any complex replication scenarios.

This scenario assumes that you are creating new replicated subtrees.
 Chapter 13. Replication 361

Example 13-1 masterreplica.ldif file

###Replication Context - needs to be on all servers in replication
dn: cn=replication,cn=localhost
objectclass=container
objectclass=top
cn=replication

###Replication Credentials - needs to be on all servers in ###replication
agreement
dn: cn=masterbind,cn=replication,cn=localhost
replicaCredentials=secret
description=master bind credential
objectclass=ibm-replicationCredentials
objectclass=ibm-replicationCredentialsSimple
objectclass=top
replicaBindDN=cn=masterbind
cn=masterbind

###New objectclass ibm-replicationContext needs to be attach to each
###subtree / suffix that is replicated and what the replica referral ###URL
will be for that replication
dn: o=ibm,c=us
objectclass: organization
objectclass: top
objectclass: ibm-replicationContext
o: ibm
ibm-replicareferralurl: ldap://win2k1:389

dn: o=ibm,c=de
objectclass: organization
objectclass: top
objectclass: ibm-replicationContext
o: ibm
ibm-replicareferralurl: ldap://win2k1:389

###Replication entry for IBMpolicies
dn: cn=replication,cn=IBMpolicies
objectclass: container
objectclass: top
cn: replication

Note: If you are copying a subtree to a IDS 4.1 or earlier server, you must not
copy the ibm-replicagroup=default subtree and you must remove the
ibm-replicationcontext auxiliary class, because neither of these are supported
by the 4.1 schema.
362 Understanding LDAP Design and Implementation

###Replica Group for o=ibm,c=us
dn: ibm-replicaGroup=default,o=ibm,c=us
ibm-replicaGroup: default
objectclass: ibm-replicaGroup
objectclass: top

###Replica SubEntry for o=ibm,c=us
dn: cn=win2k1.test.com,ibm-replicaGroup=default,o=ibm,c=us
objectclass: ibm-replicaSubentry
objectclass: top
ibm-replicaServerId: win2k1uid
ibm-replicationServerIsMaster: TRUE
cn: win2k1.test.com

###Replica Group for o=ibm,c=de
dn: ibm-replicaGroup=default,o=ibm,c=de
ibm-replicaGroup: default
objectclass: ibm-replicaGroup
objectclass: top

###Replica SubEntry for o=ibm,c=de
dn: cn=win2k1.test.com,ibm-replicaGroup=default,o=ibm,c=de
objectclass: ibm-replicaSubentry
objectclass: top
ibm-replicaServerId: win2k1uid
ibm-replicationServerIsMaster: TRUE
cn: win2k1.test.com

###Replication Agreement to Replica Sever for o=ibm,c=us
dn: cn=win2k2,cn=win2k1.test.com,ibm-replicaGroup=default,O=IBM,C=US
ibm-replicaConsumerId: win2k2id
ibm-replicationOnHold: TRUE
ibm-replicaCredentialsDN: cn=masterbind,cn=replication,cn=localhost
ibm-replicaURL: ldap://win2k2:389
description: Win 2k 2 server
objectclass: ibm-replicationAgreement
objectclass: top
cn: win2k2

###Replication Agreement to Replica Sever for o=ibm,c=de
dn: cn=win2k3,cn=win2k1.test.com,ibm-replicaGroup=default,O=IBM,C=DE
ibm-replicaConsumerId: win2k3id
ibm-replicationOnHold: TRUE
ibm-replicaCredentialsDN: cn=masterbind,cn=replication,cn=localhost
ibm-replicaURL: ldap://win2k3:389
description: win 2k 3 replica
objectclass: ibm-replicationAgreement
objectclass: top
 Chapter 13. Replication 363

cn: win2k3

Add the following to the ibmslapd.conf files or the replicas:

dn: cn=Master Server, cn=configuration
cn: Master Server
ibm-slapdMasterDN: cn=masterbind
ibm-slapdMasterPW: secret
ibm-slapdMasterReferral: ldap://win2k1:389/
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdReplication
objectclass: top

When you have done these steps you can start all the servers and test out to see
if replication is working. The best way to do this is to bring up the Web
Administration tool and check manage queues, as shown in Figure 13-27 on
page 361.

13.4.3 Promoting a replica to peer/master
The below scenario describes the steps required to promote a replica to master
so that it becomes a peer to its former master. In order to configure a server as a
peer to a given server, it has to be added as a replica to the master and then
promoted to a peer as described below. We will take what we did with the
scenario we just finish working with and now make them peer to peer for each
suffix.

1. Connect the Web Administration Tool to the master and click Replication
Management.

2. Select the appropriate subtree from the right hand panel and click Show
topology. The replication topology for the given subtree is displayed in
Figure 13-28 on page 365.
364 Understanding LDAP Design and Implementation

Figure 13-28 Show topology

3. Select the appropriate replica you want to promote to a peer from the
replication topology and click Move.

Figure 13-29 Move server

4. On the screen that appears (Figure 13-29), Replication topology is highlined
by default. Take the default and click Move.

Note: The replica that you want to promote to a peer should not have other
replicas configured below it.
 Chapter 13. Replication 365

Figure 13-30 Additional supplier agreements

5. The next screen (Figure 13-30) asks for agreements to be created from the
newly promoted peer to the existing masters and replicas in the topology. It
will default with a checkmark on the one that you will make peer to peer. Click
Continue.

Figure 13-31 Move message

6. This screen will come up to inform you what is going to happen
(Figure 13-31). Click OK.
366 Understanding LDAP Design and Implementation

Figure 13-32 Select credential

7. You will need to click Add Credentials with the radio button on o=ibm,c=us,
as shown in Figure 13-32.

Figure 13-33 Authentication method

8. Fill in Credential name for example, cn=peeribmus and keep it Simple Bind, as
shown in Figure 13-33.

9. Click Next.
 Chapter 13. Replication 367

Figure 13-34 Simple bind

10.Fill in the bind DN, that is, cn=peeribmus and the Bind password, that is,
secret. Enter the same password to confirm. You can put in a description if
you want, as shown in Figure 13-34.

11.Click Finish.

Figure 13-35 Select credential

12.Click the down arrow and pick the credential you just made (peeribmus), as
shown in Figure 13-35.

13.Click OK.
368 Understanding LDAP Design and Implementation

Figure 13-36 Manage topology

14.The screen in Figure 13-36, shows that the replica has been promoted to a
peer.

15.The next step is to build the supplier (win2k2) information on the new replica
(win2k1) Click Add and pick o=ibm,c=us. Then click OK, as shown in
Figure 13-37 on page 370.
 Chapter 13. Replication 369

.

Figure 13-37 Manage replication properties on master server

Figure 13-38 Supplier credentials

16.Enter the bind DN that you created on the supplier, that is, cn=peeribmus and
enter bind password twice, that is, secret, as shown in Figure 13-38.

17.Click OK.

18.Restart the replica to have it take affect.

19.Log on to the Web Admin Tool for Win2k2 the new supplier and click Manage
queues, as shown in Figure 13-39 on page 371.
370 Understanding LDAP Design and Implementation

Figure 13-39 Manage queues for Win2k2 supplier

20.Click Suspend/resume to start up the replication. Buy default it will come up
in Suspended state, as shown in Figure 13-40.

Figure 13-40 Manage queues

21.Do the same steps for the other suffix on Win2k3 for o=ibm,c=de, as shown in
Figure 13-41.

Figure 13-41 Topology for o=ibm,c=de
 Chapter 13. Replication 371

13.4.4 Command line for a complex replication
For any Complex Replication agreements it is best that you do it by command
line and load individual LDIF loads. This way you can lay everything out first. It
will take a very long time and more work to do it with the Web Admin Tool.

For this scenario we will be using only one bind credential that will be under
cn=localhost. There are two subtree replications. There is one master server that
has both subtree fully loaded and one of the two subtrees has two more peer
masters and the other subtree has two more peer masters for a total of five
servers.

Example 13-2 LDIF file for complex replication setup

dn: cn=replication,cn=localhost
objectclass: container
objectclass: top
cn: replication

###Replication Group
dn: ibm-replicaGroup=default,ou=people,o=ibm,c=us
objectclass: top
objectclass: ibm-replicaGroup
ibm-replicaGroup: default

###Bind Credentials/method to Peer server - replication agreement

Note: When you are adding the supplier information to the replica for the new
peers the following is added to the new replica’s ibmslapd.conf file:

dn: cn=Supplier1073686491445, cn=configuration
cn: Supplier1073686491445
ibm-slapdMasterDN: cn=peeribmus
ibm-slapdMasterPW: >encrypted password<
ibm-slapdReplicaSubtree: O=IBM, C=US
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdSupplier
objectclass: top

dn: cn=Supplier1073687936616, cn=configuration
cn: Supplier1073687936616
ibm-slapdMasterDN: cn=peeribmde
ibm-slapdMasterPW: >encrypted password<
ibm-slapdReplicaSubtree: O=IBM, C=DE
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdSupplier
objectclass: top
372 Understanding LDAP Design and Implementation

###points to this.
dn: cn=ReplicationCreds,cn=replication,cn=localhost
objectclass: ibm-replicationCredentialsSimple
cn: ReplicationCreds
replicaBindDN: cn=master
replicaCredentials: master
description: Bindmethod of master to Peer1

###Master SubEntry for ou=people,o=ibm,c,us
dn: cn=win2k1.test.com,ibm-replicaGroup=default,ou=people,o=ibm,c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: win2k1
ibm-replicationServerIsMaster: true
cn: masterpeer
description: masterpeer server

Peer2 Subentry
dn: cn=win2k2.test.com,ibm-replicaGroup=default,ou=people,o=ibm,c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: win2k2
ibm-replicationServerIsMaster: true
cn: peer2
description: peer2 server

Peer3 SubEntry
dn: cn=win2k3.test.com,ibm-replicaGroup=default,ou=people,o=ibm,c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: win2k3
ibm-replicationServerIsMaster: true
cn: peer3
description: peer3 server

###Masterpeer to peer2 agreement
dn:
cn=peer2,cn=win2k1.test.com,ibm-replicaGroup=default,ou=people,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer2
ibm-replicaConsumerId: win2k2
ibm-replicaUrl: ldap://win2k2:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: Masterpeer to peer2 server

###Masterpeer to peer3 agreement
dn:
cn=peer3,cn=win2k1.test.com,ibm-replicaGroup=default,ou=people,o=ibm,c=us
 Chapter 13. Replication 373

objectclass: top
objectclass: ibm-replicationAgreement
cn: peer3
ibm-replicaConsumerId: win2k3
ibm-replicaUrl: ldap://win2k3:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: Masterpeer to peer3 server

###peer2 to Master agreement
dn:
cn=masterpeer,cn=win2k2test.com,ibm-replicaGroup=default,ou=people,o=ibm,c=
us
objectclass: top
objectclass: ibm-replicationAgreement
cn: Masterpeer
ibm-replicaConsumerId: win2k1
ibm-replicaUrl: ldap://win2k1:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: Peer 2 to Masterpeer server

###peer2 to Peer3 agreement
dn:
cn=peer3,cn=win2k2test.com,ibm-replicaGroup=default,ou=people,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer3
ibm-replicaConsumerId: win2k3
ibm-replicaUrl: ldap://win2k3:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: Peer 2 to Peer 3 server

###peer3 to Master agreement
dn:
cn=masterpeer,cn=win2k3.test.com,ibm-replicaGroup=default,ou=people,o=ibm,c
=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: Masterpeer
ibm-replicaConsumerId: win2k1
ibm-replicaUrl: ldap://win2k1:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: Peer 3 to Masterpeer server

###peer3 to Peer2 agreement
dn:
cn=peer2,cn=win2k3.test.com,ibm-replicaGroup=default,ou=people,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer2
374 Understanding LDAP Design and Implementation

ibm-replicaConsumerId: win2k2
ibm-replicaUrl: ldap://win2k2:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: Peer 3 to Peer 2 server

###Replication Group
dn: ibm-replicaGroup=default,ou=app,o=ibm,c=us
objectclass: top
objectclass: ibm-replicaGroup
ibm-replicaGroup: default

###Master SubEntry ou=app,o=ibm,c=us
dn: ibm-replicaServerId=win2k1,ibm-replicaGroup=default,ou=app,o=ibm,c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: win2k1
ibm-replicationServerIsMaster: true
cn: master
description: master server

###Peer 4 SubEntry
dn: ibm-replicaServerId=win2k4,ibm-replicaGroup=default,ou=app,o=ibm,c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: win2k4
ibm-replicationServerIsMaster: true
cn: peer4
description: Peer 4 server

Peer5 Subentry
dn: cn=win2k5.test.com,ibm-replicaGroup=default,ou=app,o=ibm,c=us
objectclass: top
objectclass: ibm-replicaSubentry
ibm-replicaServerId: win2k5
ibm-replicationServerIsMaster: true
cn: peer5
description: peer1 server

###Master to peer5 agreement
dn: cn=win2k5,cn=win2k1.test.com,ibm-replicaGroup=default,ou=app,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer5
ibm-replicaConsumerId: win2k5
ibm-replicaUrl: ldap://win2k5:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: master to peer5 server

###peer5 to master agreement
 Chapter 13. Replication 375

dn: cn=win2k1,cn=win2k5.test.com,ibm-replicaGroup=default,ou=app,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: master
ibm-replicaConsumerId: win2k1
ibm-replicaUrl: ldap://win2k1:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: peer5 to master server

###master to peer4 agreement
dn: cn=win2k4,cn=win2k1.test.com,ibm-replicaGroup=default,ou=app,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer4
ibm-replicaConsumerId: win2k4
ibm-replicaUrl: ldap://win2k4:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: master to peer4 server

###peer4 to master agreement
dn: cn=win2k1,cn=win2k4.test.com,ibm-replicaGroup=default,ou=app,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: master
ibm-replicaConsumerId: win2k4
ibm-replicaUrl: ldap://win2k4:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: peer4 to master server

###Peer4 to peer5 agreement
dn: cn=win2k5,cn=win2k4.test.com,ibm-replicaGroup=default,ou=app,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer4
ibm-replicaConsumerId: win2k5
ibm-replicaUrl: ldap://win2k5:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: peer4 to peer5 server

###peer5 to peer4 agreement
dn: cn=win2k4,cn=win2k5.test.com,ibm-replicaGroup=default,ou=app,o=ibm,c=us
objectclass: top
objectclass: ibm-replicationAgreement
cn: peer5
ibm-replicaConsumerId: win2k4
ibm-replicaUrl: ldap://win2k4:389
ibm-replicaCredentialsDN: cn=ReplicationCreds,cn=replication,cn=localhost
description: peer5 to peer4 server one
376 Understanding LDAP Design and Implementation

Add the following to the ibmslapd.conf files for all five servers:

dn: cn=Master Server, cn=configuration
cn: Master Server
ibm-slapdMasterDN: cn=masterbind
ibm-slapdMasterPW: secret
ibm-slapdMasterReferral: ldap://win2k1:389/
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdReplication
objectclass: top

13.5 Web administration tasks for managing replication
This part of the section covers tasks that have not be covers elsewhere in this
section on Replication that can done using the Web Administration GUI.

13.5.1 Managing topology
In this section we discuss managing topology.

Editing an agreement
From the Replication topology displayed, select a replication agreement by
clicking it. Then click Edit agreement. You can change the following information
for the replica:

� On the Server tab you can only change:

– Hostname
– Port
– Enable SSL
– Description

� On the Additional tab you can change:

– Credentials.

– Replication schedules.

– Change the capabilities replicated to the consumer replica. From the list of
supplier capabilities, you can deselect any capabilities that you do not
want replicated to the consumer.

Editing a server

Note: A gateway server must be an IBM Tivoli Directory Server Version 5.2
server or an IBM Directory Server Version 5.1 server with a fix pack (FP1 or
later) that supports gateway replication.
 Chapter 13. Replication 377

You can designate whether a master server is to have the role of a gateway
server in the replication site.

To designate a master as a gateway server, select the Server is a gateway
check box.

To remove the role of a gateway server from a master server, deselect the
Server is a gateway check box.

Demoting a master server
To change the role of a server from a master to a replica do the following:

1. Connect the Web Administration Tool to the server that you want to demote.

2. Click Manage topology.

3. Select the subtree and click Show topology.

4. Delete all the agreements for the server you want to demote.

5. Select the server you are demoting and click Move.

6. Select the server under which you are going to place the demoted server and
click Move.

7. Just as you would for a new replica, create new supplier agreements between
the demoted server and its supplier.

Replicating a subtree
To replicate a subtree, expand the Replication management category in the
navigation area and click Manage topology, and perform the following steps:

1. Click Add subtree.

2. Enter the DN of the subtree that you want to replicate or click Browse to
expand the entries to select the entry that is to be the root of the subtree.

3. Enter the master server referral URL. This must be in the form of an LDAP
URL, for example ldap://<myservername>.<mylocation>.<mycompany>.com.

4. Click OK.

5. The new subtree is displayed on the Manage topology panel under the
heading Replicated subtrees.

Note: On the Linux, Solaris, and HP-UX platforms, if a referral fails, ensure
that the environment variable LDAP_LOCK_REC has been set in your
system environment. No specific value is required.

set LDAP_LOCK_REC=anyvalue
378 Understanding LDAP Design and Implementation

Editing a subtree
Use this option to change the URL of the master server that this subtree and its
replicas send updates to. You need do this if you change the port number or host
name of the master server, change the master to a different server. To edit a
subtree perform the following steps:

1. Select the subtree you want to edit.

2. Click Edit subtree.

3. Enter the master server referral URL. This must be in the form of an LDAP
URL, for example
ldap://<mynewservername>.<mylocation>.<mycompany>.com.

Depending on the role being played by the server on this subtree (whether it is a
master, replica or forwarder), different labels and buttons appear on the panel.

� When the subtree's role is replica, a label indicating that the server acts as a
replica or forwarder is displayed along with the button Make server a master.
If this button is clicked then the server which the Web Administration Tool is
connected to becomes a master.

� When the subtree is configured for replication only by adding the auxiliary
class (no default group and subentry present), then the label This subtree is
not replicated is displayed along with the button Replicate subtree. If this
button is clicked, the default group and the subentry is added so that the
server with which the Web Administration Tool is connected to becomes a
master.

� If no subentries for the master servers are found, the label No master server
is defined for this subtree is displayed along with the button titled Make
server a master. If this button is clicked, the missing subentry is added so
that the server with which the Web Administration Tool is connected to
becomes a master.

Removing a subtree
To remove a subtree:

1. Select the subtree you want to remove

2. Click Delete subtree.

3. When asked to confirm the deletion, click OK.

4. The subtree is removed from the Replicated subtree list.

Note: This operation succeeds only if the ibm-replicaGroup=default is
entry is empty.
 Chapter 13. Replication 379

Quiescing the subtree
This function is useful when you want to perform maintenance on or make
changes to the topology. It minimizes the number of updates that can be made to
the server. A quiesced server does not accept client requests. It accepts
requests only from an administrator using the Server Administration control. This
function is Boolean. To quiesce or unquiesce the subtree perform the following
steps:

1. Click Quiesce/Unquiesce to quiesce the subtree.

2. When asked to confirm the action, click OK.

3. Click Quiesce/Unquiesce to unquiesce the subtree.

4. When asked to confirm the action, click OK.

Editing access control lists
Replication information (replica subentries, replication agreements, schedules,
possibly credentials) are stored under a special object, ibm-replicagroup=default.
The ibm-replicagroup object is located immediately beneath the root entry of the
replicated subtree. By default, this subtree inherits ACL from the root entry of the
replicated subtree. This ACL might not be appropriate for controlling access to
replication information.

Required authorities:

� Control replication - You must have write access to the
ibm-replicagroup=default object (or be the owner/administrator).

� Cascading control replication - You must have write access to the
ibm-replicagroup=default object (or be the owner/administrator).

� Control queue - You must have write access to the replication agreement.

13.5.2 Modifying replication properties
Expand the Replication management category in the navigation area and click
Manage replication properties. On this panel you can:

� Change the maximum number of pending changes to return from replication
status queries. The default is 200.

� Add, edit, or delete supplier information. Click OK. The subtree of the supplier
is added to the Supplier information list.

Editing supplier information
To edit the supplier information, perform the following:

1. Select the supplier subtree that you want to edit.
380 Understanding LDAP Design and Implementation

2. Click Edit.

3. If you are editing Default credentials and referral, which is used to create the
cn=Master Server entry under cn=configuration, enter the URL of the server
from which the client wants to receive replica updates in the Default supplier's
LDAP URL field. This needs to be a valid LDAP URL (ldap://). Otherwise, skip
to step 4.

4. Enter the replication bind DN for the new credentials you want to use.

5. Enter and confirm the credential password.

6. Click OK.

Removing supplier information
To remove the supplier information, perform the following steps:

1. Select the supplier subtree that you want to remove.

2. Click Delete.

3. When asked to confirm the deletion, click OK.

4. The subtree is removed from the Supplier information list.

13.5.3 Creating replication schedules
By default, the changes made on the master/peer server are replicated
immediately. But, we can define an optional replication schedule object and
attach it to a replication agreement in order to allow replication of changes at
given times in a day and given day in a week. Schedules are defined per
replication agreement.

Expand the Replication management category in the navigation area and click
Manage schedules.

Creating a daily schedule
In this section we discuss creating a daily schedule.
 Chapter 13. Replication 381

Figure 13-42 Add daily schedule

On the Daily schedule tab, select the subtree for which you want to create the
schedule and click Show schedules. If any schedules exist, they are displayed
in the Daily schedules box. To create or add a new schedule, refer to
Figure 13-42, and perform the following steps:

1. Click Add. Enter a name for the schedule. For example monday1.

2. Select the time zone setting, either UTC or local.

3. Select a replication type from the drop-down menu:

– Immediate

Performs any pending entry updates since the last replication event and
then updates entries continuously until the next scheduled update event is
reached.

– Once

Performs all pending updates prior to the starting time. Any updates made
after the start time wait until the next scheduled replication event.

Select a start time for the replication event.

4. Click Add. The replication event type and time are displayed.

a. Add or remove events to complete your schedule. The list of events is
refreshed in chronological order.
382 Understanding LDAP Design and Implementation

b. When you are finished, click OK.

c. You can select a day and click Add a daily schedule to create a daily
replication schedule for it. If you create a daily schedule it becomes the
default schedule for each day of the week. You can:

• Keep the daily schedule as the default for each day or select a specific
day and change the schedule back to none. Remember that the last
replication event that occurred is still in effect for a day that has no
replication events scheduled.

• Modify the daily schedule by selecting a day and clicking Edit a daily
schedule. Remember changes to a daily schedule affect all days using
that schedule, not just the day you selected.

• Create a different daily schedule by selecting a day and clicking Add a
daily schedule. After you have created this schedule it is added to the
Daily schedule drop-down menu. You must select this schedule for
each day that you want the schedule to be used.

d. When you are finished, click OK.

Creating a weekly schedule
In this section we discuss how to create a weekly schedule.

Note: If replication events are scheduled too closely together, a
replication event might be missed if the updates from the previous
event are still in progress when the next event is scheduled
 Chapter 13. Replication 383

Figure 13-43 Add weekly schedule

On the Weekly schedule tab, select the subtree for which you want to create the
schedule and click Show schedules. If any schedules exist, they are displayed
in the Weekly schedules box. To create or add a new schedule, refer to
Figure 13-43, and perform the following steps:

1. Click Add.

2. Enter a name for the schedule. For example schedule1.

3. For each day, Sunday through Saturday, the daily schedule is specified as
None. This means that no replication update events are scheduled. The last
replication event, if any, is still in effect. Because this is a new replica, there
are no prior replication events, therefore, the schedule defaults to immediate
replication.

13.5.4 Managing queues
This task allows you to monitor status of replication for each replication
agreement (queue) used by this server.

Expand the Replication management category in the navigation area and click
Manage queues.

1. Select the replica for which you want to manage the queue.
384 Understanding LDAP Design and Implementation

2. Depending on the status of the replica, you can click Suspend/resume to
stop or start replication.

3. Click Force replication to replicate all the pending changes regardless of
when the next replication is scheduled.

4. Click Queue details, for more complete information about the replica's
queue. You can also manage the queue from this selection.

5. Click Refresh to update the queues and clear server messages.

Queue details
If you clicked Queue details, three tabs are displayed:

� Status
� Last attempted details
� Pending changes

The Status tab displays the replica name, its subtree, its status, and a record of
replication times. From this panel you can suspend or resume replication by
clicking Resume. Click Refresh to update the queue information.

The Last attempted details tab gives information about the last update attempt. If
an entry is not able to be loaded click Skip blocking entry to continue replication
with the next pending entry. Click Refresh to update the queue information.

The Pending changes tab shows all the pending changes to the replica. If
replication is blocked you can delete all the pending changes by clicking Skip all.
Click Refresh to update the list of pending changes to reflect any new update or
updates that have been processed.

13.6 Repairing replication differences between replicas
This section discusses ways to repair replication differences between replicas,
and provides two examples, Example 13-3 on page 392 and Example 13-4 on
page 393.

13.6.1 The ldapdiff command tool
LDAPDIFF is the LDAP replica synchronization tool. If you find that you have a
replica that might be out of sync with the master you can use this process to sync
up the replica to match the master for both data and schema.
 Chapter 13. Replication 385

Synopsis
This shows how to use the ldapdiff to test to see if there are differences between
master and replicas data:

ldapdiff -b baseDN -sh host -ch host [-a] [-C countnumber]
[-cD dn] [-cK keyStore] [-cw password] -[cN keyStoreType]
[-cp port] [-cP keyStorePwd] [-ct trustStoreType] [-cT trustStore]
[-cY trustStorePwd] [-cZ] [-F] [-j] [-L filename] [-sD dn]
[-sK keyStore] [-sw password] -[sN keyStoreType] [-sp port]
[-sP keyStorePwd] [-st trustStoreType] [-sT trustStore]
[-sY trustStorePwd] [-sZ] [-v]

This shows how to use the ldapdiff to test to see if there are differences between
master and replicas Schema:

ldapdiff -S -sh host -ch host [-a] [-C countnumber][-cD dn]
[-cK keyStore] [-cw password] -[cN keyStoreType] [-cp port]
[-cP keyStorePwd] [-ct trustStoreType] [-cT trustStore]
[-cY trustStorePwd] [-cZ] [-j][-L filename] [-sD dn]
[-sK keyStore] [-sw password] [-sN keyStoreType] [-sp port]
[-sP keyStorePwd] [-st trustStoreType] [-sT trustStore]
[-sY trustStorePwd] [-sZ] [-v]

Description
This tool synchronizes a replica server with its master. To display syntax help for
ldapdiff, type:

ldapdiff -?

Options
The following options apply to the ldapdiff command. There are two
subgroupings that apply specifically to either the supplier server or the consumer
server.

� -a - Specifies to use server administration control for writes to a read-only
replica.

� -b baseDN - Use searchbase as the starting point for the search instead of
the default. If -b is not specified, this utility examines the LDAP_BASEDN
environment variable for a searchbase definition.

� -C countnumber - Counts the number of entries to fix. If more than the
specified number of mismatches are found, the tool exits.

� -F - This is the fix option. If specified, content on the consumer replica is
modified to match the content of the supplier server. This cannot be used if
the -S is also specified.

� -j - Indicates to ignore the operational attributes in the LDIF file.
386 Understanding LDAP Design and Implementation

� -L - If the -F option is not specified, use this option to generate an LDIF file for
output. The LDIF file can be used to update the consumer to eliminate the
differences.

� -S - Specifies to compare the schema on both of the servers.

� -v - Use verbose mode, with many diagnostics written to standard output.

Options for a replication supplier: The following options apply to the consumer
server and are denoted by an initial fsf in the option name.

� -sD - dn Use dn to bind to the LDAP directory. dn is a string-represented DN.

� -sh - host Specifies the host name.

� -sK keyStore - Specify the name of the SSL key database file with default
extension of kdb. If the key database file is not in the current directory, specify
the fully-qualified key database filename. If a key database filename is not
specified, this utility will first look for the presence of the SSL_KEYRING
environment variable with an associated filename. If the SSL_KEYRING
environment variable is not defined, the default keyring file will be used, if
present.

A default keyring file that is, ldapkey.kdb, and the associated password stash file
that is, ldapkey.sth, are installed in the /lib directory under LDAPHOME, where
LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by
operating system platform:

� AIX operating systems - /usr/ldap
� HP-UX operating systems - /usr/IBMldap
� Linux operating systems - /usr/ldap
� Solaris operating systems - /opt/IBMldaps
� Windows operating systems - c:\Program Files\IBM\LDAP

See IBM Directory C-Client SDK Programming Reference (available at:
http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html) for
more information about default key database files, and default Certificate
Authorities.

If a keyring database file cannot be located, a hard-coded set of default trusted
certificate authority roots is used. The key database file typically contains one or
more certificates of certificate authorities (CAs) that are trusted by the client.
These types of X.509 certificates are also known as trusted roots. For more

Note: This is the default install location. The actual LDAPHOME is
determined during installation.
 Chapter 13. Replication 387

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

information on managing an SSL key database, This parameter effectively
enables the -sZ switch.

� -sN keyStoreType - Specify the label associated with the client certificate in
the key database file. If the LDAP server is configured to perform server
authentication only, a client certificate is not required. If the LDAP server is
configured to perform client and server Authentication, a client certificate
might be required. keyStoreType is not required if a default certificate/private
key pair has been designated as the default. Similarly, keyStoreType is not
required if there is a single certificate/private key pair in the designated key
database file. This parameter is ignored if neither -sZ nor -sK is specified.

� -sp ldapport - Specify an alternate TCP port where the ldap server is listening.
The default LDAP port is 389. If -sp is not specified and -sZ is specified, the
default LDAP SSL port 636 is used.

� -sP keyStorePwd - Specify the key database password. This password is
required to access the encrypted information in the key database file, which
may include one or more private keys. If a password stash file is associated
with the key database file, the password is obtained from the password stash
file, and the -sP parameter is not required. This parameter is ignored if neither
-sZ nor -sK is specified.

� -st trustStoreType - Specify the label associated with the client certificate in
the trust database file. If the LDAP server is configured to perform server
authentication only, a client certificate is not required. If the LDAP server is
configured to perform client and server Authentication, a client certificate
might be required. trustStoreType is not required if a default certificate/private
key pair has been designated as the default. Similarly, trustStoreType is not
required if there is a single certificate/private key pair in the designated key
database file. This parameter is ignored if neither -sZ nor -sT is specified.

� -sT trustStore - Specify the name of the SSL trust database file with default
extension of tdb. If the trust database file is not in the current directory,
specify the fully-qualified trust database filename. If a trust database filename
is not specified, this utility will first look for the presence of the SSL_KEYRING
environment variable with an associated filename. If the SSL_KEYRING
environment variable is not defined, the default keyring file will be used, if
present.

A default keyring file that is, ldapkey.tdb, and the associated password stash file
that is, ldapkey.sth, are installed in the /lib directory under LDAPHOME, where
LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by
operating system platform:

� AIX operating systems - /usr/ldap
� HP-UX operating systems - /usr/IBMldap
� Linux operating systems - /usr/ldap
388 Understanding LDAP Design and Implementation

� Solaris operating systems - /opt/IBMldaps
� Windows operating systems - c:\Program Files\IBM\LDAP

See IBM Directory C-Client SDK Programming Reference (available at:
http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html) for
more information about default key database files, and default Certificate
Authorities.

If a keyring database file cannot be located, a hard-coded set of default trusted
certificate authority roots is used. The key database file typically contains one or
more certificates of certificate authorities (CAs) that are trusted by the client.
These types of X.509 certificates are also known as trusted roots. For more
information on managing an SSL key database,

This parameter effectively enables the -sZ switch.

� -sw password | ? - Use password as the password for authentication. Use the
? to generate a password prompt. Using this prompt prevents your password
from being visible through the ps command.

� -sY - The password for the trusted database.

� -sZ - Use a secure SSL connection to communicate with the LDAP server.
The -Z option is only supported when the SSL component entry, as provided
by IBM’s GSKit, is installed.

Options for a replication consumer
The following options apply to the consumer server and are denoted by an initial
fcf in the option name.

� -cD dn - Use dn to bind to the LDAP directory. dn is a string-represented DN.

� -ch host - Specifies the host name.

� -cK keyStore - Specify the name of the SSL key database file with default
extension of kdb. If the key database file is not in the current directory, specify
the fully-qualified key database filename. If a key database filename is not
specified, this utility will first look for the presence of the SSL_KEYRING
environment variable with an associated filename. If the SSL_KEYRING
environment variable is not defined, the default keyring file will be used, if
present.

A default keyring file that is, ldapkey.kdb, and the associated password stash file
that is, ldapkey.sth, are installed in the /lib directory under LDAPHOME, where

Note: This is the default install location. The actual LDAPHOME is
determined during installation.
 Chapter 13. Replication 389

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by
operating system platform:

� AIX operating systems - /usr/ldap
� HP-UX operating systems - /usr/IBMldap
� Linux operating systems - /usr/ldap
� Solaris operating systems - /opt/IBMldaps
� Windows operating systems - c:\Program Files\IBM\LDAP

See IBM Directory C-Client SDK Programming Reference (available at:
http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html) for
more information about default key database files, and default Certificate
Authorities.

If a keyring database file cannot be located, a hard-coded set of default trusted
certificate authority roots is used. The key database file typically contains one or
more certificates of certificate authorities (CAs) that are trusted by the client.
These types of X.509 certificates are also known as trusted roots. For more
information on managing an SSL key database,

This parameter effectively enables the -cZ switch.

� -cN keyStoreType - Specify the label associated with the client certificate in
the key database file. If the LDAP server is configured to perform server
authentication only, a client certificate is not required. If the LDAP server is
configured to perform client and server Authentication, a client certificate
might be required. keyStoreType is not required if a default certificate/private
key pair has been designated as the default. Similarly, keyStoreType is not
required if there is a single certificate/private key pair in the designated key
database file. This parameter is ignored if neither -cZ nor -cK is specified.

� -cp ldapport - Specify an alternate TCP port where the ldap server is listening.
The default LDAP port is 389. If -cp is not specified and -cZ is specified, the
default LDAP SSL port 636 is used.

� -cP keyStorePwd - Specify the key database password. This password is
required to access the encrypted information in the key database file, which
may include one or more private keys. If a password stash file is associated
with the key database file, the password is obtained from the password stash
file, and the -cP parameter is not required. This parameter is ignored if neither
-cZ nor -cK is specified.

� -ct trustStoreType - Specify the label associated with the client certificate in
the trust database file. If the LDAP server is configured to perform server
authentication only, a client certificate is not required. If the LDAP server is

Note: This is the default install location. The actual LDAPHOME is
determined during installation.
390 Understanding LDAP Design and Implementation

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

configured to perform client and server Authentication, a client certificate
might be required. trustStoreType is not required if a default certificate/private
key pair has been designated as the default. Similarly, trustStoreType is not
required if there is a single certificate/private key pair in the designated key
database file. This parameter is ignored if neither -cZ nor -cT is specified.

� -cT trustStore - Specify the name of the SSL trust database file with default
extension of tdb. If the trust database file is not in the current directory,
specify the fully-qualified trust database filename. If a trust database filename
is not specified, this utility will first look for the presence of the SSL_KEYRING
environment variable with an associated filename. If the SSL_KEYRING
environment variable is not defined, the default keyring file will be used, if
present.

A default keyring file that is, ldapkey.tdb, and the associated password stash file
that is, ldapkey.sth, are installed in the /lib directory under LDAPHOME, where
LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by
operating system platform:

� AIX operating systems - /usr/ldap
� HP-UX operating systems - /usr/IBMldap
� Linux operating systems - /usr/ldap
� Solaris operating systems - /opt/IBMldaps
� Windows operating systems - c:\Program Files\IBM\LDAP

See IBM Directory C-Client SDK Programming Reference (available at:
http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html) for
more information about default key database files, and default Certificate
Authorities.

If a keyring database file cannot be located, a hard-coded set of default trusted
certificate authority roots is used. The key database file typically contains one or
more certificates of certificate authorities (CAs) that are trusted by the client.
These types of X.509 certificates are also known as trusted roots. For more
information on managing an SSL key database,

This parameter effectively enables the -cZ switch.

� -cw password | ? - Use password as the password for authentication. Use the
? to generate a password prompt. Using this prompt prevents your password
from being visible through the ps command.

� -cY - The password for the trusted database.

Note: This is the default install location. The actual LDAPHOME is
determined during installation.
 Chapter 13. Replication 391

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

� -cZ - Use a secure SSL connection to communicate with the LDAP server.
The -cZ option is only supported when the SSL component entry, as provided
by IBMfs GSKit, is installed.

Example 13-3 Checking data differences between replica and master

ldapdiff -b <baseDN> -sh <supplierhostname> -ch <consumerhostname>
[options]

� This shows that there are differences between the master and replica

C:\>ldapdiff -b "o=ibm,c=us" -sh win2k1 -ch win2k2 -L c:\ldapdiff.ldif

Traversing the tree on both the servers...

! ou=Austin,o=ibm,c=us
 < ibm-entryuuid : 71ce21da-f737-4c38-8646-6eba6a9e03a7
 > ibm-entryuuid : c9d47e80-bb66-4aa6-8992-a374cae3a85d
 < modifyTimeStamp : 20040218032345.000000Z
 > modifyTimeStamp : 20040218035213.000000Z
 < createTimeStamp : 20040218032345.000000Z
 > createTimeStamp : 20040218035213.000000Z

! ou=In Flight Systems,ou=Austin,o=ibm,c=us
 < ibm-entryuuid : 9033545f-3675-4788-88a7-3aa77053715f
 > ibm-entryuuid : 81a86631-36e2-4f03-a55a-b8a870133c3f
 < businesscategory : aircraft
 < modifyTimeStamp : 20040218032348.000000Z
 > modifyTimeStamp : 20040218035217.000000Z
 < createTimeStamp : 20040218032348.000000Z
 > createTimeStamp : 20040218035217.000000Z

! ou=Home Entertainment,ou=Austin,o=ibm,c=us
 < ibm-entryuuid : debc5755-53f4-41b1-bbf5-27c81f0da706
 > ibm-entryuuid : d8f381c7-6c44-4dbb-8133-aa9033daf8fe
 < businesscategory : Home Entertainment
 < modifyTimeStamp : 20040218032349.000000Z
 > modifyTimeStamp : 20040218035217.000000Z
 < createTimeStamp : 20040218032349.000000Z
 > createTimeStamp : 20040218035217.000000Z

! ou=Groups,o=ibm,c=us
 < ibm-entryuuid : c5b95edf-c40f-4293-b97d-be802dd40238
 > ibm-entryuuid : bcc28748-f07e-41f6-a11d-851922d3c1bf
 < modifyTimeStamp : 20040218032349.000000Z
 > modifyTimeStamp : 20040218035217.000000Z
 < createTimeStamp : 20040218032349.000000Z
 > createTimeStamp : 20040218035217.000000Z

C:\>
392 Understanding LDAP Design and Implementation

� This shows that there are no differences between the master and replica

C:\>ldapdiff -b "o=ibm,c=de" -sh win2k1 -ch win2k3

Traversing the tree on both the servers...

C:\>

Example 13-4 Checking schema between replica and master server

ldapdiff -S -sh <supplierhostname> -ch <consumerhostname> [options]
C:\>ldapdiff -S -sh win2k1 -ch win2k2
Schema compare is in progress...
This may take a few minutes...
Schema compare is complete.

SSL, TLS notes for ldapdiff
To use the SSL or TLS -related functions associated with this utility, the SSL or
TLS libraries and tools must be installed. The SSL or TLS libraries and tools are
provided with IBMfs Global Security Kit (GSKit), which includes security software
developed by RSA Security Inc.

See the makefile associated with the sample programs for more information on
linking an LDAP application so that it has access to 128-bit and triple-DES
encryption algorithms.

The gsk7ikm utility is used to define the set of trusted certification authorities
(CAs) that are to be trusted by the client. By obtaining certificates from trusted
CAs, storing them in the key database file, and marking them as ftrustedf, you
can establish a trust relationship with LDAP servers that use ftrustedf certificates
issued by one of the trusted CAs. The gsk7ikm utility can also be used to obtain
a client certificate, so that client and server authentication can be performed. If

Note: If no DN arguments are provided, the ldapdiff command waits to
read a list of DNs from standard input. To break out of the wait, use Ctrl+C
or Ctrl+D.

Note: For information regarding the use of 128-bit and triple DES encryption
by LDAP applications, including the LDAP sample programs, see LDAP_SSL
in the IBM Directory C-Client SDK Programming Reference (available at:
http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html).
This section describes the steps required to build the sample programs and
your applications so they can use SSL with the strongest encryption
algorithms available.
 Chapter 13. Replication 393

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

the LDAP servers accessed by the client use server authentication only, it is
sufficient to define one or more trusted root certificates in the key database file.
With server authentication, the client can be assured that the target LDAP server
has been issued a certificate by one of the trusted CAs. In addition, all LDAP
transactions that flow over the SSL or TLS connection with the server are
encrypted including the LDAP credentials that are supplied on the ldap_bind or
ldap_simple_bind_s. For example, if the LDAP server is using a high-assurance
VeriSign certificate, you should obtain a CA certificate from VeriSign, import it
into your key database file, and mark it as trusted. If the LDAP server is using a
self-signed server certificate, the administrator of the LDAP server can supply
you with a copy of the serverfs certificate request file. Import the certificate
request file into your key database file and mark it as trusted.

If the LDAP servers accessed by the client use client and server authentication, it
is necessary to:

� Define one or more trusted root certificates in the key database file. This
allows the client to be assured that the target LDAP server has been issued a
certificate by one of the trusted CAs. In addition, all LDAP transactions that
flow over the SSL or TLS connection with the server are encrypted, including
the LDAP credentials that are supplied on the ldap_bind or
ldap_simple_bind_s.

� Create a key pair using gsk7ikm and request a client certificate from a CA.
After receiving the signed certificate from the CA, store the certificate in the
client key database file.

LDAPDIFF diagnostics
Exit status is 0 if no errors occur. Errors result in a non-zero exit status and a
diagnostic message being written to standard error.
394 Understanding LDAP Design and Implementation

Chapter 14. Access control

This chapter covers ITDS Access Control Lists (ACLs) and how to manage them.
ACLs provide a means to protect information stored in a LDAP directory.
Administrators use ACLs to restrict access to different portions of the directory,
or specific directory entries. LDAP directory entries are related to each other by a
hierarchical tree structure. Each directory entry (or object) contains the
distinguished name of the object as well as a set of attributes and their
corresponding values.

14
© Copyright IBM Corp. 1998, 2004. All rights reserved. 395

14.1 Overview
Since directories are used for storing various kinds of data, ranging from publicly
accessed to highly sensitive, and are accessed by different users, therefore it is
of utmost importance to restrict users from tampering with other users’ data. For
example, a user after logging in should not be allowed to delete or modify an
entry which he did not create although he should be able to see it. This is
achieved by implementing Access Control Lists (ACLs). ACLs are a means of
controlling or restricting users from accessing different parts of the DIT.

The way access control is implemented in ITDS is as follows.

For each entry (In a directory server terms ‘dn’) that need to be access
controlled, accompany it with the relevant list of the users and their
corresponding permissions.

For example, if it is required to deny write access to a user
“cn=user1,o=ibm,c=us” on the entry “ou=payroll,o=ibm,c=us” then we can do so
by modifying the entry “ou=payroll,o=ibm,c=us”. The modification required is
basically the addition of a new attribute, aclEntry to “ou=payroll,o=ibm,c=us“.
However, if the entry “ou=payroll,o=ibm,c=us“ already contains aclEntry, do not
worry, this is a multivalued attribute. Just add one more value to aclEntry and we
are done.

Here is what we need to add to “ou=payroll,o=ibm,c=us”:

aclEntry=access-id:CN=USER1,O=IBM,C=US:normal:rsc:normal:deny:w

Do not worry too much on how exactly do we add this attribute to the desired
entry or where all in the directory will that impact or what does “normal” mean,
etc. We will cover this in this chapter. Currently it is essential to have just the
meaning of the above line understood. The above line, when read in plain
English, signifies that a user (access-id) with dn “cn=user1,o=ibm,c=us”, is:

� (grant)ed (r)ead, (s)earch and (c)ompare access over the (normal) attributes.

� (deny)ed (w)rite access over the (normal) attributes.

Please read the line of aclEntry and the description following it in parallel.
Reading in this manner will make the concept of ACLs very easy to understand.

We have more forms of ACL specification. The above example explicitly sets
ACLs for an access-id that is, a single user. Similarly we can set the ACLs for a
group and make sure that all the users with alike permissions are put into the
same group. There is more to it, as will be seen, when we traverse through the
rest of this chapter.
396 Understanding LDAP Design and Implementation

14.2 ACL model
To begin with, let us see how the ACL model looks like. The ACL model is based
on two sets of attributes:

� The entryOwner information

� The Access Control Information (ACI)

In conformance with the LDAP model, the ACI and the entryOwner information
both are represented as attribute-value pairs. The LDIF syntax can be used to
administer these values.

14.2.1 EntryOwner information
The entry owners have complete permissions to perform any operation on the
object regardless of the aclEntry. Additionally, the entry owners are the only ones
who are permitted to administer the aclEntries for that object. EntryOwner is an
access control subject, it can be defined as individuals, groups or roles. The
attributes that define the entryOwnership are:

� entryOwner: Defines an entry owner

� ownerPropagate: Specifies whether the owner set is propagated to the
children.

14.2.2 Access Control information
The ACI specifies a subject’s (user’s) permission to perform a given operation
against a LDAP object. Do not confuse this with ACL. ACL is basically a
cumulative set of the entry owners and the ACI.

ACI is further split, depending upon the way intended to specify the ACLs. We
can specify the ACLs, whereby we specify a set of rights to the user
“cn=user1,o=ibm,c=us” over the current object. The descendants also may get
impacted depending upon the setting of the aclPropagate attribute. Such ACLs
are known as non-filtered ACLs. On the other hand, we can also specify the set
of rights to the user “cn=user1,o=ibm,c=us“ over a set of objects conforming to
the filter “cn=a*”, which is a more generalized way of setting ACLs. Such ACLs
are called filtered ACLs. It is as easy as that. Below is the classification in more
detail.

Note: The directory administrator and administration group members are
the entryOwners for all objects in the directory by default, and this
entryOwnership cannot be removed from any object.
 Chapter 14. Access control 397

Non-filtered ACLs
This type of ACL applies explicitly to the directory entry that contains them, but
may be propagated to none or all of its descendant entries. The default behavior
of the non-filtered ACL is to propagate. The attributes that define non-filtered
ACLs are:

� aclEntry - Defines a permission set

aclentry=access-id:CN=USER1,O=IBM,C=US:normal:rsc:normal:deny:w

� aclPropagate - Specifies whether the permission set is propagated to the
descendant entries

aclpropagate=TRUE

Consider Figure 14-1 for a better explanation of non-filtered ACLs.

Figure 14-1 A simple Directory Information Tree (DIT)

Suppose we define the acls at entry A as:

aclentry=access-id:CN=USER1,O=IBM,C=US:system:deny:rsc:critical:deny:rwsc:sensi
tive:deny:rwsc:normal:rsc:normal:deny:w:object:deny:ad:restricted:deny:rwsc

The above aclEntry is an example of defining non-filtered acls. There are two
reasons for this being an example of non-filtered acls:

� The attribute aclentry does not exist for non-filtered ACLs. For non-filtered
ACLs we have the attribute ibm-filterAclEntry.

� There is no mention of the filter of the affected objects.

A: cn=a,o=ibm,c=us
A1: cn=a1,cn=a,o=ibm,c=us
A2: cn=a2,cn=a,o=ibm,c=us
A3: cn=a3,cn=a2,cn=a,o=ibm,c=us
A4: cn=a4,cn=a2,cn=a,o=ibm,c=us

A4A3

A1 A2

A

398 Understanding LDAP Design and Implementation

Consider the DIT in Figure 14-1 on page 398. Suppose we define ACLs at A,
specifying “cn=user1,o=ibm,c=us“ has write access over it. This is going to
propagate down the tree till the leaves (If aclPropagate at A is set to true), or till
the point where another set of explicitly ACLs have been defined, whichever
happens to come earlier. In other words, if no other explicit ACLs have been
defined at A1 and A3, both A1 and A3 will have the ACLs, as defined at A, that is,
specifying a write access to “cn=user1,o=ibm,c=us” over them.

Filtered ACLs
Filter based ACLs employ a search, using a specified object filter, like
“cn=user*”, to select the directory entries to which they apply.

The directory entry that contains the filter ACL will serve as the base of the
search. The scope of the search will be subtree, which includes the “entry
containing the filter”, as well as, zero, one, or more of its descendant entries.

Filter-based ACLs do not propagate in the same way that non-filter-based ACLs
currently do. By nature, they inherently propagate to any comparison matched
objects in the associated subtree. For this reason, the aclPropagate attribute,
which is used to stop propagation of non-filter ACLs, does not apply to the new
filter-based ACLs.

Consider our DIT in Figure 14-1 on page 398, if we set a filter ACL at A, with a
filter (cn=a2*), then it would map to A2, and the filteracls would propagate to A2.
There is not a means whereby, we can restrict ACL propagation, using attributes
like aclPropagate, as like in case of non-filtered acls. This will not be the case if
the ibm-filterAclInherit is set to false at A2. However, We will see that case later.

The default behavior of filter-based ACLs is to accumulate from the lowest
containing entry, upward along the ancestor entry chain, to the highest
containing entry in the DIT. The effective access is calculated as the union of the
access rights granted, or denied, by the constituent ancestor entries. There is an
exception to this behavior. For compatibility with the subtree replication feature,
and to allow greater administrative control, a ceiling attribute is used as a means
to stop accumulation at the entry in which it is contained. The ibm-filterAclInherit
attribute is used as this ceiling attribute, which is explained later. Do not confuse
this with aclPropagate. aclPropagate decides whether we can send the ACLs
down the tree, whereas ibm-filterAclInherit tells where we are supposed to
consider the filters defined above me, in the DIT, for access evaluation.

Note: The key thing to remember in case of filtered ACLs is that the filter
we’re specifying is for the objects that will be impacted and not the subject.
This filter is often misread as the set of subjects, rather than objects.
 Chapter 14. Access control 399

What this means is that if we deny write access to the filter cn=a* at the entry A
to the user “cn=user1,o=ibm,c=us” and we grant access to the filter cn=a* at the
entry A1, then at the time of access evaluation at A1/A3/A4 the access provided
for the user at both A and A1 is taken into consideration, which happens to be an
access of grant : write at A1 and an access of deny : write at A. Since deny is
more stronger than grant, the effective access of user “cn=user1,o=ibm,c=us”
over A1/A3/A4 turns out to be deny:write. That seems very much simple, is not
it?

Filter based ACLs are maintained using the following attributes:

� ibm-filterAclEntry: It is the same form as the aclEntry attribute but has an
additional component called object filter.

� ibm-filterAclInherit: When set to False, it terminates ACL accumulation. Its
default value is True.

If this still seems confusing, do not worry, the following example would help.

Consider Figure 14-1 on page 398 again. Suppose we define a filter ACL entry
as like below at the entry cn=a,o=ibm,c=us:

ibm-filterAclentry=access-id:CN=USER1,O=IBM,C=US:(cn=a*):object:deny:ad:normal:
rwsc

Then, here is what we are providing the user “cn=user1,o=ibm,c=us”: Please
note the filter first. The filter “cn=a*” means all the entries conforming to “cn=a*”,
which are at or below the subtree “cn=a,o=ibm,c=us”, since that’s where this
Filter ACL has been defined. Let us consider what we have granted/denied for
the user cn=user1,o=ibm,c=us. The entries conforming to cn=a* are referred to
as objects for the convenience of explanation, in the next two bullets.

� user1 is (deny)ed (a)dd children under the current entry or (d)elete the current
entry.

� user1 is granted (r)ead, (w)rite, (s)earch and (c)ompare access over the
objects.

The objects mentioned above are the set of entries, having DNs conforming to
the filter cn=a*, that is, over the users A, A1, A2, A3 and A4 mentioned above.

The above example should definitely have brought forth a clearer picture of the
filtered acls. How exactly they are setup and the relevant details are the subject
matter of the rest of the chapter. So do not worry, please go ahead for further
details.
400 Understanding LDAP Design and Implementation

14.3 Access control attribute syntax
As indicated in “ACL model” on page 397, the ACL attributes can be managed
using LDIF notation. The syntax of the filter ACL attributes are a minor
modifications of the current non-filter based ACL attributes. The Backus Naur
Form (BNF) for the ACI and entryOwner attributes is shown below:

<aclEntry> ::= <subject> [":" <rights>]
<aclPropagate> ::= "true" | "false"
<ibm-filterAclEntry> ::= <subject> ":" <object filter> [":" <rights>]
<ibm-filterAclInherit> ::= "true" | "false"
<entryOwner> ::= <subject>
<ownerPropagate> ::= "true" | "false"
<subject> ::= <subjectDnType> ':' <subjectDn> | <pseudoDn>
<subjectDnType> ::= "role" | "group" | "access-id"
<subjectDn> ::= <DN>
<DN> ::= distinguished name as described in RFC 2251, section 4.1.3.
<pseudoDn> ::= "group:cn=anybody" | "group:cn=authenticated" |
"access-id:cn=this"
<object filter> ::= string search filter as defined in RFC 2254, section 4
(extensible matching is not supported).
<rights> ::= <accessList> [":" <rights>]
<accessList> ::= <objectAccess> | <attributeAccess> | <attributeClassAccess>
<objectAccess> ::= "object:" [<action> ":"] <objectPermissions>
<action> ::= "grant" | "deny"
<objectPermisssions> ::= <objectPermission> [<objectPermissions>]
<objectPermission> ::= "a" | "d" | ""
<attributeAccess> ::= "at." <attributeName> ":" [<action> ":"]
<attributePermissions>
<attributeName> ::= attributeType name as described in RFC 2251, section 4.1.4.
(OID or alpha-numeric string with leading alphabet, "-" and ";" allowed)
<attributePermissions> ::= <attributePermission> [<attributePermissions>]
<attributePermission> ::= "r" | "w" | "s" | "c" | ""
<attributeClassAccess> ::= <class> ":" [<action> ":"] <attributePermissions>
<class> ::= "normal" | "sensitive" | "critical" | "system" | "restricted"

Wondering what the above stuff is all about! The following lines would clarify the
above contents in a more elaborate way.

Note: Given an entry in the DIT, we can specify either the non-filtered acls or
the filtered acls over that entry. We cannot have a combination of both at the
same given entry.
 Chapter 14. Access control 401

14.3.1 Subject
Subject is the entry or entity which requests access to operate on a directory
entry or object. It consists of a combination of DN-type and a DN. The valid DN
types are access-Id, Group and Role.

For example, a subject might be "access-id: cn=personA, o=IBM” or “group:
cn=deptXYZ, o=IBM". If a DN contains “:” (colon), it must be surrounded by
double quotes. The double quotes which are parts a DN should be escaped with
backslash character. All directory groups can be used in access control. Roles
that are used in access control must have an objectclass of AccessRole.

Roles and Groups have similar implementations but differ conceptually. A user
belonging to a role is assumed to be possessing the necessary authorities that
are required to do any job associated with that Role. With group membership,
there is no such associated assumptions.

Roles are similar to groups in that they are represented in the directory by an
object. Additionally, roles contain a group of DNs. Roles that are used in access
control must have an objectclass of AccessRole.

Let us consider an example. We have a group of users who are part of the team
A. Name this group as group A. Now define a role, “player of team A”. Now
whoever conforms to the group A, or “player of team A” is a part of the team A. It
is just a different perspective of looking at the same end-object.

14.3.2 Pseudo DNs
Pseudo DNs are maintained by the server and are used for Access Control.
These pseudo DNs are used to refer to large number of DNs that possess a
common characteristic in relation to either the operation being performed or the
object on which the operation is being performed.

Three pseudo DNs are supported by LDAP Version 3 (just to mention that this is
the version of LDAP that we are talking of and not the product itself):

� access-id: cn=this

When specified as part of an ACL, this DN refers to the bindDN, which
matches the DN on which the operation is performed. For example, if an
operation is performed on the object "cn=personA, ou=IBM, c=US" and the

Note: Any group of the type AccessGroup, GroupOfNames,
GroupofUniqueNames, or groupOfURLs structural objectclasses or the
ibm-dynamicGroup, ibm-staticGroup auxiliary objectclasses can be used for
access control.
402 Understanding LDAP Design and Implementation

bindDn is "cn=personA, ou=IBM, c=US", the permissions granted are a
combination of those given to "cn=this" and those given to "cn=personA,
ou=IBM, c=US".

Now the obvious question is where do we find the necessity of having a dn
such as “cn=this” in my directory? Well, let us take an example to have this
absorbed. Consider a directory for the employees of an organization as like
the IBM Bluepages directory. We can find a lot of information in this directory
pertaining to the employees. The user has the access to modify his/her
information, as like his telephone number, contact number etc. but there are
fields which can’t be edited by the employees, but only an administrator
should, like his manager’s name. There is where we can definitely use the
access-id cn=this and define the ACL to deny write on the relevant attributes.

� group: cn=anybody

When specified as part of an ACL, this DN refers to all users, even those that
are unauthenticated. Users cannot be removed from this group, and this
group cannot be removed from the database.

Well, this group is problematic for somebody. If we fire a simple query like,
“ldapsearch -s base objectclass=*”. That is, the root DSE search without any
credentials, we are authenticated to the directory server with the default
credentials of the group “cn=Anybody”. Consequently we are able to run the
rootdse search successfully. Some people might say, all the data in my
directory server is confidential. We are not ready to expose any of this
information. How am we supposed to hide it, because all the “people in the
world” are able to see it, being the members of the group “cn=Anybody”. that
is, by firing anonymous searches.

Well, there a lot of decent ways of getting around this problem. The simplest
way is to block the anonymous searches to the directory server. The relevant
settings are to made in the directory server via webadmin, as follows:

a. Connect to the directory server via the webadmin.
b. Click Manage connection properties.
c. Select the General tab.
d. By default the Allow anonymous connections check box is ticked.
e. Uncheck this check box.

Refer to Figure 14-2 on page 404 on how to disable anonymous access to the
directory.

Note: Searches against the directory server, which are fired without any
credentials are also called Anonymous searches.
 Chapter 14. Access control 403

Figure 14-2 Disabling anonymous access to the directory

The other ways to get over such an issue is to make use of ACLs, wherever
necessary and enforce authenticated access. We can also make use of SSL
to enforce secured access to our directory. Other way is to make use of
plug-ins (written by self or have them written by some service personnel, but
that will cost money). There are documents, shipped along with the directory
server to write plug-ins. The main purpose of the plug-in is to filter the calls
coming to the directory server. That is, listen to the calls to the directory
server, before the server and if no proper credentials are accompanied by the
client’s request, block that request and do not allow that to pass through.

The reason this group has been part of our implementation or in other words
cannot be removed from the implementation is that this particular feature is
part of the RFC 2251 of the LDAP protocol. Though some users do not like
this feature, there are some other good reasons of keeping this group.
Suppose there are a million users in our directory server. Suppose, we need
to provide read access to everyone in our directory server. It is not wise
enough to create a group of 1 Million members and provide a read access to
this group at the relevant places. It is just a matter of tailoring the provided
features to suit ones purpose.

� group: cn=Authenticated

This DN refers to any DN that has been authenticated by the directory. The
method of authentication is not considered.

Note: Disallowing anonymous binds might cause some applications to fail.
404 Understanding LDAP Design and Implementation

"cn=Authenticated" refers to a DN that has been authenticated anywhere on
the server, regardless of where the object representing the DN is located. It
should be used with caution, however. For example, under one suffix,
"cn=Secret", there could be a node called "cn=Confidential Material", which
has an aclentry of "group:cn=Authenticated:normal:rsc". Under another suffix,
"cn=Common", there could be the node "cn=Public Material". If these two
trees are located on the same server, a bind to "cn=Public Material" would be
considered authenticated, and would get permission to the normal class on
the "cn= Confidential Material" object.

14.3.3 Object filter
This parameter applies to filtered ACLs only. The string search filter as defined in
RFC 2254, is used as the object filter format. Because the target object is already
known, the string is not used to perform an actual search. Instead, a filter-based
compare on the target object in question is performed to determine if a given set
of ibm-filterAclEntry values apply to it.

Let us have this more simplified. Consider our DIT of Figure 14-1 on page 398
again. Let us suppose we define a set of ACLs for the user
“cn=user1,o=ibm,c=us” at the entry A, and the filter we specify is “cn=a*”. When
we specify this filter, the directory server will not do an ldapsearch to find out the
objects, matching the filter, and tell the user “cn=user1,o=ibm,c=us” : “Look!
These are the set of objects that you have so-and-so access!” Instead, here is
what the directory server would do. When we fire a query against an entry,
authenticated as the user “cn=user1,o=ibm,c=us” the entry we are targeting
upon, would be compared against the defined set of filters, till the top of the tree,
or till the point that the filters can be chased, verify the permissions of the entry
“cn=user1,o=ibm,c=us” over that entry. The filter chasing is avoided by
specifying the ibm-filterAclInherit=false.

Depending upon the access rights calculated in this manner, either our intended
operation succeeds or fails, for want of sufficient permissions.

14.3.4 Rights
Access rights can apply to an entire object or to attributes of the object. The
LDAP access rights are discreet. One right does not imply another right. The
rights may be combined together to provide the desired rights list following a set
of rules discussed later. Rights can be of an unspecified value, which indicates
 Chapter 14. Access control 405

that no access rights are granted to the subject on the target object. The rights
consist of three parts:

� Action

Defined values are grant or deny. If this field is not present, the default is set
to grant.

� Permissions

There are six basic operations that may be performed on a directory object.
From these operations, the base set of ACI permissions are taken. These are:
Add an entry, delete an entry, read an attribute value, write an attribute value,
search for an attribute, and compare an attribute value.

The possible attribute permissions are: read (r), write (w), search (s), and
compare (c). Additionally, object permissions apply to the entry as a whole.
These permissions are add child entries (a) and delete this entry (d).

Table 14-1 summarizes the permissions needed to perform each of the LDAP
operations.

Table 14-1 Permissions needed to perform LDAP operations

Operation Permissions needed

ldapadd add (on parent)

ldapdelete delete (on object)

ldapmodify write (on attribute being modified)

ldapsearch � search, read (on attributes in RDN)

� search (on attributes specified in the
search filter)

� search (on attributes returned with
just names)

� search, read (on attributes returned
with values)

ldapmodrdn write (on RDN attribute)

ldapcompare compare (on attribute being compared)

Note: For search operations, the subject is required to have search (s)
access to all the attributes in the search filter or no entries are returned.
For the ldapsearch to be successful, the subject is required to have search
(s) and read (r) access to all the attributes in the RDN of the entries that
are expected to be returned or these entries are not returned.
406 Understanding LDAP Design and Implementation

� Access target

Access target refers to the scope to which the permissions apply. These
permissions can be applied to the entire object (add child entry, delete entry),
to an individual attribute within the entry, or can be applied to groups of
attributes (Attribute Access Classes) as described below.

Attributes requiring similar access rights or permissions are grouped together
in classes. Attributes are mapped to their attribute classes in the directory
schema file. These classes are discrete that is, access to one class does not
imply access to another class. Permissions are set with regard to the attribute
access class as a whole. The permissions set on a particular attribute class
apply to all the attributes within that access class, unless individual attribute
access permissions are specified.

IBM defines five attribute classes that are used in evaluation of access to user
attributes: Normal, sensitive, critical, system, and restricted. For example, the
attribute commonName belongs to the normal class, and the attribute
userPassword belongs to the critical class. All user defined attributes belong
to the normal access class unless otherwise specified.

The system class attributes that apply to access control are:

– aclSource: This attribute identifies the source from which a given entry is
supposed to inherit ACLs.

– ibm-effectiveAcl: This attribute gives the effective ACLs on an entry after
taking into consideration all ACLs defined at self, the default ACLs and
also the ACLs that are inherited.

– ownerSource: This attribute identifies the source from which a given
attribute is supposed to inherit its owner.

These attributes are maintained by the LDAP server and are read-only to the
directory users and administrator.

The restricted class attributes that define access control are:

– aclEntry: This attribute stores the information pertaining to non-filtered
ACLs.

– aclPropagate: This attribute indicates whether the ACLs defined at this
level are supposed to be propagated down the tree.

• aclPropagate=true indicates that the acls need to be propagated, or

• aclPropagate=false indicates that the ACL propagation stops here.

– entryOwner: This attribute stores information as to who exactly is the
owner of a given entry.

– ibm-filterAclEntry: This attribute stores the information pertaining to filtered
ACLs.
 Chapter 14. Access control 407

– ibm-filterAclInherit: This attribute indicates whether a given entry is
supposed to inherit filter ACLs, from its ancestors, for evaluating effective
access.

– ownerPropagate: This attribute indicates whether the owner specified at a
given entry is supposed to be propagated down the tree.

• ownerPropagate=true indicates that the owner needs to be
propagated.

• ownerPropagate=false indicates that the owner need not be
propagated.

By default all users have read access to the restricted attributes but only
entryOwners can create, modify, and delete these attributes.

Here is an aclEntry for a user with the permissions set on different attribute
classes:

aclentry=access-id:CN=USER1,O=IBM,C=US:system:deny:rsc:critical:deny:rws
c:sensitive:deny:rwsc:normal:rsc:normal:deny:w:object:deny:ad:restricted
:deny:rwsc

The above line, when read in plain English, signifies that a user (access-id)
with dn “cn=user1,o=ibm,c=us”, is:

(deny)ed (r)ead, (s)earch and (c)ompare access over the (system) attributes.

(deny)ed (r)ead, (w)rite, (s)earch and (c)ompare access over the (critical)
attributes.

(deny)ed (r)ead, (w)rite, (s)earch and (c)ompare over the (sensitive)
attributes.

(grant)ed (r)ead, (s)earch and (c)ompare access over the (normal) attributes.

(deny)ed (w)rite access over the normal attributes.

(deny)ed to (a)dd and (d)elete any (object) that is, children.

(deny)ed (r)ead, (w)rite, (s)earch and (c)ompare access over the (restricted)
attributes.

Note: Write to (system) attributes is denied by default for all users,
including the directory administrator.

Note: denied is deliberately put up as denied, just for the sake of making
co-relation between the line of the aclentry and the relevant description
easier.
408 Understanding LDAP Design and Implementation

14.3.5 Propagation
All entries in the directory may or may not have aclEntry or entryOwner explicitly
defined on them. If either of these values is not explicitly defined, it is inherited
from an ancestor entry in the DIT.

Each explicit aclEntry or entryOwner applies to the entry on which it is set.
Additionally, the value might apply to all descendants that do not have an
explicitly set value. These values are considered propagated; their values
propagate through the directory tree. Propagation of a particular value continues
until another propagating value is reached.

aclEntry and entryOwner can be set to apply to just a particular entry with the
propagation value set to “false”, or to an entry and its subtree with the
propagation value set to “true”. Although both aclEntry and entryOwner can
propagate, their propagation is not linked in anyway.

The aclEntry and entryOwner attributes allow multiple values within the same
entry, however, the propagation attributes, aclPropagate and ownerPropagate,
can only have a single value within the same entry.

The system attributes aclSource and ownerSource contain the DN of the
effective node from which the aclEntry or entryOwner are evaluated,
respectively. If no such node exists, the value default is assigned.

Now we would consider some examples as to how the above defined attributes
have been evaluated at different levels of the DIT.

Case 1: Here is the way of getting the aclSource, ownerSource, aclEntry and
entryOwner for a given entry “o=ibm,c=us” via the command-line query
“ldapsearch”:

D:\>ldapsearch -s base -D <admin dn> -w <admin pw>-b o=ibm,c=us objectclass=*
aclSource ownerSource aclEntry entryOwner
o=IBM,c=US
ownerSource=default
aclSource=default
entryOwner=access-id:CN=ROOT
aclEntry=group:CN=ANYBODY:system:rsc:normal:rsc:restricted:rsc

“o=ibm,c=us“ being the suffix entry the ownerSource and the aclSource are set
to default. As seen, the entryOwner is the directory administrator (cn=root in this

Note: Filter-based ACLs do not propagate in the same way that
non-filter-based ACLs do. They propagate to any comparison matched objects
in the associated subtree.
 Chapter 14. Access control 409

case) and the ACLs are the ones set by default that is, for cn=Anybody, as none
have been set explicitly.

Case 2: Now let us see the same set of attributes for which we do not specify
explicit ACLs, but which inherit from o=ibm,c=us, where we have not specified
any ACLs either:

D:\>ldapsearch -s base -D <admin dn> -w <admin pw> -b cn=user1,o=ibm,c=us
objectclass=* aclSource ownerSource aclEntry entryOwner
cn=user1,o=ibm,c=us
ownerSource=default
aclSource=default
entryOwner=access-id:CN=ROOT
aclEntry=group:CN=ANYBODY:system:rsc:normal:rsc:restricted:rsc

As seen above, the ownerSource and the aclSource are still set to default. Do
you not think that these values have been set so, as their parent that is,
o=ibm,c=us has not been set with any explicit value? There is no harm in
believing so.

Time to prove it.

Case 3: If we set some ACLs at o=ibm,c=us as
“aclEntry=access-id:CN=USER1,O=IBM,C=US:object:ad:normal:r”, then here is what
we get for the same set of attributes:

D:\>ldapsearch -s base -D <admin dn> -w <admin pw> -b cn=user1,o=ibm,c=us
objectclass=* aclSource ownerSource aclEntry entryOwner
cn=user1,o=ibm,c=us
ownerSource=default
aclSource=O=IBM,C=US
entryOwner=access-id:CN=ROOT
aclEntry=access-id:CN=USER1,O=IBM,C=US:object:ad:normal:r

Did you notice the aclSource being modified to o=ibm,c=us? That is the way it
goes.

Case 4: Now let us see the same attributes for an entry which comes below
“o=ibm,c=us“, in the DIT. we have defined explicit ACLs at the entry which we
are searching in this case:

D:\>ldapsearch -s base -D <admin dn> -w <admin pw> -b
ou=Payroll,o=ibm,c=us objectclass=* aclSource ownerSource aclEntry
entryOwner aclPropagate

ou=payroll,o=ibm,c=us
aclPropagate=TRUE
ownerSource=default
aclSource=OU=PAYROLL,O=IBM,C=US
410 Understanding LDAP Design and Implementation

entryOwner=access-id:CN=ROOT
aclEntry=access-id:CN=USER1,O=IBM,C=US:system:deny:rsc:critical:deny:rwsc:sensitiv
e:deny:rwsc:normal:rsc:normal:deny:w:object:deny:ad:restricted:deny:rwsc

As seen above, the ownerSource is still default. Since ACLs have been explicitly
defined at this entry, the aclSource happens to be the same entry. we have
shown here one more flag aclPropagate, for a specific reason, which would be
clearer down the line.

Case 5: Now let us see the same set of attributes for an entry which is actually
inheriting ACLs from an entry, where ACLs were explicitly defined. The same
attributes for an entry below ou=Payroll,o=ibm,c=us would be seen as:

D:\>ldapsearch -s base -D <admin dn> -w <admin pw> -b
cn=accountant,ou=Payroll,o=ibm,c=us objectclass=* aclSource ownerSource
aclEntry entryOwner
cn=accountant,ou=payroll,o=ibm,c=us
ownerSource=default
aclSource=OU=PAYROLL,O=IBM,C=US
entryOwner=access-id:CN=ROOT
aclEntry=access-id:CN=USER1,O=IBM,C=US:system:deny:rsc:critical:deny:rwsc:sensi
tive:deny:rwsc:normal:rsc:normal:deny:w:object:deny:ad:restricted:deny:rwsc

As seen above the aclSource happens to be “OU=PAYROLL,O=IBM,C=US“, which
happens to be its parent entry and we do not have o=ibm,c=us anywhere in the
picture. The reason for this, of course you might have guessed by now, that the
aclPropagate at ou=Payroll,o=ibm,c=us was set to true. Curious to know what
happens if we set the same to false? Check out the next case.

Case 6: Let us see the result in that case:

D:\>ldapsearch -s base -D <admin dn> -w <admin pw> -b
cn=accountant,ou=Payroll,o=ibm,c=us objectclass=* aclSource ownerSource
aclEntry entryOwner

cn=accountant,ou=payroll,o=ibm,c=us
ownerSource=default
aclSource=O=IBM,C=US
entryOwner=access-id:CN=ROOT
aclEntry=access-id:CN=USER1,O=IBM,C=US:object:ad:normal:r

Is that not what you were expecting? The ACLs from o=ibm,c=us are inherited in
this case, rather than ou=Payroll,o=ibm,c=us.

Let us sum this up. An object's effective access control definitions can be derived
by the following logic:

� If there is a set of explicit access control attributes at the object, then that is
the object's access control definition.
 Chapter 14. Access control 411

� If there is no explicitly defined access control attributes, then traverse the
directory tree upwards until an ancestor node is reached with a set of
propagating access control attributes.

� If no such ancestor node is found, the default access, as described in the
following section, is granted to the subject.

14.3.6 Access evaluation
Access for a particular operation is granted or denied based on the subject's bind
DN for that operation on the target object. Processing stops as soon as access
can be determined.

The checks for access are done by first determining the entry ownership and
then evaluating the object’s ACI values.

Filter-based ACLs accumulate from the lowest containing entry, upward along
the ancestor entry chain, to the highest containing entry in the DIT. The effective
access is calculated as the union of the access rights granted, or denied, by the
constituent ancestor entries. The existing set of specificity and combinatory rules
are used to evaluate effective access for filter based ACLs.

Filter-based and non-filter-based attributes are mutually exclusive within a single
containing directory entry. Placing both types of attributes into the same entry is
not allowed, and is a constraint violation. Operations associated with the creation
of, or updates to, a directory entry fail if this condition is detected.

When calculating effective access, the first ACL type to be detected in the
ancestor chain of the target object entry sets the mode of calculation. In
filter-based mode, non-filter-based ACLs are ignored in effective access
calculation. Likewise, in non-filter-based mode, filter-based ACLs are ignored in
effective access calculation.

To limit the accumulation of filter-based ACLs in the calculation of effective
access, an ibm-filterAclInherit attribute set to a value of “false” may be placed in
any entry between the highest and lowest occurrence of ibm-filterAclEntry in a

Note: The attributes pertaining to ACLs, that is, aclEntry, entryOwner,
aclPropagate, ownerPropagate, aclSource, ownerSource,
ibm-filterAclEntry and ibm-filterAclInherit are operational attributes.In the
sense that they do not get dumped when we run the db2ldif or the
ldapsearch tool against the server. An explicit mention of these attributes is
required while firing ldapsearch, for these to get dumped. Examples of how
to get up to the ACL attributes has already been explained in the CASEs
mentioned lately.
412 Understanding LDAP Design and Implementation

given subtree. This causes the subset of ibm-filterAclEntry attributes above it in
the target object's ancestor chain to be ignored. The resulting access resolves to
the default filter ACL value.

By default, the directory administrator, administration group members, and the
master server (or peer server for replication, that is, ibm-slapdMasterDN) get full
access rights to all objects in the directory except write access to system
attributes. Other entryOwners get full access rights to the objects under their
ownership except write access to system attributes. By default all users have
read access rights to normal, system, and restricted attributes. If the requesting
subject has entryOwnership, access is determined by the above default settings
and access processing stops.

If the requesting subject is not an entryOwner, then the ACI values for the object
entries are checked. The access rights as defined in the ACLs for the target
object are calculated by the specificity and combinatory rules.

Specificity rule
The most specific aclEntry definitions are the ones used in the evaluation of
permissions granted/denied to a user. The levels of specificity are:

� Access-id is more specific than group or role. Groups and roles are on the
same level.

� Within the same dnType level, individual attribute level permissions are more
specific than attribute class level permissions.

� Within the same attribute or attribute class level, deny is more specific than
grant.

For example, if a defined ACI entry contains an access-id subject DN that
matches the bind DN, then the permissions are first evaluated based on that
aclEntry. Under the same subject DN, if matching attribute level permissions are
defined, they supersede any permissions defined under the attribute classes.
Under the same attribute or attribute class level definition, if conflicting
permissions are present, denied permissions override granted permissions.

Let us take some examples to absorb this.

Consider our DIT as in Figure 14-1 on page 398. Suppose we create a group and
name it as “Group1”. We add “cn=user1,o=ibm,c=us” to “Group1”. Now at the
entry A, we are setting two sets of ACLs: We are providing “rsc”, that is, (r)ead,
(s)earch and (c)ompare access to “Group1” and denying write to it. Now when
we bind as the user “cn=user1,o=ibm,c=us”, we are denied write on A, as the
group to which we belong, is denied for writes. Now, we set the ACLs for user
“cn=user1,o=ibm,c=us”, whereby we are giving write access to this user. Now,
when we bind as “cn=user1,o=ibm,c=us”, what should we be allowed to do? We
 Chapter 14. Access control 413

will be allowed to write, as the access-id is more specific than group. That
clarifies point 1 specified above.

Now let us go to the next point. Suppose, in the entry A, we provide “rsc” access
to “cn=user1,o=ibm,c=us” over the “normal attributes”. We provide the “rwsc”
access to the same user over the attribute “telephoneNumber” for this entry. Now
what should we be allowed to do with the attribute “telephoneNumber”, when we
bind as the user “cn=user1,o=ibm,c=us”? Isn’t that obvious that we are given
write access, though the corresponding attribute class (normal) is denied of the
write? The reason being, of course that the attribute telephoneNumber is
explicitly allowed for writes.

That should clarify point 2 mentioned above.

Now, let us go to the next point. Suppose we set the ACLs at entry A, with
aclPropagate set to true. We set the ACLs whereby, we deny write to the
attribute “telephoneNumber” in the entry A. That propagates down the tree and
appears in A1, assuming that we have not specified ACLs explicitly at A1. Now
even if we give a “rwsc” access to the user “cn=user1,o=ibm,c=us” over the
attribute “telephoneNumber” in the entry A1, the user will not be allowed to write
to that attribute, because the deny which propagated from the parent is more
specific than grant. Hope this clears all the three rules of specificity.

Combinatory rule
Permissions granted to subjects of equal specificity are combined. If the access
cannot be determined within the same specificity level, the access definitions of
lesser specific level are used. If the access is not determined after all defined
ACIs are applied, the access is denied.

For example, consider the two cases of ACIs defined on cn=user1,o=ibm,c=us
described below:

� Case 1:

– access-id: cn=this: at.attribute1:grant:rws

– access-id: cn=user1,o=ibm,c=us:at.attribute1:grant:rs:at.attribute1:deny:w

In the above case, the (w)rite permission on attribute1 will be denied to the
user cn=user1,o=ibm,c=us as access cannot be explicitly determined.

� Case 2:

(cn=user1,o=ibm,c=us belongs to group cn=group1)

– access-id: cn=this: at.attribute1:grant:rws

– access-id: cn=user1,o=ibm,c=us:at.attribute1:grant:rs:at.attribute1:deny:w

– group:cn=group1:at.attribute1:grant:w
414 Understanding LDAP Design and Implementation

In this case, after failing to determine access at the specificity level of
access-id, the access definitions of lesser specific levels (group) is
determined. Since, the group has (w)rite permissions on attribute1, write
permission will be granted to cn=user1,o=ibm,c=us.

That was simple stuff, we believe.

14.3.7 Working with ACLs
In this section we discuss working with ACLs.

Using the Web Administration Tool
This is to view ACL properties using the Web Administration Tool utility and to
work with ACLs.

Select a directory entry. For example, ou=Payroll,o=ibm,c=US.

Click Edit ACL. The relevant panel shows up with the Effective ACLs tab
preselected.

Refer to Figure 14-3 on page 416 on how to edit an ACL.

Note: After a matching access-id level aclEntry is found in access
evaluation, the group level aclEntries are not included in access
calculation. The exception is that if the matching access-id level aclEntries
are all defined under cn=this, then all matching group level aclEntries are
also combined in the evaluation.

A defined null value permission prevents the inclusion of less specific
permission definitions.

Group and Role membership is determined at bind time and last until either
another bind takes place, or until an unbind request is received. Nested
groups and roles, that is a group or role defined as a member of another
group or role, are not resolved in membership determination nor in access
evaluation.
 Chapter 14. Access control 415

Figure 14-3 Edit ACL

This panel has five tabs:

� Effective ACLs
� Effective owners
� Non-filtered ACLs
� Filtered ACLs
� Owners

The Effective ACLs and Effective owners tabs contain read-only information
about the ACLs.
416 Understanding LDAP Design and Implementation

Figure 14-4 Effective ACLs

Effective ACLs
Effective ACLs are the explicit and inherited ACLs of the selected entry. We can
view the access rights for a specific effective ACL by selecting it and clicking the
View button. The panel (View access rights panel) in which we are supposed to
click the View button is put up in Figure 14-3 on page 416. The following three
sections appear, as shown in Figure 14-4.

� The Rights section:

– Add child grants or denies the subject the right to add a directory entry
beneath the selected entry.

– Delete entry grants or denies the subject the right to delete the selected
entry. In the above example, the Add child and the Delete entry are left
unspecified, which is taken as a “Deny”. Now the obvious query would be
that if already have “Deny” in place, then why do we need to make use of
“Unspecified“. Well, reason that the “Unspecified” is kept is that it is an
 Chapter 14. Access control 417

indication that there would be no relevant definitions at this level of the
DIT. The relevant values would be propagated by whatever gets
propagated down the tree. In this case, there wasn’t as yet anything to
propagate down the tree, hence this was left as Unspecified.

� The Security class section defines permissions for security classes. Attributes
are grouped into a set of classes, known as the security classes, depending
upon the amount of security associated with them. Here are the list of
possible security classes, an attribute may fall into:

– Normal - Normal attributes are the ones requiring the least security, for
example, the attribute commonName or cn.

– Sensitive - Sensitive attributes are the ones requiring a moderate amount
of security, for example homePhone.

– Critical - Critical attributes are the ones requiring the most security, for
example, the attribute userpassword.

– System - System attributes are read only attributes that are maintained by
the server.

– Restricted - Restricted attributes are the ones, used to define access
control.

Each security class has one or more of the following permissions associated
with it:

– Read - The subject can read attributes.
– Write - The subject can modify the attributes.
– Search - The subject can search attributes.
– Compare - The subject can compare attributes.

Click OK to return to the Effective ACLs tab. Click Cancel to return to the Edit
ACLs tab.

Effective owners
Effective owners are the explicit and inherited owners of the selected entry.

Refer to Figure 14-5 on page 419 for how this section appears in the Web
Administration Tool.
418 Understanding LDAP Design and Implementation

Figure 14-5 Effective owners

Non-filtered ACLs
We can use this tab for adding new non-filtered ACL entries or modifying existing
non-filtered ACL informations. When we click the Non-filtered ACLs link, we get
a panel as shown in Figure 14-6.

Figure 14-6 Non-filtered ACLs
 Chapter 14. Access control 419

Supply the necessary information above, taking into consideration the following:

� Propagate ACLs - Select the Propagate check box to allow descendants
without an explicitly defined ACL to inherit from this entry. If the check box is
selected, the descendent inherits ACLs from this entry and if the ACL is
explicitly defined for the child entry, then the ACL which was inherited from
parent is replaced with the new ACL that was added. If the check box is not
selected, descendant entries without an explicitly defined ACL will inherit
ACLs from a parent of this entry that has this option enabled. This point is
already explained in our Case Studies earlier.

� DN (Distinguished Name) - Enter the Distinguished name of the entity
requesting access to perform operations on the selected entry, for example,
cn=Marketing Group.

� Type - Enter the Type of DN. For example, select access-id if the DN is a
user.

Adding and editing access rights
There are two ways of setting the access rights on an object:

� Click the Add button to add the current/new subject DN in the list of subject
DNs (Distinguished Name). (or)

� Select a dn from the existing list of subject dns and click the Edit button to
modify the ACLs pertaining to the selected DN.

The Add access rights and Edit access rights panels, which appear after clicking
Add or Edit, allows us to set the access rights for a new or existing Access
Control List (ACLs). The Type field defaults to the type we selected on the Edit
ACL panel. If we are adding an ACL, all other fields default to blank. If we are
editing an ACL, the fields contain the values set last time the ACL was modified.

To set access rights in the Rights section:

� Grant/Deny permissions to add a child.

� Grant/Deny permissions to delete the entry itself.

� Grant/Deny Read, Write, Search and Compare permissions to different
security classes of attributes.

� Define an attribute and explicitly Grant/Deny Read, Write, Search and
Compare permissions to it. These permissions are more specific than the
permissions on the attribute classes.

Refer to Figure 14-7 on page 421 for the panel where we are supposed to
specify new/modify existing Access rights.
420 Understanding LDAP Design and Implementation

Figure 14-7 New ACLs specified

The panel to Edit ACLs is as like the above, the only difference being the title of
“Edit Access Rights : <subject dn>”.

Removing ACLs
We can remove ACLs in either of two ways:

� Select the radio button next to the ACL we want to delete. Click Remove.

� Click Remove all to delete all DNs from the list.

Figure 14-8 on page 422 shows these buttons.

Filtered ACLs
This tab can be used for adding new filtered ACLs or editing existing filtered
ACLs. When we click the Filtered ACLs tab, we get the following screen.
 Chapter 14. Access control 421

Figure 14-8 Filtered ACLs

We need to fill the following fields:

� Accumulate filtered ACLs

– Select the Not specified radio button to remove the
ibm-filterACLInherit attribute from the selected entry.

– Select the True radio button to allow the ACLs for the selected entry to
accumulate from that entry, upward along the ancestor entry chain, to the
highest filter ACL containing entry in the DIT.

– Select the False radio button to stop the accumulation of filter ACLs at the
selected entry.

� DN (Distinguished Name) - Enter the (DN) Distinguished name of the entity
requesting access to perform operations on the selected entry, for example,
cn=manager,ou=hr,o=ibm,c=us.

� Type - Enter the Type of DN. For example, select access-id if the DN is a
user.

Once the above fields have been entered, we need to click the appropriate
button that is, either Add, Edit, Remove or Remove All, depending upon what
operation we want to do.

Adding and editing access rights
Click the either the Add button to add the DN in the DN (Distinguished Name)
field to the ACL list or the Edit button to modify the ACLs of an existing DN.
422 Understanding LDAP Design and Implementation

Refer to Figure 14-9 for the add/edit access rights.

Figure 14-9 Add Filter ACLs

To set access rights:

1. In the Rights section:

a. Grant/Deny permissions to add a child.

b. Grant/Deny permissions to delete the entry itself.

2. In the Filter section, enter an object filter like objectclass=person, depending
upon to which all descendant objects in the DIT this ACLs should apply. The
current filtered ACL propagates to any descendant object in the associated
subtree that matches the filter in this field. We have already dealt with filters in
one of our earlier sections. Hope you remember the concept of filters! Feel
free to go back and browse through the concept again, if needed.

3. Grant/Deny Read, Write, Search and Compare permissions to different
attribute classes (security class).
 Chapter 14. Access control 423

4. Define an attribute and explicitly Grant/Deny Read, Write, Search and
Compare permissions to it. These permissions are more specific than the
permissions on the attribute classes.

Removing ACLs
We can remove ACLs in either of two ways:

1. Select the radio button next to the ACL, that you want to delete. Click
Remove.

2. Click Remove all to delete all DNs from the list.

This is very much like the case of non-filtered ACLs.

Providing access on the attributes
This part is common to both the filtered and non-filtered ACLs. Suppose we want
to specify the ACLs over the individual attributes here is how we do: Once the tab
Add Access Rights comes up, where we specify the ACLs for the attribute
classes or the permissions to add children, or delete entries, there is a section at
the bottom with the heading Attribute, below which there is a drop-down of
attributes. We select the attribute to be access controlled and click Define. We
would get the selected attribute added on the panel, next to which there would be
dropdowns for specifying the access-rights. If we do not specify any or if we click
Cancel the attribute would go back to the dropdown and will not appear on the
panel, else (that is, when we click OK) it would appear on the Panel.
Figure 14-10 shows the attribute, once it is defined.

Figure 14-10 Portion of the panel for making attributes access controlled

If we need to delete the attribute, just select the attribute, using the check-box at
the left of the attribute and click Delete.

Owners
Entry owners can be explicit or propagated (inherited).
424 Understanding LDAP Design and Implementation

Enter the following information on the Owners tab:

� Select the Propagate owners check box to allow descendants without an
explicitly defined owner to inherit from this entry. If the check box is not
selected, descendant entries without an explicitly defined owner will inherit
owner from a parent of this entry that has this option enabled.

� DN (Distinguished Name) - Enter the Distinguished Name of the entity
requesting access to perform operations on the selected entry, for example,
cn=Marketing Group.

� Type - Enter the Type of DN. For example, select access-id if the DN is a
user.

Adding an owner
Click Add to add the DN (specified in the DN(Distinguished name) field) to the
list of already existing Owners or it can be the first entry to click the list.

Figure 14-11 shows the panel for an entry, for which we have explicitly specified
an owner, “cn=manager,o=ibm,c=us”:

Figure 14-11 Owners of an entry

Removing an owner
We can remove an owner in either of two ways:

� Select the radio button next to the owner's DN that we want to delete. Click
Remove.

� Click Remove all to delete all owner DNs from the list.

That was all with the activities pertaining to ACLs that can be performed via the
GUI. Let us see how the similar activities can be done via command line.
 Chapter 14. Access control 425

Using command line utilities to manage ACLs
The following sections provide information on how to use command line utilities
to manage ACLs.

Adding ACIs and entry owners
The following example shows how to add an entryOwner(cn=owner,o=ibm,c=us)
for a given entry (cn=person1,o=ibm,c=us). Create an ldif file say acl.ldif, with the
following contents:

dn: cn=person1,o=ibm,c=us
objectclass: person
cn: person1
sn: person1
entryowner: access-id:cn=owner,o=ibm,c=us
ownerPropagate: True

Add the above LDIF using the following syntax:

ldapadd -D <admin dn> -w <admin password> -f acl.ldif

In a similar manner, we can add a group or role as an entry owner. The above
example was for an (access-id) as the entry owner. The other examples shown
below, under the section of “Adding ACLs and Entry Owners” should follow
similar method for the additions.

The next example shows how an access ID "cn=Person 1, o=IBM,c=US" is being
given permissions to read, search, and compare the (at)tribute attribute1. The
permissions apply to any node in the entire subtree, at or below the node
containing this ACI, that matches the "(objectclass=groupOfNames)" comparison
filter. The accumulation of matching ibm-filteraclentry attributes in any ancestor
nodes has been terminated at this entry by using our ceiling attribute. That
attribute is the ibm-filterAclInherit attribute. It is been set to "false".

dn: cn=person1,o=ibm,c=us
objectclass: person
cn: person1
sn: person1
ibm-filterAclEntry:
access-id:cn=Person1,o=IBM,c=US:(objectclass=groupOfNames):at.attribute1:grant:
rsc
ibm-filterAclInherit: false

The next example shows how a role "cn=System Admins,o=IBM,c=US" is being
given permissions to (a)dd objects below the node o=ibm,c=us, and (r)ead,
(s)earch and (c)ompare (at)tribute attribute2 and the (critical) attribute class. The
permission applies only to the node containing this ACI. This is achieved by
setting the aclPropagate attribute to false.

dn: o=ibm,c=us
426 Understanding LDAP Design and Implementation

objectlass: organization
o: ibm
aclEntry: role:cn=System
Admins,o=IBM:object:grant:a:at.attribute2:grant:rsc:critical:grant:rsc
aclPropagate: false

Modifying ACI and entryOwner values
Like other attributes, the ACL attributes (except the system attributes) can be
modified using ldapmodify and follow the general syntax as shown below:

dn: some entry
changetype: modify
<action>: <acl-attribute>
<acl-attribute>: <value>

Where:

� action (without the “<“ braces) is one of the following:

– replace: If the attribute value does not exist, create the value. If the
attribute value exists, replace the value.

– add: If the ACI or entryOwner does not exist, the ACI or entryOwner with
the specific values is created. If the ACI or entryOwner exists, then add
the specified values to the given ACI or entryOwner.

– delete: Deletes an ACL entry with a given value.

� acl-attribute is one of entryOwner, ownerPropagate, aclEntry, aclPropagate,
ibm-filterAclEntry, or ibm-filterAclInherit.

� value is the value of the given attribute.

For example, consider any entry cn=person1,o=ibm,c=us with the following acl
definition:

1) aclentry=access-id:CN=ABC:object:deny:d:object:a

2) aclentry=access-id:CN=P1,O=IBM,C=US:normal:rwsc:object:a

In order to remove the acl entry cn=ABC, the syntax of ldapmodify will be:

ldapmodify -D <admindn> -w <adminpw>
dn: ou=person1,o=ibm,c=us
changetype: modify
delete: aclentry
aclentry: access-id:CN=ABC:object:deny:d:object:a

Note: All the four lines after the line of ldapmodify, depicted above, can be put
into an ldif file and that can be passed over to ldapmodify using the -f option.
After all, ldapmodify and ldapadd ultimately boil down to the same utility.
 Chapter 14. Access control 427

After the above command, only the second (2) aclentry
“aclentry=access-id:CN=P1,O=IBM,C=US:normal:rwsc:object:a” remains.

If in the above ldapmodify operation, the value of acl entry to be removed is given
as:

ldapmodify -D <admindn> -w <adminpw>
dn: ou=person1,o=ibm,c=us
changetype: modify
delete: aclentry
aclentry: access-id:CN=ABC:object:deny:d

In such a scenario, both the acl entries will remain but the deny permissions on
object delete (object:deny:d) will be removed from the first acl entry, this is, the
value of “Delete entry” in the acl entry will be changed to “unspecified” form
“deny”.

Searching ACI and entryOwner values
Suppose we have an entry ou=payroll,o=ibm,c=us and we want to see all the
information pertaining to acls for that entry. Here is how that can be done:

E:\>ldapsearch -D <admin dn> -w <admin pw> -b ou=payroll,o=ibm,c=us
objectclass=* aclEntry aclPropagate entryOwner ibm-filterAclEntry
ibm-filterAclInherit ownerPropagate

ou=payroll,o=ibm,c=us
ownerPropagate=TRUE
aclPropagate=FALSE
entryOwner=access-id:CN=ROOT
aclEntry=access-id:CN=USER1,O=IBM,C=US:system:deny:rsc:critical:deny:rwsc:sensi
tive:deny:rwsc:normal:rwsc:restricted:deny:rwsc

cn=accountant,ou=payroll,o=ibm,c=us
ownerPropagate=TRUE
aclPropagate=TRUE
entryOwner=access-id:CN=ROOT
aclEntry=access-id:CN=USER1,O=IBM,C=US:object:ad:normal:r

Two entries are returned as shown above, with the ACL showing that these are
non-filtered ACLs.

Let us see the same search run against an entry with filtered-acls in it:

E:\>ldapsearch -D cn=root -w root -b ou=hr,o=ibm,c=us objectclass=* aclEntry
aclPropagate entryOwner ibm-filterAclEntry ibm-filterAclInherit ownerPropagate

Note: We have not given the object add (object:a) permission in the aclentry
value.
428 Understanding LDAP Design and Implementation

ou=hr,o=ibm,c=us
ownerPropagate=TRUE
ibm-filterAclInherit=TRUE
entryOwner=access-id:CN=ROOT
ibm-filterAclEntry=access-id:CN=USER1,O=IBM,C=US:(uid=*):object:deny:ad:normal:
rwsc

Now let us sum up what we have learned in this chapter.

14.4 Summary
The following presents a summary from this chapter:

� ACLs are a means of protecting our information from unauthenticated access.

� ACLs are a means of providing different users, a different abstraction of the
data contained in the repository, base on their roles or need to know.

� The ACL model encompasses two main parts:

– EntryOwner information: Information pertaining to who owns the entry.

– ACI or the Access Control Information: This is the main ingredient of the
ACL model, describing the individual or group-wise access rights.

� Then we saw the classification of ACLs into the following:

– Non-filtered ACLs: These are the ACLs where we specify the subject and
the object clearly. The object that is going to get impacted is the entry
where the ACLs are defined and the descendants, provided the
aclPropagate flag is set to true.

– Filtered ACLs: These are the ACLs where we specify the impacted
objects, by means of a filter. Hence this is a more generalized
specification of ACLs.

� Then we saw the BNF of the Access Control Information and the detailed
explanation of the same.

� Then we saw how exactly the ACL Propagation takes place.

� Thereafter, we saw how exactly the ACLs get evaluated. Under this we saw
two rules of ACL evaluation:

– The specificity rules
– The combinatory rules

� Thereafter we saw the different ways of working with the ACLs, as like:

– The WebAdmin way for the people fond of GUI
 Chapter 14. Access control 429

– The command line way for the ones who love to run scripts more than
pressing buttons
430 Understanding LDAP Design and Implementation

Chapter 15. Securing the directory

This chapter mainly deals with making your directory server secure at different
levels from low to high, depending upon the requirements. It describes various
security features provided by the IBM Tivoli Directory Server. It describes
configuring the directory for using those security features. A brief description of
certificate management using the gsk7ikm key management utility is also
provided.

15
© Copyright IBM Corp. 1998, 2004. All rights reserved. 431

15.1 Directory security
Security is very important in the networked world of computers, and that is
equally true for directories as well. Directories are likely to contain sensitive
information that needs to be protected from unauthorized access and
modification. When sending data over the wire, internally or externally, sensitive
information may also need to be protected against eavesdropping and
modification during transportation. There is a need to know who is requesting the
information and who is sending it.

The IBM Tivoli Directory Server has the following built-in features for enhanced
security:

� Authentication: Ensures that the user is who he/she claims to be. It is
implemented using SASL/CRAM-MD5 mechanism and certificates using
SASL/SSL.

� Password Policy Enforcement: Set of rules that controls how passwords are
used and administered.

� Password Encryption: Protects passwords stored in the directory from
unauthorized access by encrypting it using different encryption mechanisms.

� SSL/TLS Support: Ensures tamper proof data transfer over the network.

� Protection against DOS attacks: Ensures the Directory Server remains
functional under deliberate or unintended massive client requests, such as
Denial of Service Attacks.

� Access Control: Ensures that the users have proper access to directory
objects, before returning the required information and hence provides
confidentiality.

Now let us see the above points in greater detail.

15.2 Authentication
In an LDAPv3 implementation, the client must authenticate itself to the directory
service before accessing any data in the directory, otherwise access is denied.
The access denial is mainly achieved by either not providing the client what it
requires or by throwing an appropriate error to the client.IBM Tivoli Directory
Server supports the following types of authentications that are presented next.
432 Understanding LDAP Design and Implementation

15.2.1 Anonymous authentication
Anonymous authentication is useful for read-only access of directory data where
that data is not sensitive, such as peoples’ e-mail addresses or office numbers.
Essentially, that data can be made accessible to anyone. To request anonymous
authentication, simple authentication is performed, against the directory server,
with a distinguished name (DN) that is empty.

For example, to do an ldapsearch with anonymous binding, that is, do not include
the -D (bind DN) and -w (password) options.

ldapsearch -b <basedn> -s <scope> <filter>

Here is an instance of the root DSE search with an anonymous authentication:

C:\>ldapsearch -s base objectclass=* | grep -i config
ibm-slapdisconfigurationmode=FALSE

Now let us try fetching some data from the LDAP server which requires access:

C:\>ldapsearch -s base -D <adminDN> -w <adminPW> -b o=ibm,c=us objectclass=*
aclentry

o=IBM,c=US
aclentry=access-id:CN=USER1,O=IBM,C=US:object:ad:normal:r

C:\>ldapsearch -s base -b o=ibm,c=us objectclass=* aclentry
C:\>

You must have noticed the difference; if you do not have the proper access, the
data will not be shown to you.

15.2.2 Basic authentication
Basic authentication provides authentication facilities with the DN and password
transmitted over the network in clear text. Use of clear text passwords is not
recommended over open networks when there is no authentication or encryption
being performed by a lower layer, such as SSL (described in one of the
forthcoming sections). Access (read or write) to directory data is granted based
on DNs contained in the access control list of the object and/or attributes in the
access request. The following is an example of searching the directory using
basic authentication:

ldapsearch -D cn=root -w root -b <basedn> -s <scope> <filter>

Note: There is no way to log into the Web Administration Tool anonymously.
You have to provide a user name and a password that exists in the directory
or you can log in as the directory administrator.
 Chapter 15. Securing the directory 433

In the above query we are assuming that the directory admin DN would be
“cn=root” and the admin Password would be “root”.

The above search was with regards the admin DN as the bind DN to the directory
server. It is equally correct to have a bind DN which is not the admin DN but
which has the necessary ACLs to access the desired data. Here is an example of
authenticated access, using a user “cn=user1,o=ibm,c=us”:

ldapsearch -D “cn=user1,o=ibm,c=us” -w user1 -b <basedn> -s <scope> <filter>

For more information on ACLs, refer to Chapter 14, “Access control” on
page 395.

15.2.3 Authentication using SASL
The Simple Authentication and Security Layer (SASL) is a framework for multiple
authentication and encryption mechanisms for connection-oriented protocols. It
has been added to LDAP Version 3 to overcome the authentication shortcomings
of LDAP Version 2. For more information on SASL, please refer to:

http://www.ietf.org/rfc/rfc2222.txt?number=2222

Overview of SASL
SASL is a method for adding authentication support to connection based
protocols. In SASL, connection protocols such as LDAP, IMAP, and so on are
represented by profiles; each profile is considered a protocol extension that
allows the protocol and SASL to work together. Among these are IMAP4, SMTP,
POP3, and LDAP. Each protocol that intends to use SASL needs to be extended
with a command to identify an authentication mechanism and to carry out an
authentication exchange. LDAP Version 3 includes such a command:
ldap_sasl_bind() (and ldap_sasl_bind_s()). Optionally, a security layer can be
negotiated to encrypt the data after authentication and thus ensure
confidentiality. The IBM Tivoli Directory Server supports SASL authentication
using the CRAM-MD5 (Challenge Response Authentication Mechanism with
Message Digest 5), DIGEST-MD5 mechanisms, which transmits message
digests rather than the passwords themselves over the network.

Note: The SASL mechanisms supported by the IBM Tivoli Directory Server
can be obtained by the following search command:

ldapsearch -s base -b ““ objectclass=* supportedsaslmechanisms
434 Understanding LDAP Design and Implementation

http://www.ietf.org/rfc/rfc2222.txt?number=2222

The key parameters that influence the security method used are:

� DN: This is the distinguished name of the entry a requester wants to bind as.
This can be thought of as the user ID in a normal user ID and password
authentication.

� Mechanism: This is the name of the security method that should be used. The
IBM Tivoli Directory Server supports CRAM-MD5, DIGEST-MD5 and external
mechanisms. There is also an anonymous mechanism available which
enables authentication as the generic user anonymous. In LDAP, the most
common mechanism used is SSL (or its successor TLS), which is provided as
a so-called external mechanism.

� Credentials: This contains the arbitrary data that identifies the DN. The format
and content of the parameter depend on the mechanism chosen. If it is, for
example, the ANONYMOUS mechanism, it can be an arbitrary string or an
e-mail address that identifies the user.

Through the SASL bind API function call (sometimes also referred to as
certificate bind), LDAP client applications call the SASL protocol driver on the
server, which, in turn, connects the authentication system named in the SASL
mechanism to retrieve the required authentication information for the user. SASL
can be seen as an intermediator between the authentication system and a
protocol like LDAP.

There is no special configuration necessary on either side (client or server) to
use SASL/CRAM-MD5 authentication. Applications simply request it by making
the appropriate API call. Some minimum set up is required for the
SASL/DIGEST-MD5 authentication mechanisms, which can be found in the IBM
Tivoli Directory Server Version 5.2 Administration Guide, which can be found at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

In case of EXTERNAL mechanism, the client sends an initial response with an
authorization identity. The server uses information, external to SASL, to
determine whether the client is authorized to authenticate as the authorization
identity. If the client is so authorized, the server indicates successful completion
of the authentication exchange; otherwise the server indicates failure.

Attention: If CRAM-MD5/DIGEST-MD5 authentication mechanisms are being
used, then the userpassword cannot be stored encrypted using one-way hash
algorithms like CRYPT or SHA. It is because these authentication
mechanisms require the userpassword in clear text and passwords encrypted
using one way hash algorithms cannot be retrieved in clear text. But two way
hash algorithms like IMASK can be used for encrypting and storing the
passwords.
 Chapter 15. Securing the directory 435

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

The system providing this external information may be SSL or TLS (or IPSec, but
not used in IBM Tivoli Directory Server). SSL and TLS are mentioned later in this
chapter.

15.2.4 Kerberos
The IBM Tivoli Directory server supports Kerberos Version 1.3 servers, such as
the IBM Network Authentication Service, for AIX servers and AIX 64-bit clients.
Use the version of Kerberos included with your operating system for AIX 32-bit
clients, Windows NT and Windows 2000 clients.

Under Network Authentication Service, a client (generally either a user or a
service) sends a request for a ticket to the Key Distribution Center (KDC). The
KDC creates a ticket-granting ticket (TGT) for the client, encrypts it using the
client’s password as the key, and sends the encrypted TGT back to the client.
The client then attempts to decrypt the TGT, using its password. If the decryption
is successful, the client retains the decrypted TGT, indicating proof of the client’s
identity.

The TGT, which expires at a specified time, permits the client to obtain additional
tickets that give permission for specific services. The requesting and granting of
these additional tickets does not require user intervention.

Network Authentication Service negotiates authenticated, optionally encrypted
communications between two points on the network. It can enable applications to
provide a layer of security that is not dependent on which side of a firewall either
client is on. Because of this, Network Authentication Service can play a vital role
in the security of your network.

You need to create an LDAP server servicename in the key distribution center
(KDC) using the principal name
ldap/<hostname>.<mylocation>.<mycompany>.com.

Note: You must have a Kerberos client installed to use Kerberos
authentication.

Note: An environment variable “LDAP_KRB_SERVICE_NAME” is used to
determine the case of the LDAP Kerberos service name. If the variable is set
to ‘LDAP’ then the uppercase LDAP Kerberos service name is used. If the
variable is not set, then the lowercase ldap is used. This environment variable
is used by both the LDAP client and the server. By default this variable is not
set.
436 Understanding LDAP Design and Implementation

Network Authentication Service provides the following components:

Key distribution center
The Key Distribution Center (KDC) is a trusted server that has access to the
private keys of all the principals in a realm. The KDC is composed of two parts:

� Authentication Server (AS)
� Ticket Granting Server (TGS)

The AS handles initial client authentication by issuing a TGT. The TGS issues
service tickets that can be used by the client to authenticate to a service.

Administration server
The administration server provides administrative access to the Network
Authentication Service database. This database contains the principals, keys,
policies, and other administrative information for the realm. The administration
server allows adding, modifying, deleting, and viewing principals and policies.

Password change service
The password change service allows users to change their passwords. The
password change service is provided by the administration server.

Client programs
Client programs are provided to manipulate credentials (tickets), manipulate
keytab files, change passwords, and perform other basic Network Authentication
Service operations.

Application programming interfaces (APIs)
Libraries and header files are provided to allow the development of secure
distributed applications. The APIs provided are described in the Application
Development Reference.

For further information on setting of Kerberos for use with the Directory Server
and other information, you may refer the IBM Tivoli Directory Server Version 5.2
Administration Guide, which can be found at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

15.3 Password policy enforcement
Password policy, if enforced judiciously, enhances directory server security by
forcing the directory users to have newer and complex passwords which are
 Chapter 15. Securing the directory 437

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

difficult to guess and hence less prone to dictionary attacks, without causing
much pain to the user.

15.3.1 Overview
Password Policy is a set of rules that controls how passwords are used and
administered in IBM Tivoli Directory Server. The IBM Directory Server Password
Policy is based on the IETF Password Policy Internet Draft. These rules are
made to ensure that users change their passwords periodically, and that the
passwords meet the organization's syntactic password requirements. These
rules can also restrict the reuse of old passwords and ensure that users are
locked out after a defined number of failed attempts.

All users except the directory administrator and the members of the
administrative group are forced to comply with this password policy. The
passwords for the administrator and members of the administrative group never
expire and the accounts are never locked. The directory administrator and
members of the administrative group have sufficient access control privileges to
modify users' passwords and the password policy.

Starting with V5.1 of the IBM Directory Server, there is a new Directory Entry
created for Password Policy with the DN cn=pwdpolicy. This entry resides at the
root of all servers and this same Password Policy entry is replicated to all servers
in the replication topology (If at all the topology exists). Password Policy has two
separate types of attributes, the Password Policy Entry Attributes and Password
Policy operational attributes that are associated with entries which contain a user
password.

The Password Policy Entry Attributes with their default values are as follows:

� pwdAttribute: This is the attribute, identifying all the attributes in the directory
server, on which the password policy rules would apply. Till the latest release
that is, ITDS 52, userPassword is the only attribute to whom the password
policy rules apply. In the future releases it is planned to make this field
editable and also multivalued, so that the Customers may select the attributes
to whom the password policy rules may apply.

� ibm-pwdPolicy: This attribute identifies whether password policy is turned on
for this system. By default, password policy is turned off. Hence this attribute
has a value of “FALSE”. This attribute will hold a value “TRUE” when enabled.

� pwdMinAge: This attribute specifies the minimum period for which the
userPassword for a specific user should be used. In other words, if you set
the userPassword of entry “cn=user1,o=ibm,c=us” to user1 and you set
pwdMinAge to 300 seconds, then cn=user1,o=ibm,c=us has to use this
password for a minimum period of 300 seconds. cn=user1,o=ibm,c=us
cannot change the password before 5 minutes from the time of
438 Understanding LDAP Design and Implementation

setting/resetting the password. The default value for this attribute is 0, which
means there is no minimum age imposed.

� pwdMaxAge: This attribute specifies the maximum period for which the
userPassword for a specific user can be used, where after the password
would expire. In other words, if you set the userPassword of entry
“cn=user1,o=ibm,c=us” to user1 and you set pwdMaxAge to 6 days, then
cn=user1,o=ibm,c=us can use this password for a maximum period of 6 days.
If the password happens to expire the administrator can reset the password to
a new value and give it to the affected user. The default value for this attribute
is 0 days, which means the password does not expire. The expected setting
from the GUI is for the number of days, whereas it is stored internally in terms
of the number of seconds and is also displayed in terms of seconds when
queried from the command line.

That clearly indicates that the password for a user has be used in the period
between pwdMinAge and pwdMaxAge.

� pwdInHistory: This attribute gives the total number of passwords to be stored
in the password history. The default for this attribute is 0, indicating no
passwords are to be stored in the pwdHistory.

� pwdCheckSyntax: This attribute holds three values:

– The default value 0, indicating the syntax checking will not be enforced.

– A value of 1, indicating the syntax checking will be done only in case the
passwords are not encrypted.

– A value of 2, indicating the syntax checking would be done, irrespective of
whether the passwords are encrypted or not.

� pwdMinLength: This attribute specifies the minimum length the password
should have. That is, if this attribute has a value of 5, and if you set the
password of “cn=user1,o=ibm,c=us” to user then the access using this
password should not be allowed. The default for this attribute is 0, indicating
no minimum length is imposed.

� pwdExpireWarning: This attribute specifies the period before the password
expiry that a warning be sent to a user, that his password is about to expire in
the pwdExpireWarning time. that is, if you set this attribute to 1 day, then if the
password is about to expire in the next 24 hours, a warning would be sent to
the user in that regard. The default value for this attribute is 0 days, meaning
no warnings will be sent. The GUI expects the value for this attribute in terms
of the number of days, whereas the value is stored in seconds and displayed
in seconds when queried from the command line.

� pwdGraceLoginLimit: This attribute specifies the maximum number of times a
user is allowed to login after the password has expired. that is, if you set this
value to 3 then after the password has expired, the user would be allowed to
 Chapter 15. Securing the directory 439

login for maximum three times where after his account would be locked. The
default value for this attribute is 0, indicating that authentication will fail if the
password has expired.

� pwdLockout: This attribute specifies whether the password is to be locked in
circumstances, where the password can be locked. For example, if a user
attempts to login with a wrong password for more than the maximum allowed
times then the password may be locked. However, if this attribute is set to
“FALSE”, which happens to be the default setting, then the password may still
be used for a successful authentication. In other words, no intervention would
be required by the Administrator to reset the password. The user can login to
his account irrespective of the number of failed attempts.

� pwdLockoutDuration: This attribute specifies the total duration for which a
password may be locked. This is also an attribute running on the parallel lines
of pwdLockout. In the sense that, suppose you set this attribute to 300
seconds. If an account gets locked, the same will get unlocked after 300
seconds, without the intervention by the Administrator. The default for this
attribute is 0, indicating the password cannot be used to authenticate until
reset by an administrator.

� pwdMaxFailure: This attribute specifies the total number of failed login
attempts to be granted to a user. That is, if you set this attribute to 3, then
after three unsuccessful attempts to login, the password would be locked out.
The default value for this attribute is 0, indicating that the accounts will not be
locked on any number of failed attempts to login, and the value of
pwdLockout will be ignored.

� pwdFailureCountInterval: This attribute specifies the period to clear the
number of failed login attempts. that is, If you set this attribute to a value of
300 seconds, the current number of failed login attempts would be set to 0
only after 5 minutes. However if this attribute has a value 0, which being the
default setting, the failure counter is only reset by a successful authentication.

� pwdMustChange: This attribute specifies if a user is supposed to change his
password when he logs in. A value of "TRUE", which is the default one,
specifies that the users must change their passwords after administrator
reset. If this is set to FALSE then the users might continue using the same
password as was given by the Administrator.

� pwdAllowUserChange: This attribute specifies if a user is allowed to change
his password. A default value of "TRUE" is set to this attribute, which
specifies that the users are allowed to change their passwords. A value of
“FALSE” to this attribute specifies not to allow the users to change their
passwords.

� pwdSafeModify: This attribute specifies if the user is required to provide
his/her old password when requesting for a password change. A default value
of “FALSE” specifies that the user does not need to send their existing
440 Understanding LDAP Design and Implementation

password when doing a modify. If set to “TRUE” the old password is required
to change the password to a new value.

� passwordMinAlphaChars: This attribute specifies the total number of
alphabets that are to appear in the password. A default value of 0, indicates
that the minimum number of alphabetic characters required in the password
is 0. that is, even passwords like “1234” should be acceptable.

� passwordMinOtherChars: This attribute specifies the total number of
non-alphabets that are to appear in the password. A default value of 0,
indicates that the minimum number of numeric and special characters
required in the password is 0. That is even passwords like “abcd” should be
acceptable.

� passwordMaxRepeatedChars: This attribute specifies the total number of
repetitions of the characters allowed in a password. The default value of 0,
indicates that repetition of characters is allowed to any extent. For example,
aabb should be acceptable. Here there are 2 repetitions. If you were to set
this attribute to >= 2 then also this password would have worked. However
setting this attributes to 1 wouldn’t have worked.

� passwordMinDiffChars: This attribute specifies the total number of characters
in a password that should differ from all the passwords existing in the
password history. The default value of 0, indicates no limitation. For example,
if you have the passwords abcd and efgh in the history, and you set the
passwordMinDiffChars to 2. Now if you attempt to set a new password as
abcf then this will not be allowed as the number of characters differing
between abcf and abcd is 1 character. A minimum difference of 2 characters
is expected.

In order to set/unset the password policy attributes, there are two ways. You can
do these tasks using the webadmin or you may go through the command line.
We will see both the options. In order to view the password policy attributes
throughout the Webadmin:

� Connect to the LDAP server using the WebAdmin.

� Click Server Administration.

� Click the Manage security properties category.

� There are three links in the Main Area, which help you set/unset different
attributes pertaining to password policy.

� Select the Password policy tab. Refer to Figure 15-1 on page 442 for the
screen that is shown.
 Chapter 15. Securing the directory 441

Figure 15-1 Set of attributes pertaining to Password policy

– As seen in Figure 15-1, the attribute affected by the password policy rules
is userPassword.

– The current password encryption is set to imask. We will see more of this
encryption settings in one of our subsequent sections.

– Check box corresponding to the Password policy enabled is checked,
which indicates that password policy is enabled for this server.This
attribute corresponds to the ibm-pwdPolicy attribute.

– Check box corresponding to the User can change password is checked,
which indicates that the user is given access to change his password. This
corresponds to the pwdAllowUserChange attribute.

– Check box corresponding to the User must change password after reset is
checked, which indicates the user is forced to change the password once
442 Understanding LDAP Design and Implementation

reset by the administrator. This corresponds to the attribute
pwdmustchange.

– Check box corresponding to the User must send password when changing
is unchecked, which indicates the user need not send his passwords while
changing his password. This corresponds to the pwdSafeModify
attributes.

– Against Password expiration we have got a radio button to choose
between Password never expires and Days. The setting here indicates a
password expiration of 2 days. This setting corresponds to the
pwdMaxAge attribute.

– Against Expiration warning we have got a radio button to choose between
Never warn and Days before expiration. The setting here specifies that a
warning be sent to the user 1 day prior to the expiration. This corresponds
to the pwdexpirewarning attribute.

– The next field is Number of grace logins after expiration. The value against
this field here signifies 2 grace logins after expiration. This corresponds to
the attribute pwdgraceloginlimit.

� Select the Password lockout tab, and the screen in Figure 15-2 on page 444
is shown.
 Chapter 15. Securing the directory 443

Figure 15-2 Set of attributes pertaining to Password lockout

– On the top the Time between password changes is to be specified. This is
currently set to 0. This corresponds to the attribute pwdMinAge.

– The next field is a radio button for specifying the Maximum number of
incorrect logins until password lockout. Here the setting is for a lockout
after 2 failures. This corresponds to the pwdlockout attribute.

– The next radio button is where we specify Duration of password lockouts.
Here the setting is for 2 days. of lockout after a password expiry. This
corresponds to the attribute pwdlockoutduration.

– The next radio button is where we specify the Incorrect login expiration
time. The settings here show that the incorrect logins are to be cleared
only upon a successful authentication. This corresponds to the
pwdfailurecountinterval.

� Select the Password validation tab, and the screen in Figure 15-3 on
page 445 is shown.
444 Understanding LDAP Design and Implementation

Figure 15-3 Set of attributes pertaining to Password validation

– On the top you specify the Minimum number of passwords before reuse.
This is currently set to 3, indicating that we can’t use the same password
again till we have used 3 other passwords. This corresponds to the
pwdinhistory attribute.

– Next we specify the value against Check password syntax. Here we have
set the value to “Do not check syntax”, which indicates that syntax
checking is not to be done while evaluation password policy rules. This
corresponds to the pwdCheckSyntax attribute.

– Next you specify the Minimum length of the password. This corresponds
to the pwdMinLength attribute.

– Next you specify the Minimum number of alphabetic characters. This
corresponds to the passwordMinAlphaChars attribute.

– Next you specify the Minimum number of numeric and special characters.
This corresponds to the passwordMinOtherChars attribute.
 Chapter 15. Securing the directory 445

– Next you specify the Minimum number of repeated characters.This
corresponds to the passwordMaxRepeatedChars attribute.

– Next you specify the Minimum number of characters different from
previous password. This corresponds to the passwordMinDiffChars
attribute.

You can see the same attributes on the command line as follows:

D:\>ldapsearch -D cn=root -w secret -b cn=pwdpolicy objectclass=*
cn=pwdpolicy
objectclass=container
objectclass=pwdPolicy
objectclass=ibm-pwdPolicyExt
objectclass=top
cn=pwdPolicy
pwdAttribute=userPassword
pwdCheckSyntax=0
pwdMinLength=0
passwordMinAlphaChars=0
passwordMinOtherChars=0
passwordMaxRepeatedChars=0
passwordMinDiffChars=0
pwdSafeModify=false
ibm-pwdpolicy=true
pwdlockout=true
pwdinhistory=3
pwdgraceloginlimit=2
pwdlockoutduration=172800
pwdmaxfailure=2
pwdallowuserchange=true
pwdmustchange=true
pwdexpirewarning=86400
pwdmaxage=172800
pwdminage=43
pwdfailurecountinterval=23

If you want to change any of the attributes through command line, just create an
LDIF and use the ldapmodify command. Here is an example. Suppose you want
to change the password min age to 86 from the 43 shown above. Create an LDIF
with the following contents:

dn: cn=pwdpolicy
changetype: modify
replace: pwdminage
pwdminage: 86
446 Understanding LDAP Design and Implementation

Suppose you name the above LDIF as pwdPolicy.ldif. Execute the ldapmodify
command as:

ldapmodify -D <admin dn> -w <admin pw> -f pwdPolicy.ldif

That will do the necessary changes for you.

The above attributes were generic attributes pertaining to Password policy,
applicable to the directory server as a whole. There are a set of operational
attributes as well, which are set individually for each entry. These cannot be
modified through direct client utilities. The server is supposed to modify them as
and when needed.

The Password Policy Operational Attributes, which apply to any entry which
contains a userPassword attribute are as follows:

� pwdChangedTime: This attribute specifies the last time the entry's password
was changed. Here is an example of how this attribute is returned for an entry
“cn=user1,o=ibm,c=us”:

D:\>ldapsearch -D cn=root -w secret -b cn=user1,o=ibm,c=us objectclass=*
pwdChangedTime

cn=user1,o=ibm,c=us
pwdChangedTime=20040229231910.000000Z

This example shows that the password of cn=user1,o=ibm,c=us was modified
on 29-02-2004 at 23:19:10 hours.

� pwdAccountLockedTime: This attribute holds the time that the user's account
was locked. Here is an example of the same via the command line:

D:\>ldapsearch -D cn=root -w secret -b cn=user1,o=ibm,c=us objectclass=*
pwdAccountLockedTime

cn=user1,o=ibm,c=us
pwdAccountLockedTime=20040229232942.000000Z

This example shows that the account of cn=user1,o=ibm,c=us was locked on
29-02-04 at 23:29:04 hours.

Figure 15-4 on page 448 shows the screen you will see when you attempt to
login when the relevant account is locked.
 Chapter 15. Securing the directory 447

Figure 15-4 Account is locked

� pwdExpirationWarned: This attribute contains the time when the password
expiration warning was first sent to the client. It will not show up any time in
case the expiration warning was never sent. Here is an example of the
expiration Warning message:

C:\>ldapchangepwd -D cn=user1,o=ibm,c=us -w user1 -n user
ldap_simple_bind: Warning, time before expiration is 58034
changing password for entry cn=user1,o=ibm,c=us

The timestamp of the expiration warning sent, is stored in the same format as
the timestamp for the other attributes, for example, as like pwdFailureTime.

� pwdFailureTime: This attribute holds the times of the consecutive
authentication failures.

D:\>ldapsearch -D cn=root -w secret -b cn=user2,o=ibm,c=us objectclass=*
pwdFailureTime

cn=user2,o=ibm,c=us
pwdFailureTime=20040229235714.000000Z

This example shows that there has been only 1 login failure with regards user
“cn=user2,o=ibm,c=us” and that was on 29-02-2004 at 23:57:14 hours.

� pwdHistory: This attribute holds a history of previously used passwords, the
password portion of this attribute will be stored in the same encryption
method as the userPassword is stored in. The passwords stored in this
attribute will be compared to the new userPassword that the user has
entered. Here is an example of looking up for pwdHistory:

D:\>ldapsearch -D cn=root -w secret -b cn=user2,o=ibm,c=us objectclass=*
userPassword pwdHistory

cn=user2,o=ibm,c=us
userPassword=user
pwdHistory=20040301032149Z#2.5.4.35#171#{iMASK}>198o13ooQvIR95sxNtCDkCRi
tZFPLyk8euKmCBz80pJNEN8SZQVNtbGOqUMoQm3S9p3xVv+VQJGV0ww2lx+lWPgDgAEIF1/S
X98lvSFxiOj0XVNInK40DOyTO5FGJ2unPP1+bM5CPanKf6VEdOlg7W0NUzksFb4YwA<
pwdHistory=20040301032308Z#2.5.4.35#33#{SHA}oYgcBu7JbbmQHHu/5BxCo/COnLQ=
t

448 Understanding LDAP Design and Implementation

The above example shows that there are two encrypted passwords for the
user cn=user2,o=ibm,c=us in the password history. Out of these one has an
encryption of imask and the other has an encryption of sha. To learn more on
the encryption level, please refer the section on the Server Encryption.

� pwdGraceUseTime: This attribute holds the timestamps of grace login once a
password has expired, and is used to enforce the number of times an expired
password may be used. If the grace logins are used then the timestamps will
be stored in the same format as shown in the earlier password policy
attributes above. Here is an example of the same:

C:\>ldapsearch -D cn=root -w secret -b cn=user2,o=ibm,c=us objectclass=*
pwdGraceUseTime
cn=user2,o=ibm,c=us
pwdGraceUseTime=20040303033651.000000Z
pwdGraceUseTime=20040303033711.000000Z

The above example shows that the user cn=user2,o=ibm,c=us had used two
grace logins.

� pwdReset: This attribute holds a flag to indicates if the password has been
reset.

Here is an example of the same:

D:\>ldapsearch -D cn=root -w secret -b cn=user1,o=ibm,c=us objectclass=*
pwdReset

cn=user1,o=ibm,c=us
pwdReset=true

The above example shows that the password for the user
cn=user1,o=ibm,c=us was reset by administrator. Here is what is shown,
when the password of the user is not reset:

D:\>ldapsearch -D cn=root -w secret -b cn=user3,o=ibm,c=us objectclass=*
pwdReset

cn=user3,o=ibm,c=us

By means of enabling a setting in the directory server, it is possible to restrict
the users from authenticating to the directory server when their password has
been reset, unless they change their password. Figure 15-5 on page 450
shows the screenshot for password reset policy.
 Chapter 15. Securing the directory 449

Figure 15-5 Policy pertaining to password reset

If the check box against “User must change password after reset” is checked
and applied the users must change their password after the administrator has
reset them or else clients are thrown back messages as shown in the
following example:

D:\>ldapsearch -D cn=user3,o=ibm,c=us -w user -b cn=user3,o=ibm,c=us
objectclass=*

ldap_simple_bind: Error, Password must be changed after reset
ldap_search: DSA is unwilling to perform ---
Error, Password must be changed after reset

Implementation
The Password Policy entry cn=pwdpolicy is created at the first server startup, if
the entry is currently not present and the suffix for this entry resides in the IBM
Directory Server config file.

In order to use Password Policy the Administrator must set the ibm-pwdpolicy in
the cn=pwdpolicy entry to TRUE either by using the Web Administration Tools or
doing an ldapmodify to modify the attribute. A set of details for configuring
Password Policy using Web administration tool and command line has already
been discussed above. However, if any further details are needed, please feel
free to check out the IBM Tivoli Directory Server version 5.2 Administration
Guide at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html
450 Understanding LDAP Design and Implementation

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

All users may view the Password Policy entry but only the Administrator can
modify it, by default. ACL’s may be set to let other users modify the entry.The
Password Policy operational attributes may be used in the filter when performing
a search but these attributes will not be displayed unless distinctly specified in
the search and the binding user has permission to search on them. Some
examples of the same are already shown in the above explanations.

For most of the cn=pwdpolicy entry attributes, a value of zero indicates that this
feature of the policy is not being used. All of the integer valued attributes must be
set to 0 or a positive integer and all of the attributes must have logical values in
respect to the other related attributes.

Password policy replication
Replica servers, which contain the entries being affected by Password Policy but
are read-only to the client, do not have the following operational attributes
replicated from the Master Server: pwdFailureTime, pwdAccountLockedTime,
pwdGraceUseTime and pwdExpirationWarned.

These Replica servers contain local copies of these operational attributes, but
when the entry’s userPassword attribute is modified on the Master Server, these
local attributes are cleared as they are on the Master.

The LDAPCHANGEPWD Command
This is a new client tool that users can use to modify their password easily. It
always performs a safe modify of the user’s password in case the
pwdSafeModify attribute is set to TRUE. The user must supply their DN, current
password and new password. Further details on this tool can be seen in
Chapter 10, “Client tools” on page 237.

15.4 Password encryption
Storing passwords in clear text in the backend has potential risks. Hence, IBM
Tivoli Directory Server supports a function where the passwords can be
encrypted before being stored in the directory. This prevents the passwords from
being compromised via direct SQL queries, database file look-ups and
unauthorized access. The directory administrator too is not authorized to see the

Note: If you try to set/reset an attribute which conflicts with the settings of the
other password policy attributes, then the relevant updates will not be
completed and an error message would be flashed to the user saying Error:
Some of the changes could not be saved. This is the error message seen in
the status bar of the WebAdmin.
 Chapter 15. Securing the directory 451

passwords in clear text although he has the right to change the password of any
user.

The directory server can be configured to encrypt the password using one-way
hash algorithms or two way hash algorithms. One-way hash algorithms used by
the directory server are:

� SHA-1 (Secure Hash Algorithm)
� crypt

Passwords encrypted using one way hashes can be used for password matching
but cannot be decrypted, that is, the clear text version of the password cannot be
retrieved by applications. During user login, the login password is encoded and
compared with the stored version for matching verifications. Hence, these
passwords cannot be used by applications which require a clear text version of
the password for authentication purposes.

For applications that require retrieval of clear passwords, such as middle-tier
authentication agents, the directory administrator needs to configure the server
to perform either a two-way encoding or no encryption on user passwords. In this
instance, the clear passwords stored in the directory are protected by the
directory ACL mechanism. The two-way hash algorithm used by the directory
server is imask.

A two-way masking option, imask, is provided to allow values of the
userPassword attribute to be encoded in the directory and retrieved as part of an
entry in the original clear format. Some applications such as middle-tier
authentication servers require passwords to be retrieved in clear text format,
however, corporate security policies might prohibit storing clear passwords in a
secondary permanent storage. This option satisfies both requirements.

After the server is configured for using a given encryption algorithm, all new
passwords (for newly added users) or modified passwords (for existing users)
are encrypted using the given algorithm and then stored in the directory. The
name of the algorithm is tagged to the encoded password so that passwords
encrypted using different algorithms can co-exist. If the encryption algorithm is
changed, the existing passwords remain unaffected and continue to work.

Here are a set of examples demonstrating the impact of the encryption levels.

In case encryption was set to imask when cn=user2,o=ibm,c=us was created.

C:\>ldapsearch -D cn=root -w secret -b cn=user2,o=ibm,c=us objectclass=*
userPassword
cn=user2,o=ibm,c=us
userPassword=user
452 Understanding LDAP Design and Implementation

In case now the encryption is changed to sha:

C:\>ldapsearch -D cn=root -w secret -b cn=user2,o=ibm,c=us objectclass=*
userPassword
cn=user2,o=ibm,c=us
userPassword=user

In case now we create a user cn=user4,o=ibm,c=us:

C:\>ldapsearch -D cn=root -w secret -b cn=user4,o=ibm,c=us objectclass=*
userPassword
cn=user4,o=ibm,c=us
userPassword={SHA}Et6pb+wgWTVmq3VpLJlJWWgzrck=

In case we set the encryption to crypt:

C:\>ldapsearch -D cn=root -w secret -b cn=user4,o=ibm,c=us objectclass=*
userPassword
cn=user4,o=ibm,c=us
userPassword={SHA}Et6pb+wgWTVmq3VpLJlJWWgzrck=

Now suppose we create a new user cn=user5,o=ibm,c=us:

C:\>ldapsearch -D cn=root -w secret -b cn=user5,o=ibm,c=us objectclass=*
userPassword
cn=user5,o=ibm,c=us
userPassword={crypt}m6nQvPf1lTjqI

Now suppose we switch back to imask:

C:\>ldapsearch -D cn=root -w secret -b cn=user5,o=ibm,c=us objectclass=*
userPassword
cn=user5,o=ibm,c=us
userPassword={crypt}m6nQvPf1lTjqI

C:\>ldapsearch -D cn=root -w secret -b cn=user4,o=ibm,c=us objectclass=*
userPassword
cn=user4,o=ibm,c=us
userPassword={SHA}Et6pb+wgWTVmq3VpLJlJWWgzrck=

We believe the above examples clearly hint what the behavior of the encryption
algorithm is. While adding a new entry, the password encryption prevalent at that
instant of time will be applicable to the entry’s userPassword and that will be
maintained even upon switching the encryption algorithm.

Note: To know the name of the encryption algorithm that was used to encrypt
the password, take a dump of the directory data using db2ldif utility. The ldif
file so created contains the encrypted password along with the name of the
encryption algorithm tagged to it.
 Chapter 15. Securing the directory 453

Using the Web Administration Tool/command line, the directory server can be
configured for the following encryption options:

� None: No encryption. Passwords are stored in the clear text format.

� crypt: Passwords are encoded by the UNIX crypt encoding algorithm before
they are stored in the directory.

� SHA-1: Passwords are encoded by the SHA-1 encoding algorithm before
they are stored in the directory.

� imask: Passwords are encoded by the imask algorithm before they are stored
in the directory and are retrieved as part of an entry in the original clear
format. This is the default.

The screenshot shown in Figure 15-1 on page 442 shows the tab for changing
the password through the Web Administration tool.

In addition to userPassword, values of the secretKey attribute are always "imask"
encoded in the directory. Unlike userPassword, this encoding is enforced for
values of secretKey. No other option is provided. The secretKey attribute is an
IBM defined schema. Applications may use this attribute to store sensitive data
that always needs to be encoded in the directory and to retrieve the data in clear
text format using the directory access control.

The attribute associated with directory password encryption in the config file is
ibm-slapdPwEncryption. Its value can be dynamically updated (after changing
using Web Administration Tool or command line ldapmodify) using the ldapexop
command line tool.

Here is how ldapmodify is used to change the encryption algorithm:

C:\>ldapmodify -D <admin DN> -w <admin PW>
dn: cn=Configuration
changetype: modify
replace: ibm-slapdPWEncryption
ibm-slapdPWEncryption: sha

That will change the encryption to sha. You can use a file instead of providing
everything on the command line. Once you have done the above update you can

Note: When imask is used as the server password encryption method, only
the first 46 characters of a password entered are effective. Any characters
after the 46th character will be ignored and considered as matched. Similarly,
if the UNIX crypt method is used, only the first eight characters will be
effective. Also since the value of SecretKey is encrypted in the database using
the imask encryption, the SecretKey values which are longer than 46
characters will not be maintained.
454 Understanding LDAP Design and Implementation

ask the server to take into effect the above change dynamically, using the
ldapexop tool. For more information on ldapmodify/ldapexop please refer to
Chapter 10, “Client tools” on page 237.

15.5 SSL/TLS support
The IBM Tivoli Directory Server has the ability to protect LDAP access by
encrypting data with either Secure Sockets Layer (SSL) security or Transport
Layer Security (TLS) or both. When using SSL or TLS to secure LDAP
communications with the IBM Directory, both server authentication and client
authentication are supported. To use SSL or TLS you must have GSKit installed
on your system.

15.5.1 Overview of TLS
The primary goal of the TLS(Transport Layer Security)Protocol is to provide
privacy and data integrity between two communicating applications. The protocol
is composed of two layers: the TLS Record Protocol and the TLS Handshake
Protocol.

TLS record protocol
It is the lower layer of TLS. It provides connection security with the following
connection properties:

� Connection is private: It is ensured by using symmetric cryptography for data
encryption (for example, DES, RC4, etc.). The keys for this encryption are
uniquely generated per connection based on secrets negotiated by some
other protocol like TLS Handshake protocol. It can be used without encryption
also.

� Connection is reliable: Message transportation includes a message integrity
check using a keyed MAC (Message Authentication Code). Secure hash
functions (SHA or MD5)are used for MAC computations.

TLS handshake protocol
Allows the server and client to authenticate each other and to negotiate an
encryption algorithm and cryptographic keys before the application protocol
transmits or receives its first byte of data. It ensures that the peer's identity can

Note: It is not feasible to create a new attribute which would accept values in a
masked form as like userPassword. The masking of characters in the field of
userPassword is not based on the encryption algorithm chose, but it is the way
that attribute is internally designed.
 Chapter 15. Securing the directory 455

be authenticated using asymmetric, or public key cryptography (for example,
RSA, DSS).

� The negotiation of a shared secret is secure: The negotiated secret key is
unavailable to any eavesdropper.

� The negotiation is reliable: no attacker can modify the negotiation
communication without being detected by the communicating parties.

For more information on TLS protocol, please visit the following Web site:

http://www.ietf.org/rfc/rfc2246.txt

15.5.2 Overview of SSL
SSL is an industry-standard security protocol that uses symmetric-key and
public-key cryptographic technology. Symmetric-key cryptography uses the
same key to encrypt and decrypt messages. Public-key cryptography uses a pair
of keys: a public key and a private key. Each server's public key is published, and
the private key is kept secret. To send a secure message to the server, a client
encrypts the message using the server's public key. When the server receives
the message, it decrypts the message using its private key. Only the server can
decrypt this message because the private key required to decrypt this message
is available only with the server.

SSL provides three basic security services(the below steps are equally valid for
TLS also):

� Mutual authentication: Mutual authentication is the process whereby the client
and the server convince each other of (and prove) their identities. The client
and server identities are encoded in public-key certificates. A public-key
certificate contains the following components whereby the issuer, also known
as a Certificate Authority (CA), is a trusted organization, such as RSA Data
Security Inc. or Verisign Inc.:

– Subject's distinguished name
– Issuer's distinguished name
– Subject's public key
– Issuer's signature
– Validity period
– Serial number

Note: TLS is started by using the -Y option in the client tools.

TLS and SSL are not interoperable. Starting TLS over a SSL port gives
operations error.
456 Understanding LDAP Design and Implementation

http://www.ietf.org/rfc/rfc2246.txt

Rather than mutual authentication, which provides for maximum security,
many implementations only use server authentication.

� Message privacy: Message privacy is achieved through a combination of
public-key and symmetric key encryption. All traffic between an SSL client
and an SSL server is encrypted using a key and an encryption algorithm
negotiated during session setup.

� Message integrity: The message integrity service ensures that SSL session
traffic does not change while en route to its final destination. SSL uses a
combination of public/private keys and hash functions to ensure message
integrity.

If SSL is used by LDAP for secure communication, the SSL session is
established first before the normal LDAP protocol conversation can start. The
following events take place for establishing an SSL session:

1. The client and the server exchange hello messages to negotiate the
encryption algorithm and hashing function (for message integrity) to be used
for the SSL session.

2. The client and server exchange X.509 certificates to validate their identities (if
client authentication is not requested, only the server sends its certificate).
Certificates are verified by checking the correctness of format and validity
dates and by verifying that the certificate bears the signature of a trusted
Certificate Authority (CA).

3. The client randomly generates a set of keys that are used for encryption. The
keys are encrypted using the server's public key and securely communicated
to the server.

4. Encrypted communication can now start using the generated key for
encryption and decryption.

For server authentication to function, the IBM Tivoli Directory server must have a
digital certificate (based on the X.509 standard). This digital certificate is used to
authenticate the IBM Tivoli Directory server to the client application(s). During
the initial SSL handshake, the LDAP server supplies the client with its X.509
certificate. If the client validates the server's certificate, a secure, encrypted
communication channel is established between the LDAP server and the client
application.

If client and server authentication is to be used, both the LDAP server and the
client application must have a digital certificate. The server's digital certificate is
used to authenticate the LDAP server to the client application (for example, an
application built with IBM's LDAP application development toolkit). Similarly, the
client's digital certificate is used to authenticate the client to the LDAP server (in
terms of SSL's strong authentication mechanism). During the initial SSL
handshake, the LDAP server and the client exchange certificates for mutual
 Chapter 15. Securing the directory 457

validation. After the client validates the server's certificate and the server
validates the client's certificate, a secure encrypted communication channel is
established between the LDAP server and the client application.

15.5.3 SSL utilities
The graphical utility gsk7ikm (IBM Key Management GUI) is provided for IBM
AIX, Windows NT, and a number of other IBM and non-IBM platforms to manage
SSL X.509v3 certificate databases (also known as keyring files or keyring
databases). Its use is required to configure and use Secure Sockets Layer (SSL).
The gsk7ikm utility replaces other utilities, like ikeyman, used with earlier
versions of IBM SSL support. With the IBM Tivoli Directory Server (and
associated clients), both client and server keyring files are managed with
gsk7ikm.

The gsk7ikm utility, together with the SSL libraries, form the IBM SSL toolkit
known as GSKit (Global Security Kit). GSKit provides the SSL protocol functions
as well as a set of Certificate Management Services (CMS) functions. These
CMS functions provide access to the certificate database (the keyring file) as well
as functions such as validating client certificates (including Certificate
Revocation List processing). The current version is GSKit Version 7, which
supports SSL Version 3.0, C/C++ for clients and servers and Java for clients.

Since strong encryption (as provided by SSL) is controlled by export and other
regulations in the U.S. and other countries, different versions of GSKit exist for
different countries. While the installable options differ among these versions, the
user interface and configuration steps are generally the same as described in the
following sections.

GSKIT installation
GSKit is an independent installable option required only when SSL security is to
be used. GSKit might already be installed on your system if another application
required it to be installed. GSKit is shipped with the IBM Tivoli Directory Server in
the appropriate version for your country. Please check for and follow any
installation instructions that came with the product. If you are using the ISMP for
installing IBM Tivoli Directory Server, select GSKit component by checking it
when asked. For native installation, you have to use the operating system
provided commands(installp in AIX, pkgadd in Solaris, rpm in linux etc.) for
installing GSKit.

Note: Encryption technology is subject to government regulations in the U.S.
and other countries. Such regulations have changed recently and may change
in the future. Due to this, the SSL packaging and implementation may be
different as the product rolls out or may change thereafter.
458 Understanding LDAP Design and Implementation

gsk7ikm utility
This utility with its graphical user interface is used to manage certificates. The
specific tasks you can perform with ikmgui include:

� Create a key pair and request a certificate from a CA.
� Receive a certificate into a keyring file.
� Change a keyring password.
� Show information about a key.
� Delete a key.
� Make a key the default key in the keyring file.
� Export a key.
� Import a key into the keyring file.
� Designate a key as a trusted root.
� Remove trusted root key designation.

To run gsk7ikm, you need to have the Java Development Toolkit (JDK version
1.4.1 is recommended) installed and the JAVA_HOME environment variable
pointing to its root directory. Figure Figure 15-6 on page 460 shows the screen
shot of GSKit when launched using the command gsk7ikm.
 Chapter 15. Securing the directory 459

Figure 15-6 IBM Key Management tool

15.5.4 Configuring SSL security
To enable security with server authentication, you can follow one of the given
steps:

� Create a certificate signed by a well-known certificate authority (CA): Create a
public/private key pair and obtain and store a certificate from one of the
predefined (well-known) Certificate Authorities. This procedure requires less
setup because the keyring file is preconfigured with the CA root certificates
required to identify the CAs from whom the certificate is issued.

� Create a self-signed certificate: The process of applying for and receiving a
certificate from a CA can take two to three weeks. To enable SSL security
until you receive the required CA root and server certificates, you can create
a self-signed root certificate and store the certificate in the database and
class files. To ensure maximum security for your site, you should only use a
460 Understanding LDAP Design and Implementation

self-signed certificate for server authentication until you receive a CA-issued
certificate.

Creating a certificate signed by a trusted certificate authority
Using a certificate that was signed by a well-known (trusted) certificate authority
gives you the advantage that most SSL communication partners know and trust
that CA, and they will, therefore, most likely (depending on their configuration)
accept a new certificate. This is especially helpful when communicating with
partners outside your organization and beyond your authority to change security
options. The disadvantages are that it takes some time (a few days or weeks) to
get an official certificate and the fact that it is not for free. Creating a certificate
signed by a well-known CA involves the creation of a key database and a
certificate request that is then sent to the CA. After returning the certificate from
the CA, it needs to be stored in the key database. These steps are detailed
below using the GUI of the gsk7ikm utility.

1. Create a key database(.kdb file) for the server:

a. Select New from the on Key Database File pull-down menu on the top of
the main window (Figure 15-6 on page 460).

b. On the dialog window that pops up, select CMS key database file in the
Key database type selection list and then type in the name and location of
the key database file to be created. This file has an extension of .kdb, as,
for example, in ldap_key.kdb. Then, click OK to close the dialog panel.

c. A new dialog pops up that requests your input for a password for the key
database file, an optional expiration time, and whether or not the
password is to be stashed to a file. Enter a password, an optional
expiration time, and make sure that you check the check box next to
Stash the password to a file? In case you are not stashing the password
to a file, the password would be stored in the configuration file. Using a
stashed password increases the level of secrecy. The server/applications
would get to know the password by reading the stashed password file as
and when needed. Consequently you need not mention the password in
the communications with the server. Click OK to close this dialog. The
password is then encrypted and stored in a file with the same name as
database file but with an extension of .sth.

2. Create a certificate request.

a. Select New Certificate Request... from the Create pull-down menu in the
main window. In the dialog window that shows up, you will have to fill in
the following information for the request:

• Key label (a clear, descriptive label for the certificate)

• Key size (512 or 1024, depending on security requirements and
country version of the ikmgui utility)
 Chapter 15. Securing the directory 461

• Common name

• Organization and other pertinent information to identify the owner of
the certificate

• Full path of the file name for the certificate request file

b. Click OK to create the request. The .arm file so created contains the
certificate request.

3. Send the certificate request, that is, the .arm file, to the certificate authority of
your choice by mail or Web (follow their instructions, which can be found on
their Web sites). (While you are waiting for the certificate authority to process
and return your certificate, you can enable SSL security by creating, storing,
and importing a self-signed certificate using the procedure described in the
next section.) Once the certificate has been returned to you by the CA, you
have to store it into the key database file.

4. Store the certificate into your database.

a. On the ikmgui main menu (Figure 15-6 on page 460), make sure that your
key database file is open (check the filename in the Key database
information portion of the window). If it is not open, choose Open... from
the Key Database File pull-down menu and open your file.

b. Select Personal Certificates from the selection list in the lower Key
database content portion of the window.

c. Click Receive... on the right of the window.

d. Supply the information about the file containing the signed certificate and
click OK. This adds the certificate to the key database file. You will see the
new certificate in the list under Personal Certificates.

5. A root certificate of the CA must be stored in the key database file. By default,
root certificates of the most common CAs are already present in the file; so,
you do not need to add them again. A trusted root is simply an X.509
certificate that has been signed by a trusted entity (for example, Verisign).
You can see what root certificates there are by selecting Signer Certificates
from the selection list in the Key database content portion of the main
window. If your CA is not present in that list, obtain a root certificate from this
CA and add it by clicking Add... on the right of the window.

Creating a self signed certificate
You can use the ikmgui utility to create a self-signed certificate to enable SSL
sessions between clients and servers. The steps are essentially the same except
that, in this case, you are the CA for the keys you will be creating, and you will be
creating your own root certificate. The advantages of using this type of certificate
is a quick start, it is free, and you have no dependencies on other organizations.
The drawback, on the other hand, is that each client or server using this kind of
462 Understanding LDAP Design and Implementation

certificate needs to have the new root certificate imported, which may impose
some administrative burden.

1. Create server key database (.kdb file).

a. Click Key Database File (Figure 15-6 on page 460).

b. Click New, from that dropdown that appears in point a above.

c. On the dialog window that pops up, select CMS key database file in the
Key database type selection list and then type in the name and location of
the key database file to be created. This file has an extension of .kdb, as,
for example, in ldap_key.kdb. Then, click OK to close the dialog panel.

d. A new dialog pops up that requests your input for a password for the key
database file, an optional expiration time, and whether or not the
password is to be stashed to a file. Enter a password, an optional
expiration time, and make sure that you check the check box next to Stash
the password to a file? otherwise, you have to enter the password
manually in the configuration file of the directory server. Click OK to close
this dialog. The password is then encrypted and stored in a file with the
same name as the key database file but with an extension of .sth.

2. Create a self-signed certificate.

a. Select New Self-Signed Certificate... from the Create pull-down menu in
the main window (Figure 15-6 on page 460). In the dialog window that
shows up, you will have to fill in the following information:

• Key label (a clear, descriptive label for the certificate)

• Key Version (normally X.509 V3, unless you have reasons for other
versions)

• Key size (512 or 1024, depending upon security requirements and
country version of the ikmgui utility)

• Common name

• Organization and other pertinent information to identify the owner of
the certificate

• Validity period in days

3. Click OK to create the request. The .arm file so created contains the
certificate request.

4. From the certificate just created above, you need to extract the root certificate
that is necessary for other communication partners (clients and/or servers) to

Note: The key label and the organization are mandatory fields. The rest
are optional.
 Chapter 15. Securing the directory 463

recognize the newly created certificate. Here are the steps for exporting the
root certificate:

a. Select the new certificate’s entry in the Personal Certificate list and click
Extract Certificate at the bottom right on the main window.

b. Select Base64-encoded ASCII data from the Data type list and enter a
file name (with a .arm extension) and a location (directory) for the new root
certificate to be exported to. Then click OK to export the root certificate. (If
you want to create a file for the JNDI SSLight client key class, you must
select SSLight key database class as data type when creating a file with
a .class extension.)

You have now created a file that holds your own root certificate. This must
be imported to all communication partners that will connect to the server
through SSL.

5. Use the following steps for importing the new root certificate into others’ key
database (using ikmgui):

a. Make sure that the certificate extracted above, in the previous step, is
made available to all the communication partners. You can transfer the file
using ftp or a diskette or any other suitable media.

b. Invoke the ikmgui utility on the receiving system.

c. If not already done, create a key database file (see first step above for
creating a self-signed certificate).

d. In the Key database content portion of the window, select Signer
Certificates from the selection list and click Add... on the right.

e. Select Base64-encoded ASCII data from the Data type list and type the
certificate file name and location into the appropriate fields. Then, click OK
to import the certificate.

f. On the upcoming dialog, supply a label for this certificate and click OK.

The steps as described above need to be done on each machine that will
communicate using this certificate with the machine from which the
certificate was exported.

Each LDAP server should have its own certificate. Sharing certificates
across multiple LDAP servers is not recommended. By using different
certificates and private keys for each server, your security exposure is
minimized should a keyring file for one of the servers be compromised.

Configuring the LDAP server to use SSL
After creating the key database files for the server, follow the steps given below
for configuring the server to communicate over SSL:

1. Connect to the directory server using Web Administration Tool.
464 Understanding LDAP Design and Implementation

2. Click the Server administration tab and then select Manage security
properties.

3. Click the Settings tab in the right pane. Select the type of secure connection
and the type of authentication method you want.

4. Next click the Key database tab and provide the absolute path of your key
database (.kdb) file.

5. If you have not stashed your password while creating the key database, you
need to provide the password here.

6. From the Encryption tab, select the encryption algorithm. Multiple selections
are allowed. If you select multiple encryption methods, the highest level of
encryption is used by default; however, clients using the selected lower
encryption levels still have access to the server.

7. If the Federal Information Processing Standards (FIPS) mode enablement
feature is supported on your server, the Use FIPS certified implementation
check box appears under the Implementation tab. If this check box is
selected, the ICC library will be used for encryption. If you deselect the check
box, a non-FIPS certified library will be used for encryption.

8. Restart the server for the changes to take effect. Also restart the Directory
Administration daemon (ibmdiradm).

Configuring the LDAP client to use SSL
There is no special setup required for LDAP clients using SSL other than the fact
that the client must have the CAs root certificate in its key database file (see the
steps described above). The application must then initiate a secure SSL
connection by using the appropriate API calls, that is, ldap_ssl_client_init() in
case of C applications. If client authentication is configured on the server, the
client must be set up with its own certificate as described above for the server.

The command line tools supplied with IBM Tivoli Directory Server have special
command line options to communicate with the server over SSL.

Here is an example of how you can fire a search to a server via SSL:

C:\>ldapsearch -D cn=root -w secret -Z -K F:\KEYS\clientCMS.kdb -P client -s
base objectclass=* | grep -i config

namingcontexts=CN=CONFIGURATION
ibm-configurationnamingcontext=CN=CONFIGURATION
ibm-slapdisconfigurationmode=FALSE

Note: If the ibmdiradm daemon is not restarted, you will not be able to start
or stop the ssl configured directory server from the Web administration
tool.
 Chapter 15. Securing the directory 465

The above query is a root DSE search over SSL.

The -Z flag is used to indicate that this is an SSL query.
The -K attribute is used to specify the path of the client key database.
The -P attribute is used to specify the password of the client key
database.

The server’s certificate is stored in clientCMS.kdb and using this the client is able
to tell the server that it is a valid client.

This is an illustration of the authentication method of “Server Authentication”. On
the same lines the “Server and Client Authentication” can be implemented. The
way to implemented is almost the same way as described above. Above we see
that the server exports its certificate to import it to the client. Similarly if the
clients too export their certificates, which are imported into the server’s key
database file, then the corresponding authentication is known as the “Server and
client authentication”. In “Server and client authentication” both the server and
the clients have a chance to verify that the request is coming from a valid
client/server.

Configuring the Web administration tool to use SSL
The Web administration GUI tool is also a special type of client and hence needs
some setup to communicate with an SSL configured server:

1. Start the Web Administration Tool and select the Console Admin from the
drop down menu. Log in as the console administrator (the default username
is superadmin and password is secret)

2. Click the Console administration tab and select Manage console
properties.

3. Click SSL key database.

4. You need to have created a client key database of type jks and added the
server certificate to it beforehand. Enter the absolute path of the jks key
database file.

5. If you have not stashed the password while creating the jks key database,
enter the password in the password field.

6. Enter the absolute path for the Trust database file. Its usually the same as the
keydatabase file.

Note: The procedure for creating a jks file and importing certificate is as
like the procedure for the CMS databases explained above. The only
difference being that while creating the database you give the type as
either CMS for a CMS database or JKS for a JKS database.
466 Understanding LDAP Design and Implementation

7. Next click the Manage console servers tab. Select the appropriate server
from the right panel and click Edit.

8. Change the Port to 636 and check the SSL enabled check-box.

9. Click OK to apply the changes.

10.The next time you log into this directory server from the Web administration
console, all communication between the server and the console will be over
ssl. If the server was configured for SSLonly mode and the corresponding
changes were not made in the console, the console will fail to communicate
with the sever.

Figure 15-7 show the screenshot for enabling the Web administration tool to
access servers via SSL.

Figure 15-7 Enabling Webadmin to access servers via SSL

For more detailed steps for configuring the directory server and Web
administration tool, please see the administration guide at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

Note: If you wish to use the same server for both SSL and non-SSL
communication then you can create an alias for the current server and
configure the Webadmin to talk to the server over the non-SSL port. In this
way you will have two entries for the same server, one for talking over SSL
and the other for talking over non-SSL.
 Chapter 15. Securing the directory 467

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

15.6 Protection against DoS attacks
Denial of Service (DoS) refers to a situation where the server is made to crash or
is rendered unresponsive by bombarding it with huge number of client requests.
These attacks cause huge losses to the victim in terms of time and money.

The IBM Tivoli Directory Server includes many advanced features to keep such
attacks at bay. These features are listed below.

15.6.1 Non-blocking sockets
The read and write operations requested by the clients are handled intelligently
so that a client which is trying to block the server by sending zero of partial data
is automatically disconnected after a specified number of attempts.

On a read request, a client which continuously sends small amounts of data, is
disconnected after a limited number of attempts. This limit is configurable and is
represented by the attribute ibm-slapdReadBlockedAttempts in the config file
under cn=Connection Management,cn=Frond End, cn=Configuration.

On a write request, a client is disconnected depending upon a write timeout
value and the number of blocked write attempts. Both the values are configurable
and are represented by the attributes ibm-slapdWriteTimeout and
ibm-slapdWriteBlockedAttempts respectively in the config file under
cn=Connection Management,cn=Frond End, cn=Configuration.

15.6.2 Extended operation for killing connections
This new extended operation, unbind, can be used by the administrator to
terminate any faulty client connections and hence stop a probable DoS attack.
This extended operation can be used to kill client connections that are:

� Bound to the server as a given DN

� Originated from a given client (IP Address)

� Bound to the server as a given DN and originated from a specified client

� Or all existing connections to the server

A purge all connections request would purge all connections except the
connection the request came from. In all the above cases, connections not being
served by a worker thread are terminated immediately. In case a worker is
currently serving a connection, it is terminated once the operation is complete.
468 Understanding LDAP Design and Implementation

15.6.3 Emergency thread
A major serviceability problem occurs when all the worker threads of the server
are busy performing some backend operations or are locked up. Even the
directory administrator is unable to perform any diagnostic actions on the server.
The emergency thread has been introduced to cope with such situations. It gets
activated in case of such overloaded situations.

The emergency thread will be activated depending upon two configurable
conditions:

� Size of work queue which represents the number of pending operations. This
is represented by the variable ibm-slapdESizeThreshold in the config file.

� Time since the last item was removed from the queue, only if there are more
items in the queue. This is represented by the attribute
ibm-slapdETimeThreshold in the config file.

The admin can also specify which of the two, or a combination of the two will
activate the emergency thread. This configurable parameter is represented by
the attribute ibm-slapdEThreadActivate in the config file.

When the emergency thread is activated, a message will be logged into the
ibmslapd.log file. The emergency thread will be deactivated when a worker
removes an item from the work queue.

The emergency thread will support the following operations from the directory
administrator:

� Kill Connection extended operation. It ensures that the admin will be able to
stop a DoS attack without having to restart the server.

� Dynamic updates to the attributes in cn=Connection Management, cn=Front
End, cn=Configuration section of the config file.

� Dynamic updates to the admin DN and admin password.

� Stopping and requesting the status of the server.

� Reading and clearing log files.

� Monitor and root DSE searches

� Modify and delete operations in the config backend.
 Chapter 15. Securing the directory 469

15.6.4 Connection reaping
The connection reaping functionality has been enhanced to reap connections
depending upon the type of authentication. There are three different thresholds
specifying when:

� only anonymous connections will be reaped. It is represented by
ibm-slapdAnonReapingThreshold attribute in the config file.

� only connections bound other than admin and replication connections will be
reaped. It is represented by ibm-slapdBoundReapingThreshold attribute in the
config file.

� all connections will be reaped. It is represented by
ibm-slapdAllReapingThreshold attribute in the config file.

With all three thresholds only connections meeting the idle time out criteria will
be reaped.

15.6.5 Allow anonymous bind
To add an extra level of protection the server will be able to reject anonymous
bind requests. This will be a global setting for all backends. When dynamically
updated to false it will trigger the unbind of all anonymous connections. This is
represented by the attribute ibm-slapdAllowAnon in the config file.

Here is a screenshot of where exactly you set the above attributes:

1. Connect to the server using Web Administration tool.

2. Click Server Administration.

3. Click Manage Connection Properties.

4. On the right-hand side will be a panel which would provide you the options of
changing attributes pertaining to the Connection termination reaping, etc.,
which were just discussed.

Figure 15-8 on page 471 shows the screenshot corresponding to the General
tab.

Note: When anonymous binds are not allowed, TLS will not work.
470 Understanding LDAP Design and Implementation

Figure 15-8 Attributes pertaining to connections

Let us see the relation between the Web Admin attributes and the attributes in
our configuration file (ibmslapd.conf):

� Allow anonymous connections corresponds to the attribute
ibm-slapdAllowAnon.

� Cleanup threshold for anonymous connections corresponds to the attribute
ibm-slapdAnonReapingThreshold.

� Cleanup threshold for authenticated connections corresponds to the attribute
ibm-slapdBoundReapingThreshold.

� Cleanup threshold for all connections corresponds to the attribute
ibm-slapdAllReapingThreshold.

� Idle timeout limit (in seconds) corresponds to the attribute
ibm-slapdIdleTimeOut.

� Result timeout limit (in seconds) corresponds to the attribute
ibm-slapdWriteTimeout.

Figure 15-9 on page 472 shows the settings of the emergency thread.
 Chapter 15. Securing the directory 471

Figure 15-9 Attributes pertaining to the emergency thread

And here is the correlation of the attributes mentioned above and the
configuration file:

� Enable emergency thread corresponds to the attribute
ibm-slapdEThreadEnable.

� Pending request threshold corresponds to the attribute
ibm-slapdESizeThreshold.

� Time threshold (in minutes) corresponds to the attribute
ibm-slapdETimeThreshold.

� Criteria for emergency thread activation corresponds to the attribute
ibm-slapdEThreadActivate.

15.7 Access control
Please refer to Chapter 14, “Access control” on page 395, for detailed description
of Access Control Mechanism implemented in the IBM Tivoli Directory Server.

15.8 Summary
Let us summarize as to what we have seen in this chapter:

� We went through the different types of authentication:

– Anonymous authentication
– Basic authentication
472 Understanding LDAP Design and Implementation

– SASL mechanisms
– Kerberos

� We went through the password policy feature as to how it plays a key role in
securing the user’s passwords by enforcing a set of rules on them. We also
went through the implementation of the password policy in ITDS 52.

� We went through the password encryptions that the directory server supports
and understood the significance of each of them.

� We went through securing the server via SSL and TLS.

� We also studied the IBM’s key management tool and how it is useful in
generating and maintaining the keys and the relevant certificates.

� We went through the concept of Denial of Service (DoS) attack and studied
the attributes which would help in preventing such attacks.

� We also got to know how ACLs play a vital role in the security of the directory
entries/users.
 Chapter 15. Securing the directory 473

474 Understanding LDAP Design and Implementation

Chapter 16. Performance Tuning

This chapter describes some best practices for tuning your Lightweight Directory
Access Protocol (LDAP). The IBM Tivoli Directory Server (ITDS) out of the box
will fit most small directories, but for most enterprise directory examples you will
need to do more tuning. This chapter goes over some of the main issues that
come from Performance Tuning. We cover LDAP Cache, DB2 settings, and
special OS-related settings that need to be addressed.

Performance Tuning is a art form; there is no cookie cutter approach that fits all
directories for all occasions. But there are basic starting settings that can be
made that will get you in the ball park.

The best friend to LDAP is memory; this is the one thing that can help right away
with any directory.

� 32 bit OS memory limits are usually 4 GB depending on the OS.

� 64 bit OS memory limits are usually 16GB depending on the OS.

� See your own OS manufacturer to find out the limits that you have.

Tuning for optimal performance is primarily a matter of adjusting the relationships
between the LDAP server and DB2 according to the nature of your workload.
Because each workload is different, instead of providing exact values for tuning
settings, guidelines are provided, where appropriate, for how to determine the
best settings for your system.

16
© Copyright IBM Corp. 1998, 2004. All rights reserved. 475

Table 16-1 Tasks

Step Task See section

1
If the IBM Tivoli Directory server has never been started. Start it now
to complete the server configuration. The initial DB2 database tables
are not created until the first startup of the Directory server.

16.4.3

2

Optionally, back up the IBM Directory Server using DB2 backup. It is
always a good idea to back up the IBM Directory Server before you
make any major change. In this case, the change is performance
tuning.

16.9.6

3
If this is a UNIX operating system, do the performance tuning tasks.
These performance tuning tasks vary by operating system but they are
mostly related to system resource limits.

16.10 for AIX
16.11 for Solaris

4
Check whether the IBM Directory Server change log is configured. By
default it is not. It should only be used if required by other intergrator
products. Performance is faster without the change log.

16.15.1

5
Check whether the IBM Directory Server audit-log is turned off.
Performance is faster with the audit log turned off. Only use it for
troubleshooting or if you require it for security monitoring.

16.15.2

6
Check to see if you are going to use Transaction and Event
Notification; if you are not going to use these then turn them off. They
are on by default.

16.3

7 Perform IBM Directory LDAP cache settings. 16.2

8 Perform slapd and ibmslapd conf file changes. 16.4

9 Perform the DB2 parameter performance tuning tasks. 16.5

10 Perform reorgchk and reorg of indexes and tables as needed. 16.7.2

11
Check to see if you have the needed indexes. Performance is greatly
enhanced by having the right indexes in the DB2.

16.7.3

12
Use the monitoring outputs to help you make decisions on changes to
the ldap and DB2 settings.

16.16
476 Understanding LDAP Design and Implementation

16.1 ITDS application components
Between a LDAP client and the server you have a network. One of the things you
need to make sure of is how the network is put together. The biggest problem
with networks is when you have different levels of speed and either Half duplex
or Full duplex connections. Windows workstations most always default to auto
setting; this can cause a number of problems in a network. You should always
hard code your network cards to the speed and type, either half or full duplex
connections. Do not ever use Auto mode. There will be times when windows
boots up auto mode that it will not get the connection correctly and set you up in
Half duplex mode when the switch or server is set to Full duplex and vice vesa.
One tell-tail sign of this is that file transfer speeds are slow and there is high rate
of collisions on an Ethernet network. If you are going to use Full duplex then
every thing that talks to that server needs to be in Full duplex point to point. Have
your network person check this out and make sure they hard code the
workstations, switches, and servers to the same speed and connection type.

The query follows a path from the IBM Tivoli Directory Server client to the LDAP
server, to DB2, to the physical disks in search of entries that match the query’s
search filter settings. The shorter the path to matching entries, the better overall
performance you can expect from your system.

For example, if a query locates all the matching entries in the LDAP server within
the LDAP Cache then access to DB2 and the disks is not necessary. If the
matching entries are not found in the LDAP server cache, the query continues on
to DB2 buffer pools and, if necessary, to the physical disks as a last resort.
Because of the time and resources it takes to retrieve data from disk, it is better
from a performance standpoint to allocate a significant amount of memory to the
LDAP server caches and DB2 buffer pools.

16.2 ITDS LDAP caches
IBM Tivoli Directory Server LDAP caches and DB2 buffer pools store previously
retrieved data and can significantly improve performance by reducing disk
access. When requested data is found within a cache or buffer pool, it is called a
cache click. A cache miss occurs when requested data is not located in a cache
or buffer pool.

A cache miss is not necessary bad, it becomes bad when the miss rate continues
to rise when the maximum cache level is reached. This says it has to go
elsewhere to get it information.
 Chapter 16. Performance Tuning 477

Because the type of information in each cache and buffer pool is different, it is
useful to understand why and when each cache is accessed. We will cover DB2
buffer pools in “DB2 tuning” on page 491.

16.2.1 LDAP caches
LDAP caches are fast storage buffers in memory used to store LDAP information
such as queries, answers, and user authentication for future use. Tuning the
LDAP caches is crucial to improving performance.

An LDAP search that accesses the LDAP cache can be faster than one that
requires a connection to DB2, even if the information is cached in DB2. For this
reason, tuning LDAP caches can improve performance by avoiding calls to the
database.

The LDAP caches are especially useful for applications that frequently retrieve
repeated cached information. Keep in mind that every workload is different, and
some experimentation will likely be required in order to find the best settings for
your workload.

Note that cache sizes for the filter cache, ACL cache, and entry cache are
measured in numbers of entries.

LDAP Caches have changed over time with each major version change. In
Version that are older then SecureWay 3.2.2 When there was any type of write
to the database all the LDAP cache would be invalidated and would need to
re-load its cache back again. This cause performance issues that would warrant
you to not used any LDAP Cache. With SecureWay 3.2.2 and newer the only
cache that would get invalidated would be Filter cache. This is still true today. But
in future releases it is expected that the Filter cache would be smarter in how it
invalidated itself. With the release of IDTS 5.2 a new Cache was put into the
product called attribute cache. This will help this problem but it will not fix it. We
will cover each of these LDAP caches in this section.

Changes for all these different caches are made in the LDAP config file. For
version less then 3.2.2 it is called slapd.conf. For Versions 3.2.2 through 4.11 it is
called slapd32.conf. And for 5.1 and 5.2 it is called ibmslapd.conf. For each of
the different versions you can find this file in.../ldap/etc directory on all platforms.

Note: On Windows systems, the \etc\slapd32.conf or \etc\ibmslapd.conf file is
not located at the root of the disk drive. You must search each disk to find it.
478 Understanding LDAP Design and Implementation

16.2.2 LDAP filter cache
When the client issues a query for data and the query first goes to filter cache.
This cache contains cached entry IDs. There are two things that can happen
when a query arrives at the filter cache:

� The IDs that match the filter settings used in the query are located in the filter
cache. If this is the case, the list of the matching entry IDs is sent to the entry
cache.

� The matching entry IDs are not cached in the filter cache. (cache miss) In this
case, the query must access DB2 in search of the desired data. When it gets
the information back from DB2 it will update the filter cache and the list of the
matching entry ID’s are sent to the entry cache. This will continue till you
reach the maximum cache limits set in the ldap config file.

To determine how big your filter cache should be, run your workload with the filter
cache set to different values and measure the differences in operations per
second. This setting is measured in the number of entries and this is the
maximum number of entries in the Filter Cache.

In 5.1 and later it is called:

ibm-slapdFilterCacheSize: 25000

In 4.1 and earlier it is called:

ibm-slapdSetEnv: RDBM_FCACHE_SIZE=25000

We will cover later how you can monitor this to see if it is reaching the maximum
limits.

One thing to remember is that you want to minimize and batch updates (add,
modify, modrdn, delete) when possible. This will lessen the problem with the filter
cache being invalidated with any update.

There is no performance benefit in allocating any memory to the filter cache if
even a small fraction of the operations in the workload are updates. If this proves
to be the case for your workload, the only way to retain the performance
advantage of a filter cache when updates are involved is to batch your updates.
This allows long intervals during which there are only searches. If you cannot
batch updates, specify a filter cache size of zero and allot more memory to other
caches and buffer pools.

16.2.3 Filter cache bypass limits
The filter cache bypass limit configuration variable limits the number of entries
that can be added to the filter cache. For example, if the bypass limit variable is
 Chapter 16. Performance Tuning 479

set to 1,000, search filters that match more than 1,000 entries are not added to
the filter cache. This prevents large, uncommon searches from overwriting useful
cache entries. To determine the best filter cache bypass limit for your workload,
run your workload repeatedly and measure the throughput. Setting the limit too
low downgrades performance by preventing valuable filters from being cached.
Setting the filter bypass limit to approximately 100 appears to be the best size for
most workloads. Setting it any larger benefits performance only slightly. If you set
it to a value of “0” it is no limit. This setting is measured in the number of entries.

In 5.1 and later it is called:

ibm-slapdFilterCacheBypassLimit: 100

In 4.1 and earlier it is called:

ibm-slapdSetEnv: RDBM_CACHE_BYPASS_LIMIT=100

And with 4.1 and earlier you also have the following that will to the same with the
entry cache:

ibm-slapdSetEnv: RDBM_ENTRY_CACHE_BYPASS=YES

If this variable is set (to anything) the entries associated with a search that
matched more than RDBM_CACHE_BYPASS_LIMIT entries will also not be
cached in the Entry cache.

With 5.1 and later they is no other entry to set this anymore.

16.2.4 LDAP entry cache
The entry cache contains cached entry data. Entry IDs are sent to the entry ache.
If the entries that match the entry IDs are in the entry cache, then the results are
returned to the client. If the entry cache does not contain the entries that
correspond to the entry IDs, the query goes to DB2 in search of the matching
entries. To determine how big your entry cache should be, run your workload
with the entry cache set to different sizes and measure the differences in
operations per second. You can use the cn=monitor command (this will be talked
about later in this section. to help set this to a good level for your application.

This setting is measured in the number of entries and this shows the maximum
number of entries in the Entry Cache.

In 5.1 and later it is called:

ibm-slapdEntryCacheSize: 25000

In 4.1and earlier it is called:

ibm-slapdSetEnv: RDBM_CACHE_SIZE=25000
480 Understanding LDAP Design and Implementation

16.2.5 Measuring filter and entry cache sizes
Filter cache and entry cache sizes are measured in numbers of entries. When
determining how much memory to allocate to your LDAP caches, it can be useful
to know how big the entries in your cache are. The following example shows how
to measure the size of cached entries:

Note that this example calculates the average size of an entry in a sample entry
cache, but the average filter cache entry size can be calculated similarly.

1. From the LDAP server:

a. Set the filter cache size to zero.

b. Set the entry cache size to a small value; for example, 200.

c. Start ibmslapd (or slapd for 4.1 or earlier).

2. From the client:

a. Run your application.

b. Find the entry cache population (call this population1) using the following
command:

• On a Unix server:

ldapsearch -h servername -s base -b cn=monitor objectclass=* | grep
entry_cache_current

• For a Windows server use the following command and search for
entry_cache_current:

ldapsearch -h servername -s base -b cn=monitor objectclass=*

3. From the LDAP Server:

a. Find the memory used by ibmslapd (or 4.1 or earlier slapd - call this
ibmslapd1):

• On AIX operating systems, use ps v.

• On Windows operating systems, use the VM size column in the Task
Manager.

b. Stop ibmslapd (on 4.1 and earlier slapd).

c. Increase the size of the entry cache but keep it smaller than your working
set.

d. Start ibmslapd (on 4.1 and earlier slapd).

4. Run your application again and find the entry cache population (call this
population2). See step 2b for the command syntax.

5. Find the memory used by ibmslapd (on 4.1 and earlier slapd - call this
ibmslapd2). See step 3a for the command syntax.
 Chapter 16. Performance Tuning 481

6. Calculate the size of an entry cache entry using the following formula:

(ibmslapd size2 - ibmslapd size1) / (entry cache population2 - entry cache
population1)

For example, using this formula with the 500,000-entry database results in the
following measurement:

(192084 KB - 51736 KB) / (48485 - 10003) = 3.65 KB per entry

16.2.6 LDAP ACL Cache
ACL Cache was not able to be changed till 4.1 and later. This is use to hold the
users ACLs for that are in the LDAP. The current default setting should be
enough for you needs. There is a monitor output that we will cover later in this
section that you can see if it needs to be raised or not. There are two settings for
ACL, one is if you want to use ACL cache or not and the other is to set the
maximum ACL cache that can be used.

ibm-slapdACLCache: TRUE
ibm-slapdACLCacheSize: 25000

16.2.7 Setting other LDAP cache configuration variables
You can set LDAP configuration variables using the Web Administration Tool or
the command line.

Using the Web Administration Tool
To set LDAP configuration variables using the Web Administration Tool:

1. Expand the Manage server properties category in the navigation area of the
Web Administration tool.

2. Click Performance.

3. You can modify any of the following configuration variables:

– Cache ACL information. This option must be selected for the Maximum
number of elements in ACL cache settings to take effect.

– Maximum number of elements in ACL cache (ACL cache size). The
default is 25,000.

– Maximum number of elements in entry cache (entry cache size). Specify
the maximum number of elements in the entry cache. The default is
25,000.

– Maximum number of elements in search filter cache (filter cache size).
482 Understanding LDAP Design and Implementation

The search filter cache consists of the requested search filters and
resulting entry identifiers that matched. On an update operation, all filter
cache entries are invalidated. The default is 25,000.

– Maximum number of elements from a single search added to search filter
cache (filter cache bypass limit). If you select Elements, you must enter a
number. The default is 100. Otherwise select Unlimited. Search filters that
match more entries than the number specified here are not added to the
search filter cache.

4. When you are finished, click OK to apply your changes, or click Cancel to exit
the panel without making any changes.

Using the command line
To set LDAP configuration variables using the command line, issue the following
command:

ldapmodify -D AdminDN -w Adminpassword -i filename

Where the file filename contains:

dn: cn=Directory,cn=RDBM Backends,cn=IBM
Directory,cn=Schemas,cn=Configuration
changetype: modify
replace: ibm-slapdDbConnections
ibm-slapdDbConnections: 30
dn: cn=Front End, cn=Configuration
changetype: modify
replace: ibm-slapdACLCache
ibm-slapdACLCache: TRUE
-
replace: ibm-slapdACLCacheSize
ibm-slapdACLCacheSize: 25000
-
replace: ibm-slapdEntryCacheSize
ibm-slapdEntryCacheSize: 25000
-
replace: ibm-slapdFilterCacheSize
ibm-slapdFilterCacheSize: 25000
-
replace: ibm-slapdFilterCacheBypassLimit
ibm-slapdFilterCacheBypassLimit: 100

Note: Make sure that there is a “-” between each attribute that is being
changed on the same DN, and there is no space between each line of the
same DN. There should only be one space between each DN.
 Chapter 16. Performance Tuning 483

16.2.8 LDAP Attribute Cache (only on 5.2 and later)
To help with the problems that Filter Cache has with invalidating its cache with
any update the attribute cache was built into ITDS 5.2. The attribute cache stores
configured attributes and their values in memory. When a search is performed
using a filter that contains all cached attributes, and the filter is of a type
supported by the attribute cache manager, the filter can be resolved in memory.
Resolving filters in memory leads to improved search performance.

When the client issues a query for some data, the first place the query goes is
the attribute cache. There are two things that can happen when a query arrives
at the attribute cache:

� All attributes used in the search filter are cached and the filter is of a type that
can be resolved by the attribute cache manager. If this is the case, the list of
matching entry IDs is resolved in memory using the attribute cache manager.

The attribute cache manager can resolve simple filters of the following types:

– Exact match filters

– Presence filters

The attribute cache manager can resolve complex filters only if they are
conjunctive. In addition, the sub filters within the complex filters must be of the
following types:

– Exact match filters

– Presence filters

– Conjunctive filters

Filters containing attributes with language tags are not resolved by the
attribute cache manager.

For example, if the attributes objectclass, uid, and cn are all cached, the
following filters can be resolved in memory within the attribute cache
manager:

– (cn=Karla)

– (cn=*)

– (&(objectclass=eperson)(cn=Karla))

– (&(objectclass=eperson)(cn=*)(uid=1234567))

– (&(&(objectclass=eperson)(cn=*))(uid=1234567))

– (&(uid=1234567)(&(objectclass=eperson)(cn=*)))

� Either some or all of the attributes used in the search filter are not cached or
the filter is of a type that cannot be resolved by the attribute cache manager. If
this is the case, the query is sent to the filter cache for further processing.
484 Understanding LDAP Design and Implementation

� Determining which attributes to cache

To determine which attributes to cache, experiment with adding some or all of
the attributes listed in the cached_attribute_candidate_click attribute to the
attribute cache. Then run your workload and measure the differences in
operations per second. Keep in mind that you only want to cache those
attributes that are being used in your search’s. This will take up more memory
and it will be dynamically updated when there is a change in the values of
those attributes that are cached.

16.2.9 Configuring attribute caching
You can configure attribute caching for the directory database, the changelog
database, or both. Typically, there is no benefit from configuring attribute caching
for the changelog database unless you perform very frequent searches of the
changelog.

Using the Web Administration Tool
To configure the attribute cache using the Web Administration Tool:

1. Expand the Manage server properties category in the navigation area of the
Web Administration Tool and select the Attribute cache tab.

2. You can change the amount of memory in bytes available to the directory
attribute cache by changing the Directory cached attribute size (in kilobytes)
field. The default is 16,384 KB (16 MB).

3. You can change the amount of memory in bytes available to the changelog
attribute cache by changing the Changelog cached attribute size (in kilobytes)
field. The default is 16,384 KB (16 MB).

Note: If there are no attributes in the attribute cache, the attribute cache
manager determines this quickly, and the query is sent to the filter cache.

For example, if the attributes objectclass, uid, and cn are the only cached
attributes, the following filters will not be able to be resolved in memory by
the attribute cache manager:

� (sn=Smith)
� (cn=K*)
� (|(objectclass=eperson)(cn~=Karla))
� (&(objectclass=eperson)(cn=K*)(uid=1234567))
� (&(&(objectclass=eperson)(cn<=Karla))(uid=1234567))
� (&(uid=1234567)(&(objectclass=eperson)(sn=*)))
 Chapter 16. Performance Tuning 485

To add attributes to the attribute cache:

1. Select the attribute that you want to add as a cached attribute from the
Available attributes menu. Only those attributes that can be cached are
displayed in this menu; for example, sn.

2. Click either ‘Add to cn=directory’ or ‘Add to cn=changelog’. The attribute
is displayed in the appropriate list box. You can list the same attribute in both
containers.

3. Repeat this process for each attribute you want to add to the attribute cache.

4. When you are finished, click Apply to save your changes without exiting, or
click OK to apply your changes and exit, or click Cancel to exit this panel
without making any changes.

Using the command line
To configure the attribute cache through the command line, issue the following
command:

ldapmodify -D <adminDN> -w<adminPW> -i<filename>

Where <filename> contains the following, for example.

� For the directory database:

dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas,
cn=Configuration
changetype: modify
add: ibm-slapdCachedAttribute
ibm-slapdCachedAttribute: sn
-

Note: This selection is disabled if a changelog has not been configured.

Note: An attribute remains in the list of available attributes until it has been
placed in both the cn=directory and the cn=changelog containers.

Note: ‘Add to cn=changelog’ is disabled if a changelog has not been
configured.

Note: Make sure that there is a “-” between each attribute that is being
changed on the same DN, and there is no space between each line of the
same DN. There should only be one space between each DN.
486 Understanding LDAP Design and Implementation

add: ibm-slapdCachedAttribute
ibm-slapdCachedAttribute: cn
-
add: ibm-SlapdCachedAttributeSize
ibm-SlapdCachedAttributeSize: 16384

� For the changelog database:

dn: cn=changelog, cn=RDBM Backends, cn=IBM Directory, cn=Schemas,
cn=Configuration
changetype: modify
add: ibm-slapdCachedAttribute
ibm-slapdCachedAttribute: changetype
-
add: ibm-SlapdCachedAttributeSize
ibm-SlapdCachedAttributeSize: 16384

See the IBM Tivoli Directory Server Version 5.2 Administration Guide for more
information.

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

16.3 Transaction and Event Notification
Transaction processing enables an application to group a set of entry updates
together in one operation. Normally each individual LDAP operation is treated as
a separate transaction with the database. Grouping operations together is useful
when one operation is dependent on another operation because if one of the
operations fails, the entire transaction fails. Transaction settings determine the
limits on the transaction activity allowed on the server.

ibm-slapdTransactionEnable: TRUE

If you do not need to rely on one transaction to happen before another one or
that each transaction stands on its own you will need to turn this off. This is done
by setting this to FALSE:

ibm-slapdTransactionEnable: FALSE

Some other setting that deal with Transaction processing:

ibm-slapdMaxNumOfTransactions: 20
ibm-slapdMaxOpPerTransaction: 5
ibm-slapdMaxTimeLimitOfTransactions: 300

Note: Make sure that there is a “-” between each attribute that is being
changed on the same DN, and there is no space between each line of the
same DN. There should only be one space between each DN
 Chapter 16. Performance Tuning 487

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

The event notification function allows a server to notify a registered client that an
entry in the directory tree has been changed, added, or deleted. This notification
is in the form of an unsolicited message. When an event occurs, the server ends
a message to the client as an LDAP v3 unsolicited notification. The messageID is
0 and the message is in the form of an extended operation response. The
responseName field is set to the registration OID. The response field contains
the unique registration ID and a timestamp for when the event occurred. The
time field is in UTC time format.

ibm-slapdEnableEventNotification: TRUE

If you do not need to have any event notification function then you will need to
turn this off. This is done by setting this to FALSE:

ibm-slapdEnableEventNotification: FALSE

Some other setting that deal with event notification:

ibm-slapdMaxEventsPerConnection: 100
ibm-slapdMaxEventsTotal: 0

16.4 Additional slapd and ibmslapd settings
This section provides additional slapd and ibmslapd settings that can be used for
tuning.

16.4.1 Tune the IBM Directory Server configuration file
In this section we discuss tuning the IBM Directory Server configuration file.

ibm-slapdSizeLimit
Change the slapd size limit for LDAP searches Edit either the slapd32.conf or the
ibmslapd.conf configuration file, and then change the ibm-slapdSizeLimit
parameter to a number other than 0 (unlimited). Setting this value affects all
LDAP searches. If this value is set to unlimited (0), the time to compile and list all
users increases, thus affecting system performance.

Tune this parameter so that a reasonable number is used for all LDAP searches.
For example, setting ibm-slapdSizeLimit parameter affects the number of DN’s
that are listed by using the ldapsearch command.

ibm-slapdDbConnections and ibm-slapdSetEnv
Increase the number of IBM Directory Server connections to DB2 by editing the
slapd32.conf or ibmslapd.conf file and increase the ibm-slapdDbConnections.
488 Understanding LDAP Design and Implementation

For AIX: With IDS 4.1 and later memory loopback is auto installed so you can
use more then 256 meg of memory with LDAP. With using loopback you can
increase the number of DB connections to 30. This used say in other
documentation that this should be 15 or even 9. This was changed with memory
loopback. With 3.2.2 and earlier without loopback you had a maximum of 8. If
you manually configured for loopback then you could use 30+. But what we
found in testing that not much was gained using anything grater then 32.

All other operating systems are set to 30.

If you do a migration from a older version to a newer version this sometimes
keeps the old settings in the config file. So it is best to take a look at this and
make sure it has been updated to the higher level.

The number of DB2 connections determines the amount of processing
concurrency between the IBM Directory Server and DB2, one database
connection will be established for each worker thread. If the number of DB2
connections is increased beyond its maximum value, the IBM Directory Server
will revert to the maximum value.

With Secureway 3.2.2 and earlier you also will want to change the
ibm-slapdSetEnv: SLAPD_WORKERS setting to match what your
ibm-slapdDbConnections is. These need to match, what you don't want to
happen is to have more worker threads then you have db connections. This will
cause a performance issue with worker threads waiting for work to be done.

With IBM Directory 4.1 and later you only have ibm-slapdDbConnections this is
also used for the number of worker threads.

16.4.2 Suffixes
Preferably, add only one suffix for all user directory objects. Example as follows:

dn: cn=Directory,cn=RDBM Backends,cn=IBMDirectory,cn=Schemas,cn=Configuration
ibm-slapdSuffix: localhost
ibm-slapdSuffix: user_suffix

Where user_suffix is the suffix to be used for user objects like o=ibm,c=us.

Note that it is recommended that only one suffix be used for user objects. You
can separate the user namespace within the suffix by using multiple directory
container objects. If more than one suffix is used, additional directory searches
are necessary to find user objects, which slows down IBM Tivoli Directory server
performance. For one or two additional suffixes, the performance slows down by
approximately 10 percent.
 Chapter 16. Performance Tuning 489

Order the suffixes in the IBM Directory Server configuration file After the set of
suffixes to be added has been determined, order them in the slapd32.conf or
ibmslapd.conf file for best performance. The goal is to get the IBM Directory
Server to return suffixes that are most likely to contain authenticating users first.

For ITDS Version 4.1 and earlier ldapsearch searches suffixes in the order in
which the IBM Tivoli Directory server returns suffixes are returned in the reverse
order as they appear in the configuration file.

For ITDS 5.x, suffixes are returned in the same order as they appear in the
configuration file.

16.4.3 Recycle the IBM Directory Server
To recycle the IBM Directory Server to make it aware of any changes, do one of
the following:

� To stop the IBM Directory Server, do the following:

On UNIX systems with ITDS Version 4.1 and earlier, enter the following:

ps –ef | grep slapd
find the slapd process id
kill -9 slapd process id slapd

On UNIX systems with ITDS Version 5.1 and newer, enter the following:

ps –ef | grep ibmslapd
find the ibmslapd process id
kill -9 ibmslapd process id ibmslapd

� To start the IBM Tivoli Directory server, do the following:

On UNIX systems with ITDS Version 4.1 and earlier, enter the following:

slapd

On UNIX systems with ITDS Version 5.1 and newer, enter the following:

ibmslapd

On Windows systems, stop and start the IBM Tivoli Directory Server service.

16.4.4 Verify suffix order
To verify that the suffixes are ordered for performance, enter the following on one
line:

ldapsearch -h ldap_host -D cn=root -w ldap_passwd -s base -b "" "objectclass=*

Where cn=root is the IBM Directory Server root administrator user, ldap_host is
the host name of the IBM Directory Server, and ldap_passwd is the IBM
490 Understanding LDAP Design and Implementation

Directory Server root administrator’s password. you will get back the suffix order
as how it is read along with some other server information.

There are several additional settings that affect performance by putting limits on
client activity, minimizing the impact to server throughput and resource usage,
such as:

With ITDS 5.1 and earlier:

� ibm-slapdTimeLimit: 900
� ibm-slapdIdleTimeOut: 300

With ITDS 5.2 and later:

� ibm-slapdPagedResAllowNonAdmin: TRUE
� ibm-slapdPagedResLmt: 3
� ibm-slapdSortKeyLimit: 3
� ibm-slapdSortSrchAllowNonAdmin: TRUE

16.5 DB2 tuning
IBM Tivoli Directory Server uses DB2 as the data store and Structured Query
Language (SQL) as the query retrieval mechanism. While the LDAP server
caches LDAP queries, answers, and authentication information, DB2 caches
tables, indexes, and statements. Best practices state that you should only have
the LDAP instance on the DB2 that resides with the LDAP server. You should not
share this DB2 with any other application. One reason is that the license that
comes with the DB2 with IBM Tivoli Directory Server is only the license to be
used by LDAP. The main reason not to share is that it will be a performance
issue. You will be setting this DB2 to run LDAP and it is not a relational database
so the settings will affect each other if you share the DB2 with other applications
and not just the Directory Server.

Many DB2 configuration parameters affect either the memory (buffer pools) or
disk resources. Since disk access is usually much slower than memory access,
the key database performance tuning objective is to decrease the amount of disk
activity.

We will be covering the following types of DB2 tuning:

� DB2 buffer pool tuning
� Other DB2 configuration parameters
� Optimization and organization (reorgchk and reorg)
� Backing up and restoring the database (backup and restore)

Note: Default values are shown.
 Chapter 16. Performance Tuning 491

16.5.1 Warning when IBM Directory Server is running
DB2 parameter tuning commands make use of DB2 terminate. If the IBM
Directory Server slapd or ibmslapd process is running when this command is
issued, it will render the server partially functional. Any cached searches appear
to respond correctly. Other searches might simply return with no results or error
messages might appear. The recovery is to recycle the IBM Directory Server.

It is best to stop the IBM Directory Server when changing the DB2 tuning
parameters.

For detailed information about IBM DB2 commands, see the IBM DB2
documentation at the following Web site:

http://www.ibm.com/software/data/db2/library/

If you have any trouble running the DB2 commands, check to ensure that the
DB2 environment variables have been established by running db2profile (if not,
the db2 get and db2 update commands will not work). The script file db2profile is
located in the sqllib subdirectory under the instance owner’s home directory. If
you need to tailor this file, follow the comments inside the file to set your instance
name, user paths, and default database name (the default path is
/home/ldapdb2/sqllib/db2profile.) It is assumed that the user is logged in as
ibm-slapdDbUserId. If logged in as the root user on a UNIX operating system, it
is possible to switch to the instance owner as follows:

su - instance_owner

Where instance_owner is the defined owner of the LDAP database.

To log on as the database administrator on a Windows 2000 operating system,
run the following command:

runas /user:instance_owner db2cmd

The instance_owner is the defined owner of the LDAP database.

Attention: Only users listed as database administrators can run the DB2
commands. Be sure the user ID running the DB2 commands is a user in the
dbsysadm group (UNIX operating systems) or a member of the Administrator
group (Windows operating systems.) This includes the DB2 instance owner
and root.
492 Understanding LDAP Design and Implementation

http://www.ibm.com/software/data/db2/library/

For additional stability and performance enhancements, upgrade to the latest
version of DB2.

16.5.2 DB2 buffer pool tuning
DB2 buffer pool tuning is one of the most significant types of DB2 performance
tuning. A buffer pool is a data cache between LDAP and the physical DB2
database files for both tables and indexes. DB2 buffer pools are searched when
entries and their attributes are not found in the entry cache. Buffer pool tuning
typically needs to be done when the database is initially loaded and when the
database size changes significantly.

There are several considerations to keep in mind when tuning the DB2 buffer
pools; for example:

� If there are no buffer pools, all database activity results in disk access.

� If the size of each buffer pool is too small, LDAP must wait for DB2 disk
activity to satisfy DB2 SQL requests.

� If one or more buffer pools is too large, memory on the LDAP server might be
wasted.

� If the total amount of space used by the LDAP caches and both buffer pools is
larger than physical memory available on the server, operating system paging
(disk activity) will occur.

To get the current DB2 buffer pool sizes, run the following commands:

db2 connect to database_name

Note: If you have problems connecting to the database on Windows systems,
check the DB2INSTANCE environment variable. By default this variable is set
to DB2. However, to connect to the database, the environment variable must
be set to the database instance name.

set DB2INSTANCE=instance_name

The instance_name is by default called: ldapdb2.

For most changes that you make you need to connect to the instance:

db2 connect to database_name

Where database_name is the name of the database. The default is ldapdb2.

Note: Changes to DB2 configuration parameters do not take effect until the
database is restarted with db2stop and db2start.
 Chapter 16. Performance Tuning 493

db2 "select bpname,npages,pagesize from sysibm.sysbufferpools"

Where database_name is the name of the database.

Example 16-1 shows the default settings for the example above.

Example 16-1 Display DB2 buffer pool size default settings

BPNAME NPAGES PAGESIZE

IBMDEFAULTBP 29500 4096
LDAPBP 1230 32768

2 record(s) selected

This gives you appox 160 Mb of buffers used by the LDAP with in DB2.

With the start of SecureWay 3.2.2 and through IBM Tivoli Directory Server 5.2,
the LDAP directory database (DB2) has two buffer pools: LDAPBP (32 K page
size) and IBMDEFAULTBP (4 K page size). The size of each buffer pool needs
to be set separately, but the method for determining how big each should be is
the same: Run your workload with the buffer pool sizes set to different values
and measure the differences in operations per second.

16.5.3 LDAPBP buffer pool size
This buffer pool contains cached entry data (ldap_entry) and all of the associated
indexes. LDAPBP is similar to the entry cache, except that LDAPBP uses
different algorithms in determining which entries to cache. It is possible that an
entry that is not cached in the entry cache is located in LDAPBP.

To determine the best size for your LDAPBP buffer pool, run your workload with
the LDAPBP buffer pool size set to different values and measure the differences
in operations per second.

16.5.4 IBMDEFAULTBP buffer pool size
DB2 system information, including system tables and other information that is
useful in resolving filters, is cached in the IBMDEFAULTBP buffer pool. You
might need to adjust the IBMDEFAULTBP cache settings for better performance
in the LDAPBP.

Note: DB2 does not allow buffer pools to be set to zero.
494 Understanding LDAP Design and Implementation

To determine the best size for your IBMDEFAULTBP buffer pool, run your
workload with the buffer pool sizes set to different values and measure the
differences in operations per second.

16.5.5 Setting buffer pool sizes
As a general guideline, a 3 to 1 ratio between memory allocated to the
IBMDEFAULTBP (4-K pages) and LDAPBP (32-K pages) is good for
performance. By default, the IBMDEFAULTBP is created with a size of 29500
(4-K) pages. By default, the LDAPBP buffer pool is created with a size of 1230
(32-K) pages.

On an LDAP Server with minimal memory configuration, this allocates roughly 60
percent of physical memory to the DB2 buffer pools

Use the alter bufferpool command to set the IBMDEFAULTBP and LDAPBP
buffer pool sizes. The following examples show some IBMDEFAULTBP and
LDAPBP buffer pools setting and what there real memory usage is:

� LDAP 3.2.2 and later defaults has memory usage: 154 MB

– db2 alter bufferpool ibmdefaultbp size 29500
– db2 alter bufferpool ldapbp size 1230

� 3 to 1 memory usage ratio has memory usage: 259.375 MB

– db2 alter bufferpool ibmdefaultbp size 49800
– db2 alter bufferpool ldapbp size 2075

� Doubling previous 3 to 1 ratio example has memory usage: 518.75 MB

– db2 alter bufferpool ibmdefaultbp size 99600
– db2 alter bufferpool ldapbp size 4150

� Doubling again has memory usage: 1037.5 MB

– db2 alter bufferpool ibmdefaultbp size 199200
– db2 alter bufferpool ldapbp size 8300

16.5.6 Warnings about buffer pool memory usage
If any of the buffer pools are set too high, DB2 can fail to start due to insufficient
memory. If this occurs there might be a core dump file, but usually there is no
error message.

On AIX systems, the system error log might report a memory allocation failure.
To view this log, enter the following:

errpt –a | more
 Chapter 16. Performance Tuning 495

Restoring a database that was backed up on a system with buffer pool sizes that
are too large for the target system might cause the restoration to fail.

If DB2 fails to start due to buffer pool sizes being too large, redo the DB2 tuning
parameters.

16.5.7 Other DB2 configuration parameters
There are a number of other configuration settings that can be looked at
exspecially some of the Heap settings. Functional problems can occur if one of
the heap configuration parameters is to low or to hi. we have included some of
the settings that are worth looking at. Some of these settings rely on other
settings being set, these will be noted when that accrues.

16.5.8 Warning about MINCOMMIT
Do not set the MINCOMMIT DB2 tuning to anything other than 1. In previous
versions of documentation it has said to set the MINCOMMIT parameter to 25. A
setting other than 1 might cause time-outs on update operations and might slow
down the performance of these updates when you are using replication.

16.5.9 More DB2 configuration settings
In this section we discuss more DB2 configuration settings.

Utility Heap Size configuration parameter - util_heap_sz
Some information is:

� Default [Range]: 5000 [16 - 524 288]
� Unit of Measure: Pages (4 KB)
� When Allocated: As required by the database manager utilities
� When Freed: When the utility no longer needs the memory

This parameter indicates the maximum amount of memory that can be used
simultaneously by the BACKUP, RESTORE, and LOAD (including load recovery)
utilities.

Our recommendation is to use the default value unless your utilities run out of
space, in which case you should increase this value. If memory on your system is
constrained, you may wish to lower the value of this parameter to limit the

Note: If DB2 recognizes that a parameter is configured insufficiently, the
problem is posted to the diagnostic log (db2diag.log). We have included some
of the error codes that you might get with some of these settings.
496 Understanding LDAP Design and Implementation

memory used by the database utilities. If the parameter is set too low, you may
not be able to concurrently run utilities. You need to set this parameter large
enough to accommodate all of the buffers that you want to allocate for the
concurrent utilities. To set this heap to the following:

db2 update database configuration for ldapdb2 using UTIL_HEAP_SZ 5000

Application Control Heap Size configuration parameter - app_ctl_heap_sz

The information is:

� Database server with local and remote clients: 128 [1-64 000]
� Database server with local clients:

– 64 [1-64 000] (for non-UNIX platforms)
– 128 [1-64 000] (for UNIX-based platforms)

� Partitioned database server with local and remote clients: 512 [1-64 000]
� Unit of Measure: Pages (4 KB)
� When Allocated: When an application starts
� When Freed: When an application completes

This parameter specifies the average size of the shared memory area allocated
for an application. There is one application control heap per connection per
partition.

The application control heap is required primarily for sharing information between
agents working on behalf of the same request.

This heap is also used to store descriptor information for declared temporary
tables. The descriptor information for all declared temporary tables that have not
been explicitly dropped is kept in this heap's memory and cannot be dropped
until the declared temporary table is dropped.

Our recommendation is to initially start with the default value (128). You may
have to set the value higher if you are running complex applications, if you have
a system that contains a large number of database partitions, or if you use
declared temporary tables. The amount of memory needed increases with the
number of concurrently active declared temporary tables. A declared temporary
table with many columns has a larger table descriptor size than a table with few
columns, so having a large number of columns in an application's declared
temporary tables also increases the demand on the application control heap. To
set this heap to the following:

db2 update database configuration for ldapdb2 using APP_CTL_HEAP_SZ 128

If the APP_CTL_HEAP_SZ is set to an inadequate value, the following error
message is issued when you import data into a database from shape files:

GSE0214N An INSERT statement failed. SQLERROR = SQL0973N Not enough storage is
available in the "APP_CTL_HEAP" heap to process the statement.
 Chapter 16. Performance Tuning 497

Application Heap Size configuration parameter - applheapsz
The information is:

� Default [Range]

– 32-bit Database server with local and remote clients: 256 [16 - 60 000]
– 64-bit Database server with local and remote clients: 256 [16 - 60 000]
– 32-bit Partitioned database server with local and remote clients: 64 [16 -

60 000]
– 64-bit Partitioned database server with local and remote clients: 128 [16 -

60 000]

� Unit of Measure: Pages (4 KB)

� When Allocated: When an agent is initialized to do work for an application

� When Freed: When an agent completes the work to be done for an
application

This parameter defines the number of private memory pages available to be
used by the database manager on behalf of a specific agent or subagent.

The heap is allocated when an agent or subagent is initialized for an application.
The amount allocated will be the minimum amount needed to process the
request given to the agent or subagent. As the agent or subagent requires more
heap space to process larger SQL statements, the database manager will
allocate memory as needed, up to the maximum specified by this parameter.

Our recommendation is for most DB2 applications use an APPLHEAPSZ
parameter value of at least 2048. Increase the value of this parameter if your
applications receive an error indicating that there is not enough storage in the
application heap.

The application heap (applheapsz) is allocated out of agent private memory.

If the APPLHEAPSZ is set to an inadequate value, the following error message is
issued when you try to enable a database for spatial operations:

GSE0009N Not enough space is available in DB2's application heap.

GSE0213N A bind operation failed. SQLERROR = SQL0001N Binding or precompilation
did not complete successfully. SQLSTATE=00000.

Sort Heap Size configuration parameter - sortheap
The information is:

� Default [Range]

– 32-bit platforms: 256 [16 - 524 288]
– 64-bit platforms: 256 [16 - 4 194 303]
498 Understanding LDAP Design and Implementation

� Unit of Measure: Pages (4 KB)

� When Allocated: As needed to perform sorts

� When Freed: When sorting is complete

This parameter defines the maximum number of private memory pages to be
used for private sorts, or the maximum number of shared memory pages to be
used for shared sorts. If the sort is a private sort, then this parameter affects
agent private memory. If the sort is a shared sort, then this parameter affects the
database shared memory. Each sort has a separate sort heap that is allocated
as needed, by the database manager. This sort heap is the area where data is
sorted. If directed by the optimizer, a smaller sort heap than the one specified by
this parameter is allocated using information provided by the optimizer.

Our recommendation is 2500.

When working with the sort heap, you should consider the following: Appropriate
indexes can minimize the use of the sort heap.

Hash join buffers and dynamic bitmaps (used for index ANDing and Star Joins)
use sort heap memory. Increase the size of this parameter when these
techniques are used.

Increase the size of this parameter when frequent large sorts are required.

When increasing the value of this parameter, you should examine whether the
sheapthres parameter in the database manager configuration file also needs to
be adjusted.

The sort heap size is used by the optimizer in determining access paths. You
should consider rebinding applications (using the REBIND command) after
changing this parameter.

SQL5155W means that the update completed successfully. The current value of
SORTHEAP may adversely affect performance.

Explanation: The value of SORTHEAP is currently greater than half the value of
the database manager configuration parameter SHEAPTHRES. This may cause
performance to be less than optimal.

User Response: Increase the value of the database manager configuration
parameter SHEAPTHRES and/or decrease the value of SORTHEAP so that
SHEAPTHRES is at least twice as large as SORTHEAP.

A larger ratio is desirable in most cases. See the Administration Guide for
recommendations on configuration parameter tuning.
 Chapter 16. Performance Tuning 499

SQL0955C: Sort memory cannot be allocated to process the statement. Reason
code = reason-code.

Explanation:

� Insufficient virtual memory is available to the database agent for sort
processing, as indicated by the reason code 1.

� Insufficient private process memory.

� Insufficient shared memory in the database-wide shared memory area
designated for sort processing.

� The statement cannot be processed but other SQL statements may be
processed.

User response: One or more of the following:

� Decrease the value of the sort heap parameter (sortheap) in the
corresponding database configuration file.

� For reason code 1, increase the private virtual memory available, if possible.
For example, on UNIX systems you can use the ulimit command to increase
the maximum size of the data area for a process.

� For reason code 2, increase the size of the database-wide shared memory
area designated for sort processing. To increase the size of this area without
affecting the sortheap threshold for private sorts, increase the value of the
SHEAPTHRES_SHR database configuration parameter.

� To increase both the size of the database-wide shared memory area
designated for sort processing as well as the sortheap threshold for private
sorting, increase the value of the SHEAPTHRES database manager
configuration parameter and set SHEAPTHRES_SHR to 0.

SQL3537N: Sort memory could not be allocated during the execution of the
LOAD utility.

Explanation: Insufficient process virtual memory is available to the LOAD utility
for sort processing.

User Response: Terminate the application on receipt of this message. Ensure
there is enough virtual memory available for sort processing.

Possible solutions include:

� Disconnect all applications from the database and decrease the size of the
sort heap parameter (sortheap) in the corresponding database configuration
file.

� Remove background processes and/or terminate other currently executing
applications.
500 Understanding LDAP Design and Implementation

� Increase the amount of virtual memory available.

Sort Heap Threshold configuration parameter - sheapthres
The information is:

� Configuration Type: Database manager

� Default [Range]

– UNIX 32-bit platforms: 20 000 [250 -- 2 097 152]
– Windows platforms: 10 000 [250 -- 2 097 152]
– 64-bit platforms: 20 000 [250 -- 2 147 483 647]
– Unit of Measure: Pages (4 KB)

For shared sorts, this parameter is a database-wide hard limit on the total
amount of memory consumed by shared sorts at any given time. When this limit
is reached, no further shared-sort memory requests will be allowed.

The Sort Heap Threshold parameter, as a database manager configuration
parameter, applies across the entire DB2 instance. The only way to set this
parameter to different values on different nodes or partitions, is to create more
than one DB2 instance. This will require managing different DB2 databases over
different database partition groups. Such an arrangement defeats the purpose of
many of the advantages of a partitioned database environment.

Recommendation: Ideally, you should set this parameter to a reasonable multiple
of the largest sortheap parameter you have in your database manager instance.
This parameter should be at least two times the largest sortheap defined for any
database within the instance.

If you are doing private sorts and your system is not memory constrained, an
ideal value for this parameter can be calculated using the following steps:

Calculate the typical sort heap usage for each database:

(typical number of concurrent agents running against the database)
multiplied by
(sortheap, as defined for that database)

Calculate the sum of the above results, which provides the total sort heap that
could be used under typical circumstances for all databases within the instance.

You should use benchmarking techniques to tune this parameter to find the
proper balance between sort performance and memory usage.
 Chapter 16. Performance Tuning 501

You can use the database system monitor to track the sort activity, using the post
threshold sorts (post_threshold_sorts) monitor element. It is set by doing the
following command:

db2 update dbm cfg using sheapthres 20000

Statement Heap Size configuration parameter - stmtheap
The information is:

� Default [Range]: 2048 [128 - 65 535]
� Unit of Measure: Pages (4 KB)
� When Allocated: For each statement during precompiling or binding
� When Freed: When precompiling or binding of each statement is complete

The statement heap is used as a work space for the SQL compiler during
compilation of an SQL statement. This parameter specifies the size of this work
space.

This area does not stay permanently allocated, but is allocated and released for
every SQL statement handled. Note that for dynamic SQL statements, this work
area will be used during execution of your program; whereas, for static SQL
statements, it is used during the bind process but not during program execution.

Recommendation: In most cases the default value of this parameter will be
acceptable. If you have very large SQL statements and the database manager
issues an error (that the statement is too complex) when it attempts to optimize a
statement, you should increase the value of this parameter in regular increments
(such as 256 or 1024) until the error situation is resolved. This is the command
you used to set it:

db2 update database configuration for ldapdb2 using stmtheap 2048

SQL0101N: The statement is too long or too complex.

Explanation: The statement could not be processed because it exceeds a
system limit for either length or complexity, or because too many constraints or
triggers are involved.

If the statement is one that creates or modifies a packed description, the new
packed description may be too large for its corresponding column in the system
catalogs.

Note that where character data conversions are performed for applications and
databases running under different codepages, the result of the conversion is
exceeding the length limit.
502 Understanding LDAP Design and Implementation

User response: Either:

� Break the statement up into shorter or less complex SQL statements.

� Increase the size of the statement heap (stmtheap) in the database
configuration file.

� Reduce the number of check or referential constraints involved in the
statement or reduce the number of indexes on foreign keys.

� Reduce the number of triggers involved in the statement.

SQL0437W: Performance of this complex query may be sub-optimal. Reason
code: reason-code.

Explanation: The statement may achieve sub-optimal performance since the
complexity of the query requires resources that are not available or optimization
boundary conditions were encountered.

The following is a list of reason codes:

1. The join enumeration method was altered due to memory constraints.

2. The join enumeration method was altered due to query complexity.

3. Optimizer cost underflow.

4. Optimizer cost overflow.

5. Query optimization class was too low.

6. Optimizer ignored an invalid statistic.

The statement will be processed.

User Response: One or more of the following:

� Increase the size of the statement heap (stmtheap) in the database
configuration file (Reason code 1).

� Break the statement up into less complex SQL statements (Reason codes
1,2,3,4).

� Ensure predicates do not over-specify the answer set (Reason code 3).

� Change the current query optimization class to a lower value (Reason codes
1,2,4).

� Issue Runstats for the tables involved in the query (Reason codes 3,4).

� Change the current query optimization class to a higher value (Reason code
5).
 Chapter 16. Performance Tuning 503

Reissue RUNSTATS for both the tables involved in the query and their
corresponding indexes, that is, use the AND INDEXES ALL clause so that table
and index statistics are consistent (Reason code 6)

Package Cache Size configuration parameter - pckcachesz
The information is:

� Default [Range]

– 32-bit platforms: -1 [-1, 32 -- 128 000]
– 64-bit platforms: -1 [-1, 32 -- 524 288]

� Unit of Measure: Pages (4 KB)

� When Allocated: When the database is initialized

� When Freed: When the database is shut down

This parameter is allocated out of the database shared memory, and is used for
caching of sections for static and dynamic SQL statements on a database. In a
partitioned database system, there is one package cache for each database
partition.

Caching packages allows the database manager to reduce its internal overhead
by eliminating the need to access the system catalogs when reloading a
package; or, in the case of dynamic SQL, eliminating the need for compilation.
Sections are kept in the package cache until one of the following occurs:

� The database is shut down.
� The package or dynamic SQL statement is invalidated.
� The cache runs out of space.

This caching of the section for a static or dynamic SQL statement can improve
performance especially when the same statement is used multiple times by
applications connected to a database. This is particularly important in a
transaction processing application.

By taking the default (-1), the value used to calculate the page allocation is eight
times the value specified for the maxappls configuration parameter. The
exception to this occurs if eight times maxappls is less than 32. In this situation,
the default value of -1 will set pckcachesz to 32.

Recommendation: When tuning this parameter, you should consider whether the
extra memory being reserved for the package cache might be more effective if it
was allocated for another purpose, such as the buffer pool or catalog cache. For
this reason, you should use benchmarking techniques when tuning this
parameter. If the cache is too large, memory is wasted holding copies of the
initial sections.
504 Understanding LDAP Design and Implementation

The following monitor elements can help you determine whether you should
adjust this configuration parameter:

� pkg_cache_lookups (package cache lookups)
� pkg_cache_inserts (package cache inserts)
� pkg_cache_size_top (package cache high water mark)
� pkg_cache_num_overflows (package cache overflows)

The limit specified by the pckcachesz parameter is a soft limit. This limit may be
exceeded, if required, if memory is still available in the database shared set. You
can use the pkg_cache_size_top monitor element to determine the largest that
the package cache has grown, and the pkg_cache_num_overflows monitor
element to determine how many times the limit specified by the pckcachesz
parameter has been exceeded. The command for setting this is:

db2 update database configuration for ldapdb2 using pckcachesz 380

Statistics Heap Size configuration parameter - stat_heap_sz
The information is:

� Default [Range]: 4384 [1096 - 524 288]
� Unit of Measure: Pages (4 KB)
� When Allocated: When the RUNSTATS utility is started
� When Freed: When the RUNSTATS utility is completed

This parameter indicates the maximum size of the heap used in collecting
statistics using the RUNSTATS command.

Recommendation: The default value is appropriate when no distribution statistics
are collected or when distribution statistics are only being collected for relatively
narrow tables. The minimum value is not recommended when distribution
statistics are being gathered, as only tables containing 1 or 2 columns will fit in
the heap.

You should adjust this parameter based on the number of columns for which
statistics are being collected. Narrow tables, with relatively few columns, require
less memory for distribution statistics to be gathered. Wide tables, with many
columns, require significantly more memory. If you are gathering distribution
statistics for tables which are very wide and require a large statistics heap, you

Note: The package cache is a working cache, so you cannot set this
parameter to zero. There must be sufficient memory allocated in this cache to
hold all sections of the SQL statements currently being executed. If there is
more space allocated than currently needed, then sections are cached. These
sections can simply be executed the next time they are needed without having
to load or compile them.
 Chapter 16. Performance Tuning 505

may wish to collect the statistics during a period of low system activity so you do
not interfere with the memory requirements of other users.

Maximum Percent of Lock List Before Escalation config parameter - maxlocks

The information is:

� Default [Range]
� UNIX: 10 [1 - 100]
� Windows: 22 [1 - 100]
� Unit of Measure: Percentage

Lock escalation is the process of replacing row locks with table locks, reducing
the number of locks in the list. This parameter defines a percentage of the lock
list held by an application that must be filled before the database manager
performs escalation. When the number of locks held by any one application
reaches this percentage of the total lock list size, lock escalation will occur for the
locks held by that application. Lock escalation also occurs if the lock list runs out
of space.

The database manager determines which locks to escalate by looking through
the lock list for the application and finding the table with the most row locks. If
after replacing these with a single table lock, the maxlocks value is no longer
exceeded, lock escalation will stop. If not, it will continue until the percentage of
the lock list held is below the value of maxlocks. The maxlocks parameter
multiplied by the maxappls parameter cannot be less than 100.

Recommendation: The following formula allows you to set maxlocks to allow an
application to hold twice the average number of locks:

maxlocks = 2 * 100 / maxappls

Where 2 is used to achieve twice the average and 100 represents the largest
percentage value allowed. If you have only a few applications that run
concurrently, you could use the following formula as an alternative to the first
formula:

 maxlocks = 2 * 100 / (average number of applications running
concurrently)

One of the considerations when setting maxlocks is to use it in conjunction with
the size of the lock list (locklist). The actual limit of the number of locks held by an
application before lock escalation occurs is:

maxlocks * locklist * 4096 / (100 * 36) on a 32-bit system
maxlocks * locklist * 4096 / (100 * 56) on a 64-bit system

Where 4096 is the number of bytes in a page, 100 is the largest percentage
value allowed for maxlocks, and 36 is the number of bytes per lock on a 32-bit
506 Understanding LDAP Design and Implementation

system, and 56 is the number of bytes per lock on a 64-bit system. If you know
that one of your applications requires 1 000 locks, and you do not want lock
escalation to occur, then you should choose values for maxlocks and locklist in
this formula so that the result is greater than 1 000. (Using 10 for maxlocks and
100 for locklist, this formula results in greater than the 1 000 locks needed.)

If maxlocks is set too low, lock escalation happens when there is still enough lock
space for other concurrent applications. If maxlocks is set too high, a few
applications can consume most of the lock space, and other applications will
have to perform lock escalation. The need for lock escalation in this case results
in poor concurrency.

You may use the database system monitor to help you track and tune this
configuration parameter.

SQL5135N: The settings of the maxlocks and maxappls configuration
parameters do not use all of the locklist space.

Explanation: The number of active processes (maxappls) times the maximum
percentage of lock list space for each application (maxlocks) must be greater
than or equal to 100. That is:

maxappls * maxlocks >= 100

This ensures that all of the allocated locklist space can be used.

User Response: Increase the setting for maxappls, maxlocks, or both.

Size of Log Files configuration parameter - logfilsiz
The information is:

� Default [Range]

– UNIX: 1000 [4 -- 262 144]
– Windows: 250 [4 -- 262 144]

� Unit of Measure: Pages (4 KB)

This parameter defines the size of each primary and secondary log file. The size
of these log files limits the number of log records that can be written to them
before they become full and a new log file is required.

The use of primary and secondary log files as well as the action taken when a log
file becomes full are dependent on the type of logging that is being performed:

� Circular logging: A primary log file can be reused when the changes recorded
in it have been committed. If the log file size is small and applications have
processed a large number of changes to the database without committing the
changes, a primary log file can quickly become full. If all primary log files
 Chapter 16. Performance Tuning 507

become full, the database manager will allocate secondary log files to hold
the new log records.

� Log retention logging: When a primary log file is full, the log is archived and a
new primary log file is allocated.

� Recommendation: You must balance the size of the log files with the number
of primary and secondary log files.

The value of the logfilsiz should be increased if the database has a large
number of update, delete and/or insert transactions running against it which
will cause the log file to become full very quickly.

A log file that is too small can affect system performance because of the
overhead of archiving old log files, allocating new log files, and waiting for a
usable log file.

The value of the logfilsiz should be reduced if disk space is scarce, since primary
logs are preallocated at this size.

A log file that is too large can reduce your flexibility when managing archived log
files and copies of log files, since some media may not be able to hold an entire
log file.

If you are using log retention, the current active log file is closed and truncated
when the last application disconnects from a database. When the next
connection to the database occurs, the next log file is used. Therefore, if you
understand the logging requirements of your concurrent applications you may be
able to determine a log file size which will not allocate excessive amounts of
wasted space.

Recommendation: For most enterprise operations the default will not be enough
this should be set to 10000. This can be set by the following command:

db2 update database configuration for ldapdb2 using LOGFILSIZ 10000

SQL1762N: Unable to connect to database because there is not enough space
to allocate active log files.

Explanation: There is not enough disk space to allocate active log files. Possible
reasons include the following.

There is insufficient space available on the device used to store the recovery
logs.

Note: The upper limit of log file size, combined with the upper limit of the
number of log files (logprimary + logsecond), gives an upper limit of 256 GB of
active log space.
508 Understanding LDAP Design and Implementation

If userexits are enabled, the userexit program may be failing due to an incorrect
path, incorrect install directory, sharing violation, or other problem.

User Response: Based on the cause: Ensure that there is sufficient space on the
device for the primary logs, as DB2 may require extra space to allocate new logs
so that the database will start with at least LOGPRIMARY log files. Do not delete
recovery logs to free space, even if they appear inactive.

Ensure the userexit program is operating correctly by manually invoking it.
Review the instructions provided in the sample userexit source code for
compiling and installing the userexit program. Ensure that the archive destination
path exists.

As a last resort, try reducing the values for LOGPRIMARY and/or LOGFILSIZ
database configuration parameters so that a smaller set of active log files are
used. This will reduce the requirement for disk space.

Reissue the connect statement after determining and correcting the problem.

Number of Primary Log Files config parameter - logprimary
The information is:

� Default [Range]: 3 [2 - 256]
� Unit of Measure: Counter

When Allocated: The database is created a log is moved to a different location
(which occurs when the logpath parameter is updated). Following a increase in
the value of this parameter (logprimary), during the next database connection
after all users have disconnected. A log file has been archived and a new log file
is allocated (the logretain or userexit parameter must be enabled). If the logfilsiz
parameter has been changed, the active log files are re-sized during the next
database connection after all users have disconnected.

When Freed: Not freed unless this parameter decreases. If decreased,
unneeded log files are deleted during the next connection to the database,
otherwise you need to restart the database to free up space or set it up with a
smaller primary log.

The primary log files establish a fixed amount of storage allocated to the
recovery log files. This parameter allows you to specify the number of primary log
files to be preallocated.

Under circular logging, the primary logs are used repeatedly in sequence. That
is, when a log is full, the next primary log in the sequence is used if it is available.
A log is considered available if all units of work with log records in it have been
committed or rolled-back. If the next primary log in sequence is not available,
 Chapter 16. Performance Tuning 509

then a secondary log is allocated and used. Additional secondary logs are
allocated and used until the next primary log in the sequence becomes available
or the limit imposed by the logsecond parameter is reached. These secondary
log files are dynamically deallocated as they are no longer needed by the
database manager.

The number of primary and secondary log files must comply with the following:

If logsecond has a value of -1, logprimary <= 256.
If logsecond does not have a value of -1, (logprimary + logsecond) <= 256.

Recommendation: The value chosen for this parameter depends on a number of
factors, including the type of logging being used, the size of the log files, and the
type of processing environment (for example, length of transactions and
frequency of commits).

Increasing this value will increase the disk requirements for the logs because the
primary log files are preallocated during the very first connection to the database.

If you find that secondary log files are frequently being allocated, you may be
able to improve system performance by increasing the log file size (logfilsiz) or
by increasing the number of primary log files.

For databases that are not frequently accessed, in order to save disk storage, set
the parameter to 2. For databases enabled for roll-forward recovery, set the
parameter larger to avoid the overhead of allocating new logs almost
immediately.

You may use the database system monitor to help you size the primary log files.
Observation of the following monitor values over a period of time will aid in better
tuning decisions, as average values may be more representative of your ongoing
requirements.

sec_log_used_top (maximum secondary log space used)
tot_log_used_top (maximum total log space used)
sec_logs_allocated (secondary logs allocated currently)

Space requirements for log files. You will require 32 KB of space for log control
files. You will also need at least enough space for your active log configuration,
which you can calculate as:

(logprimary + logsecond) * (logfilsiz + 2) * 4096

Where logprimary is the number of primary log files, defined in the database
configuration file. logsecond is the number of secondary log files, defined in the
database configuration file; in this calculation, logsecond cannot be set to -1
(When logsecond is set to -1, you are requesting an infinite active log space.)
510 Understanding LDAP Design and Implementation

logfilsiz is the number of pages in each log file, defined in the database
configuration file 2 is the number of header pages required for each log file 4096
is the number of bytes in one page. If the database is enabled for circular
logging, the result of this formula will provide a sufficient amount of disk space.

If the database is enabled for roll-forward recovery, special log space
requirements should be taken into consideration.

With the logretain configuration parameter enabled, the log files will be archived
in the log path directory. The online disk space will eventually fill up, unless you
move the log files to a different location.

With the userexit configuration parameter enabled, a user exit program moves
the archived log files to a different location. Extra log space is still required to
allow for:

� Online archived logs that are waiting to be moved by the user exit program
� New log files being formatted for future use

If the database is enabled for infinite logging (that is, you set logsecond to -1),
the userexit configuration parameter must be enabled, so you will have the same
disk space considerations. DB2(R) will keep at least the number of active log
files specified by logprimary in the log path, so you should not use the value of -1
for logsecond in the above formula. Ensure you provide extra disk space to allow
the delay caused by archiving log files.

If you are mirroring the log path, you will need to double the estimated log file
space requirements.

See logfilsiz above for any errors that might come up other then the one below.

SQL5101N: The entries in the database configuration file define log file
parameters (logprimary and logsecond) that are not in the valid range.

Explanation: The requested change would cause the total number of logfiles to
be out of range. The following condition must always be true:

 logprimary + logsecond <= 128

The requested change is not made.

User response: Do one or both of the following:

� Decrease the number of primary log files.
� Decrease the number of secondary log files.
 Chapter 16. Performance Tuning 511

Number of Secondary Log Files config parameter - logsecond
The information is:

� Default [Range]: 2 [-1; 0 - 254]

� Unit of Measure: Counter

� When Allocated: As needed when logprimary is insufficient (see detail below)

� When Freed: Over time as the database manager determines they will no
longer be required.

This parameter specifies the number of secondary log files that are created and
used for recovery log files (only as needed). When the primary log files become
full, the secondary log files (of size logfilsiz) are allocated one at a time as
needed, up to a maximum number as controlled by this parameter. An error code
will be returned to the application, and the database will be shut down, if more
secondary log files are required than are allowed by this parameter.

If you set logsecond to -1, the database is configured with infinite active log
space. There is no limit on the size or the number of in-flight transactions running
on the database. If you set logsecond to -1, you still use the logprimary and
logfilsiz configuration parameters to specify how many log files DB2 should keep
in the active log path. If DB2 needs to read log data from a log file, but the file is
not in the active log path, DB2 will invoke the userexit program to retrieve the log
file from the archive to the active log path. (DB2 will retrieve the files to the
overflow log path, if you have configured one.) Once the log file is retrieved, DB2
will cache this file in the active log path so that other reads of log data from the
same file will be fast. DB2 will manage the retrieval, caching, and removal of
these log files as required.

If your log path is a raw device, you must configure the overflowlogpath
configuration parameter in order to set logsecond to -1.

By setting logsecond to -1, you will have no limit on the size of the unit of work or
the number of concurrent units of work. However, rollback (both at the savepoint
level and at the unit of work level) could be very slow due to the need to retrieve
log files from the archive. Crash recovery could also be very slow for the same
reason. DB2 will write a message to the administration notification log to warn
you that the current set of active units of work has exceeded the primary log files.
This is an indication that rollback or crash recovery could be extremely slow.

To set logsecond to -1 the userexit configuration parameter must be set to yes.

Recommendation: Use secondary log files for databases that have periodic
needs for large amounts of log space. For example, an application that is run
once a month may require log space beyond that provided by the primary log
files. Since secondary log files do not require permanent file space they are
512 Understanding LDAP Design and Implementation

advantageous in this type of situation. You will be best to set this to a high level
or -1 to allow for growth when needed, such when you are loading a lot of users
or making big replication loads. One thing you do not what to do is run out of log
space or your database can be damage with lost or corrupted data. You can
change this settings with this command:

db2 update database configuration for ldapdb2 using LOGSECOND 50

Change the Database Log Path config parameter - newlogpath
Default [Range]: Null [any valid path or device]

This parameter allows you to specify a string of up to 242 bytes to change the
location where the log files are stored. The string can point to either a path name
or to a raw device. If the string points to a path name, it must be a fully qualified
path name, not a relative path name.

If you want to use replication, and your log path is a raw device, the
overflowlogpath configuration parameter must be configured.

To specify a device, specify a string that the operating system identifies as a
device. For example:

� On Windows: \\.\d: or \\.\PhysicalDisk5

� On UNIX-based platforms: /dev/rdblog8

The new setting does not become the value of logpath until both of the following
occur:

� The database is in a consistent state, as indicated by the
database_consistent parameter.

� All users are disconnected from the database.

Note: In a partitioned database environment, the node number is
automatically appended to the path. This is done to maintain the uniqueness
of the path in multiple logical node configurations

Note: You must have Windows NT Version 4.0 with Service Pack 3 or later
installed to be able to write logs to a device.

Note: You can only specify a device on AIX, Windows 2000, Windows NT,
Solaris Operating Environment, HP-UX, and Linux platforms.
 Chapter 16. Performance Tuning 513

When the first new connection is made to the database, the database manager
will move the logs to the new location specified by logpath. There might be log
files in the old log path. These log files might not have been archived. You might
need to archive these log files manually. Also, if you are running replication on
this database, replication might still need the log files from before the log path
change. If the database is configured with the User Exit Enable (userexit)
database configuration parameter set to Yes, and if all the log files have been
archived either by DB2 automatically or by yourself manually, then DB2 will be
able to retrieve the log files to complete the replication process. Otherwise, you
can copy the files from the old log path to the new log path.

If logpath or newlogpath specifies a raw device as the location where the log files
are stored, mirror logging, as indicated by mirrorlogpath, is not allowed. If logpath
or newlogpath specifies a file path as the location where the log files are stored,
mirror logging is allowed and mirrorlogpath must also specify a file path.

Recommendation: Ideally, the log files will be on a physical disk which does not
have high I/O. For instance, avoid putting the logs on the same disk as the
operating system or high volume databases. This will allow for efficient logging
activity with a minimum of overhead such as waiting for I/O. By Default the LDAP
Directory is put on the same disk as the LDAP instance so you should move this
to another disk.

You may use the database system monitor to track the number of I/Os related to
database logging.

The monitor elements log_reads (number of log pages read) and log_writes
(number of log pages written) return the amount of I/O activity related to
database logging. You can use an operating system monitor tool to collect
information about other disk I/O activity, then compare the two types of I/O
activity.

With LDAP we highly recommend that you have your log files on another volume
or drive other then the LDAP database instance. Use the following command to
set the path to the DB2 log file directory:

UPDATE DATABASE CONFIGURATION FOR database_alias USING NEWLOGPATH path

SQL0993W: The new path to the log (newlogpath) in the database configuration
file is not valid.

Explanation: The path to the log file is not valid for one of the following reasons:

� The path does not exist.

Note: Be sure the database instance owner has write access to the specified
path or the command fails.
514 Understanding LDAP Design and Implementation

� A file with the correct name was found in the specified path, but it is not a log
file for this database.

� The database manager instance id does not have permission to access the
path or a log file.

The requested change is not made.

User Response: To change the path to the log file, submit a database
configuration command with a valid value.

16.5.10 Configuration script
This is the bat file you can change it as needed on a Windows server:

Restrictions: This must be run under db2 command window in the
sqllib\bin directory. This script must be run under the context of the
ldapdb2 user. It does not require write authority to the current
directory.
db2 get database configuration for ldapdb2 > c:\db2cfgbefor.out
db2 update database configuration for ldapdb2 using SORTHEAP 2500
db2 update database configuration for ldapdb2 using MAXLOCKS 80
db2 update database configuration for ldapdb2 using MINCOMMIT 1
db2 update database configuration for ldapdb2 using UTIL_HEAP_SZ 5000
db2 update database configuration for ldapdb2 using LOGFILSIZ 10000
db2 update database configuration for ldapdb2 using LOGPRIMARY 5
db2 update database configuration for ldapdb2 using LOGSECOND 50
db2 update database configuration for ldapdb2 using APPLHEAPSZ 2048
db2 connect to ldapdb2
mem usage: 259.375 MB for servers that have 1 gig of memory
db2 alter bufferpool ibmdefaultbp size 49800
db2 alter bufferpool ldapbp size 2075
mem usage: 1037.5 MB for servers that have 3 gig of memory
#db2 alter bufferpool ibmdefaultbp size 199200
#db2 alter bufferpool ldapbp size 8300
db2 terminate
db2 force applications all
sleep 1
db2stop
db2start
db2 connect to ldapdb2
db2 get database configuration for ldapdb2 > c:\db2cfgafter.out
db2 "select bpname,npages,pagesize from syscat.bufferpools"
db2 terminate

This file can be adapted to fit a Unix box with some minor changes. This will give
you a report of how it was configured before the changes were made.
(c:\db2cfgbefore.out) and also have a report on how it looks after the changes
were made. (c:\db2cfgafter.out).
 Chapter 16. Performance Tuning 515

16.6 Directory size
It is very important that you due your homework and look at what size you
directory is at now and what it will be in the future. Performance degrades
significantly as your database size grows, it becomes necessary to readjust the
sizes of the LDAP caches and DB2 buffer pools from time to time. There is also
directory monitoring and maintiance that needs to be done from time to time
depending on how offen you are adding or changing your directory and if you are
using replication.

16.7 Optimization and organization
DB2 uses a sophisticated set of algorithms to optimize the access to data stored
in a database. These algorithms depend upon many factors, including the
organization of the data in the database, and the distribution of that data in each
table. Distribution of data is represented by a set of statistics maintained by the
database manager.

In addition, IBM Tivoli Directory Server creates a number of indexes for tables in
the database. These indexes are used to minimize the data accessed in order to
locate a particular row in a table.

In a read-only environment, the distribution of the data changes very little.
However, with updates and additions to the database, it is not uncommon for the
distribution of the data to change significantly. Similarly, it is quite possible for
data in tables to become ordered in an inefficient manner.

To remedy these situations, DB2 provides tools to help optimize the access to
data by updating the statistics and to reorganize the data within the tables of the
database.

16.7.1 Optimization
Optimizing the database updates statistics related to the data tables, which
improves performance and query speed. Optimize the database periodically or
after heavy database updates (for example, after importing database entries).
The Optimize database task in the IBM Tivoli Directory Server Configuration Tool
uses the DB2 runstats command to update statistical information used by the
query optimizer for all the LDAP tables.

Note: The reorgchk command also updates statistics. If you are planning to
do a reorgchk, optimizing the database is unnecessary.
516 Understanding LDAP Design and Implementation

Optimize the database using the Configuration Tool
To do this:

1. Start the Configuration Tool by typing ldapxcfg on the command line.

2. Click Optimize database on the left side of the window.

3. On the Optimize database window, click Optimize.

After a message displays indicating the database was successfully optimized,
you must restart the server for the changes to take effect.

Optimize the database using the command line
Run the following command from the db2 command line. Each command needs
to be all on one line:

DB2 RUNSTATS ON TABLE table_name AND DETAILED INDEXES ALL SHRLEVEL
REFERENCE

Run the following commands for more detailed lists of runstats that might
improve performance (remember the each of these commands need to be on the
same line):

DB2 RUNSTATS ON TABLE table_name WITH DISTRIBUTION AND DETAILED INDEXES ALL
SHRLEVEL REFERENCE

DB2 RUNSTATS ON TABLE ldapdb2.objectclass WITH DISTRIBUTION AND DETAILED
INDEXES ALL SHRLEVEL REFERENCE

Where table_name is the name of the table. You can use ALL for all tables.

16.7.2 reorgchk and reorg
Tuning the organization of the data in DB2 using the reorgchk and reorg
commands is important for optimal performance. The reorgchk command
updates statistical information to the DB2 optimizer to improve performance, and
reports statistics on the organization of the database tables.

The reorg command, using the data generated by reorgchk, reorganizes table
spaces to improve access performance and reorganizes indexes so that they are
more efficiently clustered. The reorgchk and reorg commands can improve both
search and update operation performance.

Note: Tuning organizes the data on disk in a sorted order. Sorting the data on
disk is beneficial only when accesses occur in a sorted order, which is not
typically the case. For this reason, organizing the table data on disk typically
yields little change in performance.
 Chapter 16. Performance Tuning 517

Performing a reorgchk
After appox 10,000 number of updates have been performed against DB2, table
indexes can become sub-optimal and performance can degrade. The db2
reorgchk command is one of the most important and often over looked because it
is not a one-time tuning item. As updates are performed on the DB2 database,
the statistical information about the tables will not be up to date. The db2
reorgchk command update the important statistics that are used by the DB2
optimizer. To perform a DB2 reorgchk, do the following:

db2 connect to ldapdb2
db2 reorgchk update statistics on table all

Where ldapdb2 is the name of your database.

To generate a reorgchk output file (recommended if you plan to run the reorg
command) add the name of the file to the end of the command for a unix OS, for
example:

db2 reorgchk update statistics on table all > /tmp/reorgchk.out

You can create a bat file for windows like this one and call it reorgchk.bat, you
can change it as needed to fit your environment. Run this on the db2 command
line:

db2 connect to ldapdb2
db2 reorgchk update statistics on table all > c:\reorgchk.out
db2 terminate

The output looks like the following:

E:\PROGRA~1\SQLLIB\BIN>reorgchk
E:\PROGRA~1\SQLLIB\BIN>db2 connect to ldapdb2
Database Connection Information
Database server = DB2/NT 7.2.8
 SQL authorization ID = ADMINIST...
 Local database alias = LDAPDB2
E:\PROGRA~1\SQLLIB\BIN>db2 reorgchk update statistics on table all
1>c:\reorgchk.out
E:\PROGRA~1\SQLLIB\BIN>db2 terminate
DB20000I The TERMINATE command completed successfully.
E:\PROGRA~1\SQLLIB\BIN>

Performing a reorg
After you have generated organizational information about the database using
reorgchk, the next step in reorganization is finding the tables and indexes that
need reorganizing and attempting to reorganize them. This can take a long time.
The time it takes to perform the reorganization process increases as the DB2
database size increases.
518 Understanding LDAP Design and Implementation

In general, reorganizing a table takes more time than running statistics.
Therefore, performance might be improved significantly by running statistics first.

Check the output of the reorgchk in the c:\ directory called reorgchk.out if you ran
the script above.

If you look at the output and see “*” in the last column you should do a reorg of
that table or index. To tell what is a table and what is an index just look on the
output. The output has two sections. The first section talks to Tables the next
section talks to Indexes.

Generally speaking, because most data in LDAP is accessed by index,
reorganizing tables is usually not as beneficial as reorganizing indexes.

Reorgchk output showing a table that needs to be reorganized
The following is example output from the reorgchk that shows a table that needs
to be reorganized:

SYSIBM SYSINDEXES 282 90 17 29 184710 31 100 58 *-*

Reorgchk output showing an index that needs to be reorganized
The following is an example output from the reorgchk command that shows a
table that needs to be reorganized:

Table: LDAPDB2.ACLPROP
LDAPDB2 ACLPROP_INDEX 63982 231 3 5 63982 100 87 101 *--
Table: LDAPDB2.DESCRIPTION
LDAPDB2 DESCRIPTION 32516 216 3 6 32516 99 51 175 --*
Table: LDAPDB2.USER_BOBCS_EMPLID
LDAPDB2 RUSER_BOBCS_EMPLID 19430 148 3 14 19430 2 70 129 *-*

Procedure to perform a reorganization using the reorg command
Follow these steps to perform a reorganization using the reorg command.

Open up a db2 command window.

Enter the following commands using the examples from above output:

db2 connect to ldapdb2
db2 reorg table SYSIBM.SYSINDEXES
db2 reorg table LDAPDB2.ACLPROP index LDAPDB2.ACLPROP_INDEX
db2 reorg table LDAPDB2.DESCRIPTION index LDAPDB2.DESCRIPTION
db2 reorg table LDAPDB2.USER_BOBCS_EMPLID index LDAPDB2.RUSER_BOBCS_EMPLID

The output looks like this:

E:\PROGRA~1\SQLLIB\BIN>db2 connect to ldapdb2
Database Connection Information
Database server = DB2/NT 7.2.8
 Chapter 16. Performance Tuning 519

 SQL authorization ID = ADMINIST...
 Local database alias = LDAPDB2
E:\PROGRA~1\SQLLIB\BIN>db2 reorgchk update statistics on table all >
e:\migration\reorgchk.out
E:\PROGRA~1\SQLLIB\BIN>db2 reorg table SYSIBM.SYSINDEXES
DB20000I The REORG TABLE command completed successfully
E:\PROGRA~1\SQLLIB\BIN>db2 reorg table LDAPDB2.ACLPROP index
LDAPDB2.ACLPROP_INDEX
DB20000I The REORG TABLE command completed successfully.
E:\PROGRA~1\SQLLIB\BIN>db2 reorg table LDAPDB2.DESCRIPTION index
LDAPDB2.DESCRIPTION
DB20000I The REORG TABLE command completed successfully
E:\PROGRA~1\SQLLIB\BIN>db2 reorg table LDAPDB2.USER_BOBCS_EMPLID index
LDAPDB2.RUSER_BOBCS_EMPLID
DB20000I The REORG TABLE command completed successfully.

Keep in mind that reorgchk needs to be run periodically. For example, reorgchk
might need to be run after a large number of updates have been performed.

A reorgchk must be performed on all LDAP replicas because each replica uses a
separate database. The LDAP replication process does not include the
propagation of database optimizations.

After you reorg all the ones that needed to be reorged you need to run reorgchk
again. The output from reorgchk can then be used to determine whether the
reorganization worked and whether it introduced other tables and indexes that
need reorganizing.

Some guidelines for performing a reorganization are:

� If the number on the column that has an asterisk is close to the recommended
value described in the header of each section and one reorganization attempt
has already been done, you can probably skip a reorganization on that table
or index.

� In the table LDAPDB2.LDAP_ENTRY there exists a LDAP_ENTRY_TRUNC
index and a SYSIBM.SQL index. Preference should be given to the
SYSIBM.SQL index if attempts to reorganize them seem to alternate between
one or the other needing reorganization.

Note: LDAP tools such as ldapadd, ldif2db, and bulkload can potentially do
large numbers of updates that require a reorgchk. The performance of the
database should be monitored and a reorgchk performed when performance
starts to degrade.
520 Understanding LDAP Design and Implementation

� Reorganize all the attributes that you want to use in searches. In most cases
you will want to reorganize to the forward index, but in cases with searches
beginning with ‘*’, reorganize to the reverse index. For example:

Table: LDAPDB2.SECUUID
LDAPDB2 RSECUUID <. This is a reverse index
LDAPDB2 SECUUID <. This is a forward index
LDAPDB2 SECUUIDI <. This is an update index

16.7.3 Indexes
Indexing results in a considerable reduction in the amount of time it takes to
locate requested data. For this reason, it can be very beneficial from a
performance standpoint to index all attributes used in searches. You can use the
audit log to find out what attributes are being used in searches. Then you will
need to use the following to find out if that attribute is indexed.

Use the following DB2 commands to verify that a particular index is defined. In
the following example, the index being checked is for the attribute
principalName:

db2 connect to database_name
db2 list tables for all | grep -i principalName
db2 describe indexes for table database_name.principalName

Where database_name is the name of your database.

If the second command fails or the last command does not return three entries,
the index is not properly defined. The last command should return results similar
to Example 16-2.

Example 16-2 Showing defined indexes

IndexScheme Index Name Unique Rule Number
of Columns

LDAPDB2 PRINCIPALNAME[D 1
LDAPDB2 PRINCIPALNAME D 2
LDAPDB2 RPRINCIPALNAME D 2

3 record(s) selected

To have IBM Tivoli Directory Server create an index for an attribute the next time
the server is started, do one of the following:

� To create an index using the Web Administration Tool:

a. Expand Schema management in the navigation area, and click Manage
attributes.
 Chapter 16. Performance Tuning 521

b. Click Edit attribute.

c. On the IBM extensions tab, select the Equality check box under Indexing
rules, and you can check for a number of types of indexes from this
screen.

� To create an index from the command line, issue the following command:

ldapmodify -f /ldap/etc/addindex.ldif

The addindex.ldif file should look like this:

dn: cn=schema
changetype: modify
replace: attributetypes
attributetypes: (1.3.18.0.2.4.318 NAME (‘principalName’ ‘principal’)
DESC
‘A naming attribute that may be used to identify eUser object entries.’
EQUALITY
1.3.6.1.4.1.1466.109.114.2 ORDERING 2.5.13.3 SUBSTR 2.5.13.4 SYNTAX
1.3.6.1.4.1.1466.115.121.1.15 USAGE userApplications)
-
replace: ibmattributetypes
ibmattributetypes: (1.3.18.0.2.4.318 DBNAME(‘principalName’
‘principalName’)
ACCESS-CLASS normal LENGTH 256 EQUALITY ORDERING SUBSTR APPROX)

16.7.4 Distributing the database across multiple physical disks
As the database grows, it becomes necessary and desirable to distribute the
database across multiple physical disk drives. You can achieve better
performance by spreading entries across multiple disks. In terms of performance,
one 20 GB disk is not as good as two 10 GB disks. The following sections
describe how to configure DB2 to distribute the ldapdb2 database across
multiple disks.

IBM Directory tablespaces
When IBM Directory creates a database for the directory, it uses the db2 create
database command to create a database named ldapdb2. IBM Directory Server
creates this database with four System Managed Space (SMS) tablespaces. You

Note: Make sure that there is a “-” between each attribute that is being
changed on the same DN, and there is no space between each line of the
same DN. Also for any objectclass, attributetypes entries they need to be all
on the same line in the document. There should only be one space between
each DN.
522 Understanding LDAP Design and Implementation

can view the tablespaces by using the following DB2 commands run under the
context of the DB2 instance owner, typically the ldapdb2 user:

db2 connect to ldapdb2
db2 list tablespaces

The following examples show UNIX tablespace output for IBM Directory:

Tablespaces for Current Database
Tablespace ID = 0
Name = SYSCATSPACE
Type = System managed space
Contents = Any data
State = 0x0000
Detailed explanation:
Normal
Tablespace ID = 1
Name = TEMPSPACE1
Type = System managed space
Contents = Temporary data
State = 0x0000
Detailed explanation:
Normal
Tablespace ID = 2
Name = USERSPACE1
Type = System managed space
Contents = Any data
State = 0x0000
Detailed explanation:
Normal
Tablespace ID = 3
Name = LDAPSPACE1
Type = System managed space
Contents = Any data
State = 0x0000
Detailed explanation:
Normal

IBM Directory is stored in the user tablespace (USERSPACE1) and in the IBM
Directory tablespace (LDAPSPACE). By default, there is only one container or
directory for the user tablespace. To view the details about the user tablespace,
enter a DB2 command similar to the following:

db2 list tablespace containers for 2

Example output is as follows:

Tablespace Containers for Tablespace 2
Container ID = 0
Name = /ldapdb2/NODE0000/SQL00001/SQLT0002.0
Type = Path
 Chapter 16. Performance Tuning 523

The container or directory that DB2 uses for tablespace 2 is
/ldapdb2/SQL00001/SQLT0002.0. It contains some of the ldapdb2 database
tables. Tablespace 3 contains the remainder of the database tables, the biggest
of which is the ldap_entry table. The ldap_entry table contains the majority of the
IBM Directory data.

16.7.5 Create file systems and directories on the target disks
The first step in distributing the DB2 database across multiple disk drives is to
create and format the file systems and directories on the physical disks that the
database is to be distributed among.

Guidelines are as follows:

� Because DB2 distributes the database equally across all directories, it is a
good idea to make all of the file systems, directories, or both, the same size.

� All directories to be used for the DB2 database must be completely empty.
AIX and Solaris systems create a lost+found directory at the root of any file
system. Instead of deleting the lost+found directory, create a subdirectory at
the root of each file system to be used for distributing the database. For
example, create a subdirectory named c in each filesystem where the DB2
database is to be stored.

� Create two additional directories under the c directory: one for holding
tablespace 2 and the other for tablespace 3. For example, these directories
might be named 2 and 3. Then specify these directories on the set tablespace
commands as discussed in “Perform a redirected restore of the database.”

The DB2 instance user must have Write permission on the created directories.
For AIX and Solaris systems, the following command gives the proper
permissions:

chown ldapdb2 directory_name

The following are platform-specific guidelines:

� For the AIX operating system, create the file system with the Large File
Enabled option. This option is one of the options on the Add a Journaled File
System smit menu.

� For AIX and Solaris systems, set the file size limit to unlimited or to a size
large enough to allow for the creation of a file as large as the file system. On
AIX systems, the /etc/security/limits file controls system limits and -1 means
unlimited. On Solaris systems, the ulimit command controls system limits.
524 Understanding LDAP Design and Implementation

16.7.6 Backing up the existing database
To back up the existing database, follow these steps:

1. Stop the IBM Directory Server process (slapd or ibmslapd).

2. To close all DB2 connections, enter the following:

db2 force applications all
db2 list applications

A message similar to the following is displayed:

SQL1611W No data was returned by Database System Monitor.

3. To initiate the backup process, enter the following:

db2 backup db ldapdb2 to [file system | tape device]

When the database has been backed up successfully, a message similar to the
following is displayed:

Backup successful. The timestamp for this backup image is : 20000420204056

16.7.7 Perform a redirected restore of the database
A DB2 redirected restore restores the specified database tablespace to multiple
containers or directories. In the following example, assume that the following
directories for containing tablespace 2 were created, are empty, and have the
correct permissions to allow write access by the DB2 instance owner, typically
the ldapdb2 user:

/disks/1/c/2
/disks/2/c/2
/disks/3/c/2
/disks/4/c/2
/disks/5/c/2

In the following example, assume the following directories for tablespace 3 were
created:

/disks/1/c/3
/disks/2/c/3
/disks/3/c/3
/disks/4/c/3
/disks/5/c/3

Note: Ensure that the backup process was successful before proceeding. The
next step destroys the existing database in order to recreate it. If the backup
was not successful, the existing database is lost. You can verify the success
of the backup by restoring to a separate system.
 Chapter 16. Performance Tuning 525

Redirected restore
To do a redirected restore:

1. To start the DB2 restore process, enter the following:

db2 restore db ldapdb2 from [location of backup] replace existing redirect

Messages similar to the following are displayed:

SQL2539W Warning! Restoring to an existing database that is the same as the
backup image database. The database files will be deleted.
SQL1277N Restore has detected that one or more tablespace containers are
inAccessible, or has set their state to ’storage must be defined’.
DB20000I The RESTORE DATABASE command completed successfully.

2. To define the containers for tablespace 2 and for tablespace 3, enter the
following:

db2 "set tablespace containers for 2 using (path \
’/disks/1/c/2’, path ’/disks/2/c/2’, path ’/disks/3/c/2’, \
path ’/disks/4/c/2’, path ’/disks/5/c/2’)"

db2 "set tablespace containers for 3 using (path \
’/disks/1/c/3’, path ’/disks/2/c/3’, path ’/disks/3/c/3’, \
path ’/disks/4/c/3’, path ’/disks/5/c/3’)"

After completion of the DB2 set tablespace command, a message similar to
the following is displayed:

DB20000I The SET TABLESPACE CONTAINERS command completed successfully.

If you receive the following message:

SQL0298N Bad container path. SQLSTATE=428B2

Note: If many containers are defined, these commands can become so
long as to not fit within the limits of a shell command. In this case, you can
put the command in a file and run within the current shell using the dot
notation. For example, assume that the commands are in a file named
set_containers.sh. The following command runs it in the current shell:

. set_containers.sh
526 Understanding LDAP Design and Implementation

This indicates that one of the containers is not empty, or that Write permission
is not enabled for the DB2 instance owner, typically the ldapdb2 user.

3. Continue the restore to new tablespace containers. This step takes the most
time to complete. The time varies depending on the size of the directory. To
continue the restore to the new tablespace containers, enter the following:

db2 restore db ldapdb2 continue

If problems occur with the redirected restore and you want to restart the restore
process, it might be necessary to enter the following command first:

db2 restore db ldapdb2 abort

16.8 DB2 backup and restore
The fastest way to back up and restore the database is to use DB2 backup and
restore commands. LDAP alternatives, such as db2ldif and ldif2db, are generally
much slower in comparison.

The only disadvantage to using the db2 backup and db2 restore commands is
that the backed-up database cannot be restored across dissimilar hardware
platforms. For example, you cannot back up an AIX database and restore the
database to a Solaris system. An alternative to the db2 backup and db2 restore
commands is an LDAP Information File (LDIF) export and import. These
commands work across dissimilar hardware platforms, but the process is slower.
For more information about the use of these commands, see the DB2
documentation.

An important advantage of using db2 backup and db2 restore commands is the
preservation of DB2 configuration parameters and db2 reorgchk database
optimizations in the backed-up database. The restored database has the same

Note: A newly created file system on AIX and Solaris contains a directory
named lost+found. You should create a directory at the same level as
lost+found to hold the tablespace and then reissue the set tablespace
command. If you experience problems, see the DB2 documentation. The
following files might also be of interest:

ldapdb2_home_dir /sqllib/Readme/en_US/Release.Notes
ldapdb2_home_dir /sqllib/db2dump/db2diag.log

The db2diag.log file contains some fairly low-level details that can be
difficult to interpret.
 Chapter 16. Performance Tuning 527

performance tuning tasks as the backed-up database. This is not the case with
LDAP db2ldif and ldif2db.

Be aware that if you restore over an existing database, any performance tuning
tasks on that existing database are lost. Check all DB2 configuration parameters
after performing a restore. Also, if you do not know whether a db2 reorgchk was
performed before the database was backed up, run db2 reorgchk after the
restore. The DB2 commands to perform backup and restore operations are as
follows:

db2 force applications all
db2 backup db ldapdb2 to directory_or_device
db2 restore db ldapdb2 from directory_or_device replace existing

Where directory_or_device is the name of a directory or device where the
backup is stored.

The most common error that occurs on a restore is a file permission error.
Following are some reasons why this error might occur:

The DB2 instance owner does not have permission to access the specified
directory and file. One way to solve this is to change directory and file ownership
to the DB2 instance owner. For example, enter the following:

chown ldapdb2 fil_or_dev

The backed-up database is distributed across multiple directories, and those
directories do not exist on the target system of the restore. Distributing the
database across multiple directories is accomplished with a redirected restore.
To solve this problem, either create the same directories on the target system or
perform a redirected restore to specify the proper directories on the new system.
If creating the same directories, ensure that the owner of the directories is the
DB2 instance owner typically the ldapdb2 user.

Backup and restore operations are required to initially synchronize an LDAP
replica with an LDAP master or whenever the master and replica get out of sync.
A replica can get out of sync if it is not defined to the master. In this case, the
master does not know about the replica and does not save updates on a
propagation queue for that replica.

If a newly configured master LDAP directory is to be loaded with initial data, you
can use bulk-loading utilities to speed up the process. This is another case in
which the replica is not informed of updates and a manual backup and restore is
required to get the replica synchronized with the master.
528 Understanding LDAP Design and Implementation

16.9 Concurrent updates on Symmetric Multi-Processor systems

Better update performance, particularly on Symmetric Multi-Processor (SMP)
systems, is typically achieved by making updates concurrently (for example, with
multiple concurrent update clients). In some cases, update performance might
not improve with concurrent updates, specifically when the LDAP propagation
queue grows very large. This can happen when the LDAP master server does
updates faster than those updates can be propagated to the LDAP replica
servers. Because propagation is done serially, concurrent updates on the master
are likely to result in a growth of the propagation queue. Some testing is required
in a master/replica environment to determine how much performance
improvement, if any, comes from concurrent updates.

16.10 AIX operating system tuning
In this section we discuss AIX operating system tuning.

16.10.1 Enabling large files
The underlying AIX operating system files that hold the contents of a large
directory can grow beyond the default size limits imposed by the AIX operating
system. If the size limits are reached, the directory ceases to function correctly.
The following steps make it possible for files to grow beyond default limits on an
AIX operating system:

1. When you create the file systems that are expected to hold the directory’s
underlying files, you should create them as Large File Enabled Journaled File
Systems. The file system containing the DB2 instance’s home directory, and,
if bulkload is used, the file system containing the bulkload temporary
directory, are file systems that can be created this way.

2. Set the soft file size limit for the root, ldap, and the DB2 instance owner users
to -1. A soft file size limit of -1 for a user specifies the maximum file size for
that user as unlimited. The soft file size limit can be changed using the smitty
chuser command. Each user must log off and log back in for the new soft file
size limit to take effect. You must also restart DB2.

Setting MALLOCMULTIHEAP
The MALLOCMULTIHEAP environment variable can improve LDAP
performance on symmetric multi-processor (SMP) systems. To set this variable,
run the following command just before starting ibmslapd, in the same
environment where you will start ibmslapd:

export MALLOCMULTIHEAP=1
 Chapter 16. Performance Tuning 529

The disadvantage of using MALLOCMULTIHEAP is increased memory usage. It
might take less memory, yet have less of a performance benefit, if the variable is
set as follows:

export MALLOCMULTIHEAP=heaps: numprocs+1

Where numprocs is the number of processors in the multiprocessor system.

You can find more information about MALLOCMULTIHEAP in the AIX
documentation.

Setting MALLOCTYPE
Set the MALLOCTYPE environment variable as follows, according to the version
of AIX you are running:

� AIX 5.1

Set MALLOCTYPE as follows:

export MALLOCTYPE=buckets

� AIX 5.2

Set MALLOCTYPE to the default. If you have already set MALLOCTYPE to
another value, you can set it to the default by typing the following:

export MALLOCTYPE=null

You can find more information about MALLOCTYPE in the AIX documentation.

Setting other environment variables
You might experience better performance by setting the AIXTHREAD_SCOPE
and NODISCLAIM environment as shown in the following commands. Check the
AIX documentation to see if these settings might be right for your installation.

To set AIXTHREAD_SCOPE, use the following command:

export AIXTHREAD_SCOPE=S

To set NODISCLAIM, use the following command:

export NODISCLAIM=TRUE

16.10.2 Tuning process memory size limits
On UNIX platforms, some of LDAP performance tuning tasks in this document
result in process sizes that exceed the operating system default limits. This
section describes how to increase the operating system limits so that the affected
processes do not run out of memory. When a process runs out of memory, the
process often ends. In some cases, it leaves a core dump file, an error message,
or an error log entry. On AIX systems, the system error log might indicate that the
530 Understanding LDAP Design and Implementation

process ended due to memory allocation failure. Use the errpt –a | more
command to display the error log.

Increasing the operating system process memory size limits
On UNIX systems, each user can either inherit resource limits from the root user
or have specific limits defined. The most useful setting to use for the process size
limits is unlimited. That way, the system process size limits are defined to allow
the maximum process growth.

On AIX systems, the process size limits are defined in the /etc/security/limits file.
A value of -1 indicates that there is either no limit or that it is unlimited. The
names of the limits to increase are data and rss. For changes to the
/etc/security/limits file to take effect, the user must log out of the current login
session and log back in. On AIX, some limits may apply to the root user.

On Solaris systems, the process size limits are defined by the ulimit command.
You can specify a value of unlimited on the command. The names of the limits to
increase are data and vmemory. By default on Solaris systems, the root user has
unlimited access to these resources (for example, unlimited).

When setting resource limits for a process, it is important to know that the limits
that apply are those that are in effect for the parent process and not the limits for
the user under which the process runs.

16.10.3 AIX-specific process size limits
On AIX systems, the number of data segments that a process is allowed to use
also limits the process memory size. The default number of data segments is 1.
The size of a data segment is 256 MB. Data segments are shared for both data
and stack. The maximum number of data segments a process can use is 8.

Setting the maximum number of AIX data segments On AIX, the number of
segments that a process can use for data is controlled by the LDR_CNTRL
environment variable. It is defined in the parent process of the process that is to
be affected. For example, the following example defines one additional data
segment:

export LDR_CNTRL=MAXDATA=0x10000000
start_process
unset LDR_CNTRL

It is a good idea to unset the LDR_CNTRL environment variable, so that it does
not unintentionally affect other processes.

Unlike other environment variables for the IBM Directory Server process (slapd
or ibmslapd), the LDR_CNTRL environment variable cannot be set as a
 Chapter 16. Performance Tuning 531

front-end variable in the slapd32.conf or ibmslapd.conf configuration file. It must
be set as an environment variable.

16.10.4 AIX data segments and LDAP process DB2 connections
On AIX, process segments are used for increasing a process memory size and
for shared memory. A segment can be used for one or the other of these
purposes, but not for both. When possible, the IBM Directory Server uses shared
memory to communicate between its server process (slapd or ibmslapd) and
DB2 processes. Each shared segment used in this way is a connection to the
DB2 database. If there are not enough process segments to satisfy the number
of DB2 connections defined in the IBM Directory Server configuration file
(slapd32.conf or imbslapd.conf), the remaining connections are satisfied by
using local TCP/IP sockets. For this reason, there is no conflict between
increasing the process memory size of the IBM Directory Server process and
increasing the number of DB2 connections defined for the IBM Directory Server
to use.

16.10.5 Verifying process data segment usage
If the perfagent.tools are installed, /usr/bin/svmon -P pid shows the memory
usage of a process. In the output, identify the segments labeled shmat/mmap.
Segments with an Inuse column of zero (0) are for data segments that are
available for process growth. Segments with an Inuse column greater than 1 are
for data segments in which the process has already grown. Segments with an
Inuse column of 1 are usually found in the slapd or the ibmslapd process and
represent the shared memory segments being used for DB2 connections.

16.11 Adding memory after installation on Solaris systems
Memory added to a computer after the installation of a Solaris operating system
does not automatically improve performance. To take advantage of added
memory, you must:

1. Update the shared memory (shmem) value in the /etc/system file:

set shmsys:shminfo_shmmax = physical_memory

Where physical_memory is the size on of the physical memory on the
computer in bytes. You must restart the computer for the new settings to take
effect.

2. From the command line, set the ulimit values for increasing process memory
and file size to unlimited:

ulimit -d unlimited
ulimit -v unlimited
532 Understanding LDAP Design and Implementation

ulimit -f unlimited

16.12 SLAPD_OCHANDLERS variable on Windows
On Windows, if you have clients that are generating many connections to the
server and the connections are being refused, set the SLAPD_OCHANDLERS
environment variable to 5 before starting the server.

16.13 IBM Directory Change and Audit Log
In this section we discuss the IBM Directory Change and Audit Log.

16.13.1 When to configure the LDAP change log
IBM Tivoli Directory Server has a function called change log that results in a
significantly slower LDAP update performance. The change log function should
be configured only if needed.

The change log function causes all updates to LDAP to be recorded in a
separate change log DB2 database (that is, a different database from the one
used to hold the LDAP server Directory Information Tree). The change log
database can be used by other applications to query and track LDAP updates.
The change log function is disabled by default.

One way to check for existence of the change log function is to look for the suffix
CN=CHANGELOG. by issuing the following command:

ldapsearch -D cn=root -w <dir admin password> -b ““ “objectclass=*

If it exists, the change log function is enabled. To disable this after it is
configured, run the following commands with the directory shutdown. If you try to
do this with the directory up you will get the following message:

Unable to unconfigure database while IBM Tivoli Directory Server is
running.

For IBM Directory 4.1 and earlier:

ldapucfg -g

For IBM Directory 5.1 and later:

ldapxcfg

and click Configure/unconfigure changelog and uncheck box on the right and
then click update and it will unconfigure the changelog. You will get a message
 Chapter 16. Performance Tuning 533

stating that disabling changelog will destroy the data currently in the changelog
database. Do you still want to continue? If you want to save the changelog you
will need to copy it off before you answer this yes, if not it will be deleted.

16.13.2 When to configure the LDAP audit log
The audit log shows what searches are being performed and the parameters
used in each search. The audit log also shows when a client binds and unbinds
from the directory. Observing these measurements allows you to identify LDAP
operations that take a long time to complete. Depending on what options you
have turned on to monitor this can cause a significantly slow down of many
aspects of the IBM Directory Server performance. It is recommended that all
audit logging features be turned off unless your are troubleshooting searches or
need to record for security reasons. Do the following:

ldapsearch -D cn=root -w <passwd> -b "cn=audit,cn=localhost" objectclass=*

With 4.1 and earlier you will see the following included in the output:

cn=audit,cn=localhost
objectclass=ibm-auditConfig
objectclass=top
cn=audit
ibm-auditlog=C:\Program Files\IBM\LDAP\var\audit
ibm-audit=false
ibm-auditfailedoponly=true
ibm-auditbind=true
ibm-auditunbind=true
ibm-auditsearch=false
ibm-auditadd=false
ibm-auditmodify=false
ibm-auditdelete=false
ibm-auditmodifydn=false
ibm-auditextopevent=false

With 5.1 and later you will see the following included in the output:

CN=AUDIT,CN=LOCALHOST
objectclass=ibm-auditConfig
objectclass=ibm-slapdConfigEntry
objectclass=top
cn=audit
ibm-auditLog=C:\Program Files\IBM\LDAP\var\audit.log
ibm-auditVersion=2
ibm-audit=false
ibm-auditFailedOPonly=true
ibm-auditBind=true
ibm-auditUnbind=true
ibm-auditSearch=false
534 Understanding LDAP Design and Implementation

ibm-auditAdd=false
ibm-auditModify=false
ibm-auditDelete=false
ibm-auditModifyDN=false
ibm-auditExtOPEvent=false
ibm-auditExtOp=false

You can use the Web admin tool for each of the versions of the Directory to set
these settings to what you want.

16.14 Hardware tuning
In this section we discuss hardware tuning.

16.14.1 Disk speed improvements
With millions of entries in LDAP server, it can become impossible to cache all of
them in memory. Even if a smaller directory size is cacheable, update operations
must go to disk. The speed of disk operations is important. Here are some
considerations for helping to improve disk drive performance:

� Use fast disk drives.

� Use a hardware write cache.

� Spread data across multiple disk drives.

� Spread the disk drives across multiple I/O controllers.

� Put log files and data on separate physical disk drives.

16.15 Monitoring performance
The ldapsearch command can be used to monitor performance, as shown in the
following sections.

16.15.1 ldapsearch with "cn=monitor"
The following ldapsearch command uses "cn=monitor".

ldapsearch -h ldap_host -s base -b cn=monitor objectclass=*

Where ldap_host is the name of the LDAP host.
 Chapter 16. Performance Tuning 535

With 5.1 and earlier
We had these limited outputs to the cn=monitor command. The monitor search
returns the following attributes of the server:

� version: Version of the LDAP server
� totalconnections: Total number of connections to the server
� currentconnections: Total number of current connections
� maxconnections: Configured maximum number of connections
� writewaiter: Number of threads waiting to write
� readwaiters: Number of threads waiting to read
� opsinitiated: Operations initiated against the server
� opscompleted: Number of operations completed
� entriessent: Number of entries sent from the server
� searchesrequested: Number of searches requested
� searchescompleted: Number of searches completed
� filter_cache_size: Configured maximum size of the filter cache
� filter_cache_current: Current size of the filter cache
� filter_cache_click: Number of searches that have click the filter cache
� filter_cache_miss: Number of searches that have missed the filter cache
� entry_cache_size: Configured maximum size of the entry cache
� entry_cache_current: Current size of the entry cache
� entry_cache_click: Number of entries returned from entry cache
� entry_cache_miss: Number of entries returned not from entry cache
� currenttime: Current time of the search
� starttime: Start time of the server
� en_currentregs: Number of events currently registered
� en_notificationssent: Number of event notifications sent

With 5.2 and later
A number of upgrades to the cn=monitor command allows it to pull out more data
to better monitor how the LDAP is doing. The monitor search returns some of the
following attributes of the server:

� cn=monitor

� version=IBM Tivoli Directory, Version 5.2

� total connections: The total number of connections since the server was
started

� current connections: The number of active connections

� maxconnections: The maximum number of active connections allowed

� writewaiters: The number of threads sending data back to the client

� readwaiters: The number of threads reading data from the client

� opsinitiated: The number of initiated requests since the server was started
536 Understanding LDAP Design and Implementation

� livethreads: The number of worker threads being used by the server

� opscompleted: The number of completed requests since the server was
started

� entriessent: The number of entries sent by the server since the server was
started.

� searchesrequested: The number of initiated searches since the server was
started.

� searchescompleted: The number of completed searches since the server was
started.

� filter_cache_size: The maximum number of filters allowed in the cache.

� filter_cache_current: The number of filters currently in the cache.

� filter_cache_click: The number of filters retrieved from the cache rather than
being resolved in DB2.

� filter_cache_miss: The number of filters that were not found in the cache that
then needed to be resolved by DB2.

� filter_cache_bypass_limit: Search filters that return more entries than this limit
are not cached.

� entry_cache_size: The maximum number of entries allowed in the cache.

� entry_cache_current: The number of entries currently in the cache.

� entry_cache_click: The number of entries that were retrieved from the cache.

� entry_cache_miss: The number of entries that were not found in the cache
that then needed to be retrieved from DB2.

� acl_cache: A Boolean value indicating that the ACL cache is active (TRUE) or
inactive (FALSE).

� acl_cache_size: The maximum number of entries in the ACL cache.

� currenttime: The current time on the server. The current time is in the format:
year month day hour:minutes:seconds GMT.

� starttime: The time the server was started. The start time is in the format: year
month day hour:minutes:seconds GMT.

Note: If expressed in local time the format is day month date
hour:minutes:seconds timezone year.

Note: If expressed in local time the format is day month date
hour:minutes:seconds timezone year.
 Chapter 16. Performance Tuning 537

� en_currentregs: The current number of client registrations for event
notification.

� en_notificationssent: The total number of event notifications sent to clients
since the server was started.

The following attributes are for operation counts:

� bindsrequested: The number of bind operations requested since the server
was started

� bindscompleted: The number of bind operations completed since the server
was started

� unbindsrequested: The number of unbind operations requested since the
server was started

� unbindscompleted: The number of unbind operations completed since the
server was started

� addsrequested: The number of add operations requested since the server
was started

� addscompleted: The number of add operations completed since the server
was started

� deletesrequested: The number of delete operations requested since the
server was started

� deletescompleted: The number of delete operations completed since the
server was started

� modrdnsrequested: The number of modify RDN operations requested since
the server was started

� modrdnscompleted: The number of modify RDN operations completed since
the server was started

� modifiesrequested: The number of modify operations requested since the
server was started

� modifiescompleted: The number of modify operations completed since the
server was started

� comparesrequested: The number of compare operations requested since the
server was started

� comparescompleted: The number of compare operations completed since the
server was started

� abandonsrequested: The number of abandon operations requested since the
server was started

� abandonscompleted: The number of abandon operations completed since the
server was started
538 Understanding LDAP Design and Implementation

� extopsrequested: The number of extended operations requested since the
server was started

� extopscompleted: The number of extended operations completed since the
server was started

� unknownopsrequested: The number of unknown operations requested since
the server was started

� unknownopscompleted: The number of unknown operations completed since
the server was started

The following attributes are for server logging counts:

� slapderrorlog_messages: The number of server error messages recorded
since the server was started or since a reset was performed

� slapdclierrors_messages: The number of DB2 error messages recorded
since the server was started or since a reset was performed

� auditlog_messages: The number of audit messages recorded since the
server was started or since a reset was performed

� auditlog_failedop_messages: The number of failed operation messages
recorded since the server was started or since a reset was performed

The following attributes are for connection type counts:

� total_ssl_connections: The total number of SSL connections since the server
was started

� total_tls_connections: The total number of TLS connections since the server
was started

The following attributes are for tracing:

� trace_enabled : The current trace value for the server. TRUE, if collecting
trace data, FALSE, if not collecting trace data.

� trace_message_level: The current ldap_debug value for the server. The
value is in hexadecimal form, for example:

0x0=0
0xffff=65535

� trace_message_log: The current LDAP_DEBUG_FILE environment variable
setting for the server.

The following attributes are for denial of service prevention:

� available_workers: The number of worker threads available for work.

� current_workqueue_size: The current depth of the work queue.
 Chapter 16. Performance Tuning 539

� largest_workqueue_size: The largest size that the work queue has ever
reached.

� idle_connections_closed: The number of idle connections closed by the
Automatic Connection Cleaner.

� auto_connection_cleaner_run: The number of times that the Automatic
Connection Cleaner has run.

� emergency_thread_running: The indicator of whether the emergency thread
is running.

� totaltimes_emergency_thread_run: The number of times the emergency
thread has been activated.

� lasttime_emergency_thread_run: The last time the emergency thread was
activated.

The following attribute has been added for alias dereference processing:

� bypass_deref_aliases: The server runtime value that indicates if alias
processing can be bypassed. It displays TRUE if no alias object exists in the
directory, and FALSE if at least one alias object exists in the directory.

The following attributes are for the attribute cache:

� cached_attribute_total_size: The amount of memory used by the directory
attribute cache, in kilobytes. This number includes additional memory used to
manage the cache that is not charged to the individual attribute caches.
Consequently, this total is larger than the sum of the memory used by all the
individual attribute caches.

� cached_attribute_configured_size: The maximum amount of memory, in
kilobytes, assigned to the directory attribute cache.

� cached_attribute_click: The number of times the attribute has been used in a
filter that could be processed by the attribute cache. The value is reported as
follows:

cached_attribute_click=attrname:#####

� cached_attribute_size: The amount of memory used for this attribute in the
attribute cache. This value is reported in kilobytes as follows:

cached_attribute_size=attrname:######

� cached_attribute_candidate_click: A list of up to ten most frequently used
noncached attributes that have been used in a filter that could have been
processed by the directory attribute cache if all of the attributes used in the
filter had been cached. The value is reported as follows:

cached_attribute_candidate_click=attrname:#####
540 Understanding LDAP Design and Implementation

You can use this list to help you decide which attributes you want to cache.
Typically, you want to put a limited number of attributes into the attribute cache
because of memory constraints.

16.15.2 Monitor examples
The following sections show examples of using values returned by the
ldapsearch command with cn=monitor to calculate the throughput of the server
and the number of add operations completed on the server in a certain
timeframe.

Throughput example
The following example shows how to calculate the throughput of the server by
monitoring the server statistic called opscompleted, which is the number of
operations completed since the LDAP server started.

Suppose the values for the opscompleted attribute obtained by issuing two
ldapsearch commands to monitor the performance statistics, one at time t1 and
the other at a later time t2, were opscompleted (t1) and opscompleted(t2.) The
average throughput at the server during the interval between t1 and t2 can be
calculated as:

(opscompleted(t2) - opscompleted(t1) - 3)/(t2 -t1)

Three is subtracted to account for the number of operations performed by the
ldapsearch command itself.

Workload example
The monitor attributes can be used to characterize the workload, similar to the
throughput example but split out by type of operation.

For example, you can calculate the number of add operations that were
completed in a certain amount of time.

Suppose the values for the addscompleted attribute obtained by issuing two
ldapsearch commands to monitor the performance statistics, one at time t1 and
the other at a later time t2, were addscompleted (t1) and addscompleted(t2.) The
number of add operations completed on the server during the interval between t1
and t2 can be calculated as:

(addscompleted(t2) - addscompleted(t1) - 3)/(t2 -t1)

Three is subtracted to account for the number of operations performed by the
ldapsearch command itself.
 Chapter 16. Performance Tuning 541

Similar calculations can be done for other operations, such as
searchescompleted, bindscompleted, deletescompleted, and
modifiescompleted.

ldapsearch with "cn=workers,cn=monitor"
You can run a search using "cn=workers,cn=monitor" to get information about
what worker threads are doing and when they started doing it.

ldapsearch -D <adminDN> -w <adminpw> -b cn=workers,cn=monitor -s base
objectclass=*

This information is most useful when a server is performing poorly or not
functioning as expected. It should be used only when needed to give insight into
what the server is currently doing or not doing.

The "cn=workers, cn=monitor" search returns detailed activity information only if
auditing is turned on. If auditing is not on, "cn=workers, cn=monitor" returns only
thread information for each of the workers.

For more information, see the IBM Tivoli Directory Server Version 5.2
Administration Guide.

ldapsearch with "cn=connections,cn=monitor"
You can run a search using "cn=connections,cn=monitor" to get information
about server connections:

ldapsearch -D<adminDN> -w <adminPW> -h <servername> -p <portnumber> -b
cn=connections,cn=monitor -s base objectclass=*

This command returns information in the following format:

cn=connections,cn=monitor
connection=1632 : 9.41.21.31 : 2002-10-05 19:18:21 GMT : 1 : 1 : CN=ADMIN : :
connection=1487 : 127.0.0.1 : 2002-10-05 19:17:01 GMT : 1 : 1 : CN=ADMIN : :

Attention: The cn=workers,cn=monitor search suspends all server activity
until it is completed. For this reason, a warning should be issued from any
application before issuing this feature. The response time for this command
will increase as the number of server connections and active workers
increase.

Note: If appropriate, an SSL or a TLS indicator is added on each connection.
542 Understanding LDAP Design and Implementation

ldapsearch with "cn=changelog,cn=monitor"
You can run a search using "cn=changelog,cn=monitor" to obtain information
about the changelog attribute cache. (See 16.13.1, “When to configure the LDAP
change log” on page 533, for information about the change log.) The command
returns the following information:

cached_attribute_total_size

The amount of memory used by the changelog attribute cache, in kilobytes. This
number includes additional memory used to manage the cache that is not
charged to the individual attribute caches. Consequently, this total is larger than
the sum of the memory used by all the individual attribute caches.

cached_attribute_configured_size

The maximum amount of memory, in kilobytes, assigned to the changelog
attribute cache.

cached_attribute_click

The number of times the attribute has been used in a filter that could be
processed by the changelog attribute cache. The value is reported as follows:

cached_attribute_click=attrname:#####
cached_attribute_size

The amount of memory used for this attribute in the changelog attribute cache.
This value is reported in kilobytes as follows:

cached_attribute_size=attrname:######
cached_attribute_candidate_click

A list of up to ten most frequently used noncached attributes that have been used
in a filter that could have been processed by the changelog attribute cache if all
of the attributes used in the filter had been cached. The value is reported as
follows:

cached_attribute_candidate_click=attrname:#####

You can use this list to help you decide which attributes you want to cache.
Typically, you want to put a limited number of attributes into the attribute cache
because of memory constraints.

16.16 Troubleshooting error files
When a problem occurs that appears to be related to the IBM Directory Server,
you should first check the following files for error messages.
 Chapter 16. Performance Tuning 543

For IBM Directory Server version 4.1 and older: The default location of these files
is /var/ldap for Solaris and /tmp for AIX.

slapd.errors
cli.error

You can change the location of the slapd.errors file (but not the cli.error file) by
updating the ibm-slapdErrorLog parameter in the slapd32.conf configuration file.

For IBM Directory Server version 5.1 or later: The default location is /var/ldap for
both Solaris and AIX.

ibmslapd.log
db2cli.log

You can change the location of both of these files by modifying the
ibm-slapdErrorLog and ibm-slapdCLIErrors parameters in the ibmslapd.conf.

ibmslapd trace
An ibmslapd trace provides a list of the SQL commands issued to the DB2
database. These commands can help you identify operations that are taking a
long time to complete. This information can in turn lead you to missing indexes,
or unusual directory topology. To turn the ibmslapd trace on, run the following
commands:

ldtrc on
ibmslapd –h 4096

After you have turned the trace on, run the commands that you think might be
giving you trouble. Running a trace on several operations can slow performance,
so remember to turn the trace off when you are finished using it:

ldtrc off

Changing the diagnostic level for error message log files

DB2 error log
On AIX systems or Solaris Operating Environments, the db2diag.log file is
located, by default, in the /INSTHOME/sqllib/db2dump directory, where
INSTHOME is the home directory of the instance owner.

On Windows NT and Windows 2000 systems, the db2diag.log file is located, by
default, in the x:\sqllib\instance directory, where:

� x: is the drive where DB2 Data Links Manager is installed.

� instance is the name of the instance for which you want to change the
diagnostic setting. The instance name in which Data Links Manager is
running is DLFM.
544 Understanding LDAP Design and Implementation

The location of the db2diag.log file is controlled by the DB2 server
configuration parameter DIAGPATH, so the directory paths on your system
might be different from the default paths.

Procedure
You control the level of detailed information that is written to the db2diag.log file
by using the DIAGLEVEL configuration parameter and the DLFM_LOG_LEVEL
registry value.

DIAGLEVEL
Determines the severity of DB2 diagnostic information recorded in the
db2diag.log error log file. Valid values are from 1–4. 1 denotes that a minimal
amount of information is to be recorded, and 4 denotes that the maximum
amount of information is to be recorded. The default setting is 3. You can
increase the amount of error information recorded using the following command:
db2 update dbm cfg using DIAGLEVEL 4. This setting should be changed only at
the request of IBM service or development for debugging purposes.

DLFM_LOG_LEVEL
Determines the severity of DLFM diagnostic information recorded in the
db2diag.log error log file. Its default setting is LOG_ERR. You can increase the
amount of error information recorded using the following command:

db2set DLFM_LOG_LEVEL=LOG_DEBUG

Attention: Increasing the amount of diagnostic output can result in both
performance degradation and insufficient storage conditions in your database
instance file system. This procedure should only be used when
troubleshooting problems requiring the additional diagnostics.
 Chapter 16. Performance Tuning 545

546 Understanding LDAP Design and Implementation

Chapter 17. Monitoring IBM Tivoli
Directory Server

This chapter will cover the monitoring of the IBM Tivoli Directory server covering
various monitoring tools and operating system commands that can be used for
monitoring ITDS.

17
© Copyright IBM Corp. 1998, 2004. All rights reserved. 547

17.1 Overview
Like any application, the ability for an administrator to understand what the
current state of the application at any given time is critical.

The monitoring of the directory is important from the following perspectives:

1. Security issues: To track unauthorized access and take corrective measures.
Let us take some example where we would like to prevent unauthorized
access to the directory. There are a lot of instances, whereby the directory
server may come under a Denial of Service (DOS) attack. In a DOS attack,
anonymous clients send a flood of requests for the server to serve, by
opening a set of connections with the server. The clients then disappear and
are not available to hear back from the server. The server does not
understand what is to be done with the open connection and it waits for the
client to return. Thus we have some system resources allocated and kept
reserved by the server for a client which is never to return. If there is a pool of
such connections a lot of system resources would be wasted and a stage
would come, whereby the open connections eat up all the available resources
and the server is not able to serve any further requests. We are sure all of us
would like to avoid such attacks on our servers. Monitoring the server would
help overcoming issues like these and consequently secure our server.

2. Performance issues: To find out reasons of slow or poor performance.
Performance of the directory server may be low owing to a lot many reasons:

– The DB2 buffer pools might not be tuned as per the directory
requirements, though there are resources available.

– The Directory Server caches might not be tuned to the optimum.

– There might be some important indexes missing.

– There might be a database reorganization required and many more.

Out of the above, some problems might be caught or prevented using the
monitoring tools. Monitoring tools help us in deriving the optimal values for a
set of directory parameters after statistical analysis of the existing workload
and resources.

3. Throughput measurement: To derive statistics as like how many searches
have completed in a given timeframe, how many additions have completed,
how many binds have occurred to the server, how many operations have
completed. Keeping track of such figures helps us to calculate the throughput
of the server. This throughput might be quite influential for the dependant
products that are going to use the directory server.
548 Understanding LDAP Design and Implementation

17.2 Monitoring tools
The ITDS is provided with a set of tools which can be used to monitor the
directory server against any anomalies. The ITDS monitoring can be
accomplished in many ways as listed below:

� Searching against the base cn=monitor.

� Searching through the changelog database.

� Analyzing log files.

All the monitoring commands have both a GUI interface and the corresponding
command line equivalent.

The GUI interface is provided by Web Administration Tool, supplied with the IBM
Tivoli Directory Server.

The command-line interface is provided by the following client utilities:

� ldapsearch

� ldapexop

� ibmdirctl

The changelog database is a separate LDAP database, that stores the changes
pertaining to the DIT, in LDIF format.

All the relevant log files can be read using the command-line tools or through the
GUI, whichever suits one.

17.2.1 Viewing server state
The first and foremost thing, prior to monitoring ibmslapd, would be to check
whether it is still alive, or whether it is in a state where we can run any monitoring
tools on it. The server state refers to whether the server is currently running in
normal mode, safe mode or it is currently stopped. Let us see how this is
accomplished.

Note: Turning on any sort of logging or using a database to log the changes,
would hamper the directory performance. The obvious reason is that such
activities make the directory do more things than it liked to. For example, the
directory server may need to write to 4 places rather than 1. Hence, it is strictly
advised that such options be turned on only in the event that the directory
server is doing badly and it needs to be tuned. Disable these options, once
you have done with you’re the problem analysis.
 Chapter 17. Monitoring IBM Tivoli Directory Server 549

Using Web administration tool
To use the Web administration tool:

1. Connect to the server, whose status is to be checked, through the Web
administration tool.

2. Select Server administration and then click View server status in the left
hand panel. The General tab is selected by default. If not, select it.

3. The current state of the server is shown in the right panel. We need to watch
out for the Server status label.

Figure 17-1 shows the relevant portion of the panel.

Figure 17-1 Viewing the server status via Web administration tool

Using command line
The following command returns the state of the server:

ibmdirctl-D <adminDN> -w <adminPW> status

The above command does not say whether the server is running in safe mode or
no. We need to confirm it by running a rootDSE search after this command and
check for the attribute ibm-slapdisconfigurationmode which should be false for
a normal mode.

Note: The current sate of the server can be determined by looking at the
icon next to the directory server name or IP in the top of right panel.

� If the green button is enabled, the server is running.

� If the yellow button is enabled, the server is running in safe mode.

� If the red button is enabled, the sever is stopped.
550 Understanding LDAP Design and Implementation

On UNIX:

ldapsearch -D <adminDN> -w <adminPW> -s base objectclass=* | grep config

On Windows:

ldapsearch -D <adminDN> -w <adminPW> -s base objectclass=*

Search for the value against the ibm-slapdisconfigurationmode attribute.

Here is an example of how ibmdirctl would be used to get to know the server
status and then the status actually verified using the root dse:

C:\>ibmdirctl -D <adminDN> -w <adminPW> status
ibmslapd process is not running.
C:\>ibmdirctl -D <adminDN> -w <adminPW> start
Start operation succeeded
C:\>ibmdirctl -D <adminDN> -w <adminPW> status
ibmslapd process is starting.
C:\>ldapsearch -s base objectclass=* | grep configuration
ibm-slapdisconfigurationmode=FALSE

If you are just interested in knowing if the server is up (irrespective of whether it is
up in normal mode or in configuration mode), you can just check out if the
ibmslapd process is currently running using the ps command (ps -eaf | grep
ibmslapd | grep -v grep), on UNIX of course. In case of Windows, you can see
if the service IBM Tivoli Directory Server V5.2 is up and running.

17.2.2 Viewing status of worker threads
This option is required when the server is not performing as expected or
performing poorly. This options displays the information on the worker threads
that are currently active. The state of a worker thread includes many details like
thread number, information about the client it is serving, the type of work request
received etc. Performing this activity suspends all the server activity until it is
completed. A warning to that effect is displayed, which explains that the time to
complete this operation depends on the number of connection and worker
threads. Ensure that auditing is enabled before using the below tools for viewing
the states of worker threads.

Using Web administration tool
To use this:

1. Connect to the relevant directory server, whose status is to be checked, via
the Web administration tool.

2. Select Server administration and then click View server status server in
the left hand panel. Select View worker status from the left-hand panel.
 Chapter 17. Monitoring IBM Tivoli Directory Server 551

3. A warning message appears as shown in Figure 17-2.

Figure 17-2 Warning while observing the status of the worker threads

4. Click Yes to proceed.

In response to the above confirmation, we would see a screen showing us the
current status of the worker threads, as seen in Figure 17-3.

Figure 17-3 The current status of the worker threads

Using command line
In order to retrieve all information related to worker threads that are currently
active, issue the following command:

ldapsearch -D <adminDN> -w <adminPW> -s base -b cn=workers,cn=monitor
objectclass=*

Here is the output that can be expected:

cn=workers,cn=monitor
cn=workers
objectclass=container

cn=thread2428,cn=workers,cn=monitor
thread=2428
552 Understanding LDAP Design and Implementation

ldapversion=V2
binddn=cn=root
clientip=127.0.0.1
clientport=2058
connectionid=1412
received=2004-02-19 08:07:41 GMT
workrequest=search
base=cn=workers,cn=monitor
scope=baseObject
derefaliases=neverDerefAliases
typesonly=false
filter=(objectclass=*)
attributes=all

This information is the same as the information displayed on the GUI. Here is
what the above attributes mean:

� thread: The number of the worker thread. For example 2428.

� ldapversion: The LDAP version level, either V1 or V2.

� binddn: The DN used to bind to the server.

� clientip: The IP address of the client.

� clientport: The port used by the client.

� connectionid: The number identifying the connection.

� received: The date and time that the work request was received.

� workrequest: The type of work request received and additional information
about the request. For example, if the request was a search, the following
information is also provided:

base=cn=workers,cn=monitor
scope=baseObject
derefaliases=neverDerefAliases
typesonly=false
filter=(objectclass=*)
attributes=all

That is to say that worker thread 2428 had the responsibility of serving the
search request for the base cn=workers, cn=monitor, through the search, which
was fired to collect the above information.

17.2.3 Viewing connections information
The connections information is handy in case of problems where the server
rejects client connections, for example, if many clients are trying to connect to
the server and the number of connections requested is exceeding that permitted
by the operating system. The information about the server connections consists
 Chapter 17. Monitoring IBM Tivoli Directory Server 553

of the connection id, the client ip address which requested the connection, bind
dn etc. There are as expected, two ways of viewing this information.

Using Web administration tool
Expand the Server administration category in the navigation area as in the
previous steps. Click Manage server connections. A table containing the
following information for each connection is displayed:

� DN: Specifies the DNs of a client connection to the server.

� IP address: Specifies the IP address of the client that has a connection to the
server.

� Start time: Specifies the date and time when the connection was made.

� Status: Specifies whether the connection is active or idle. A connection is
considered active if it has any operations in progress.

� Ops initiated: Specifies the number of operations requested since the
connection was established.

� Ops completed: Specifies the number of operations that have been
completed for each connection.

� Type: Specifies whether the connection is secured by SSL or TLS. Otherwise
the field is blank.

Figure 17-4 shows the relevant screenshot.

Figure 17-4 Portion of the panel showing the server’s connections

Note: The table shown in Figure 17-4 displays up to 20 connections at a given
instant of time.
554 Understanding LDAP Design and Implementation

We can specify to have this table displayed by either DN or IP address by
expanding the drop-down menu at the top of the panel and making a selection.
The default selection is by DN. Similarly we can also specify whether to display
the table in ascending or descending order.

Click Refresh to update the current connection information.

If you are logged in as the administrator or as a member of the administration
group, you have additional selections to disconnect server connections available
on the panel. This ability to disconnect server connections enables us to stop
denial of service attacks and to control server access. You can disconnect a
connection by expanding the drop-down menus and selecting a DN, an IP
address or both and clicking Disconnect. Depending on our selections the
actions shown in Table 17-1 will occur.

Table 17-1 Disconnection rules.

The default value for each of the drop-down menus is None.

To disconnect all server connections except for the one making this request click
Disconnect all. A confirmation warning is displayed. Click OK to proceed with
the disconnect action or click Cancel to end the action and return to the Manage
server connections panel.

Using command line
We can run a search with the searchbase "cn=connections,cn=monitor" to get
information about server connections:

ldapsearch -D <adminDN> -w <adminPW> -s base -b cn=connections,cn=monitor
objectclass=*

This command returns information in the following format:

cn=connections,cn=monitor

DN chosen IP address chosen Action

<DN Value> None All connections bound with the
specified DN are disconnected.

None <IPvalue> All connections over the specified IP
address are disconnected.

<DN Value> <IPvalue> All connections bound as the specified
DN and over the specified IP address
are disconnected.

None None This is not a valid condition. You must
specify either a DN or an IP or both.
 Chapter 17. Monitoring IBM Tivoli Directory Server 555

connection=3 : 127.0.0.1 : 2004-02-22 06:08:10 GMT : 1 : 1 : CN=ROOT : :

The meaning of the values delimited by “:” in the above output can be very well
got by comparing it with the relevant screenshot of the Webadmin (Figure 17-4
on page 554).

To end server connections, issue one of the following commands:

To disconnect a specific DN:
ldapexop -D<adminDN> -w <adminPW> -op unbind -dn cn=john
To disconnect a specific IP address:
ldapexop -D <adminDN> -w <adminPW> -op unbind -ip 9.182.173.43
#To disconnect a specific DN over a specific IP address:
ldapexop -D <adminDN> -w <adminPW> -op unbind -dn cn=john -ip 9.182.173.43
#To disconnect all connections:
ldapexop -D <adminDN> -w <adminPW> -op unbind -all

Does not this option give the great advantage of killing the connections, which
are seen harmful for our directory performance/stability. But as the chapter title
suggests, it would need a constant monitoring to find out and disconnection
unwanted, harmful connection. Do not take this statement to be contradictory to
the note about performance click, when the monitoring is on. The performance
click is felt only when the logging and/or the changelog database come into the
picture and does not relate to the searches. The searches will not slow down a
server.

17.2.4 Viewing other general information about the directory server
Except the connection and worker thread information, a lot of other general
information about the server can be fetched. There is voluminous amount of
attributes that can be fetched from the server. As usual we have two ways of
fetching these attributes.

Using Web administration tool
To use this:

1. Connect to the required directory server, using the Web Administration tool.

2. Click View server status. This panel has nine tabs. These are:

– General tab: This tab provides the generic information pertaining to the
server, as like:

• Hostname: The host name of the LDAP server.

Note: If appropriate, an SSL or a TLS indicator is added on each connection.
556 Understanding LDAP Design and Implementation

• Server status: The server status as to whether it is currently Running,
Stopped, or Running in configuration only mode. We can determine the
server status at any time by viewing the three icons displayed in the
upper left corner of the server status area.

• Start time: The time the server was started. The start time is in the
format: year-month-day hour:minutes:seconds GMT.

• Current time: The time at the instant the General tab was clicked or the
time when the Refresh button has been click. The current time is in the
format: year-month-day hour:minutes:seconds GMT.

• Total threads: The number of worker threads being used by the server.

• Total threads blocked on write: The number of threads sending data
back to the client.

• Total threads blocked on read: The number of threads reading data
from the client.

• Number of connections: The number of connections, currently active.

• Total connections: The total number of connections since the server
was started.

• Number of entries sent: The number of entries sent by the server since
the server was started.

• Percentage of entry cache used: The percentage of entry cache
currently used. This value is not displayed in configuration only mode.

• Percentage of search filter cache used: The percentage of search filter
cache currently used. This value is not displayed in configuration only
mode.

• ACL cache: A Boolean value indicating that the ACL cache is active
(TRUE) or inactive (FALSE). This value is not displayed in
configuration only mode.

• Maximum ACL cache size: The maximum number of entries allowed in
the ACL cache. This value is not displayed in configuration only mode.

• Bypass alias dereferencing: The server runtime value that indicates if
alias processing can be bypassed. It displays true, if no alias object

• Total number of SSL connections: The total number of SSL
connections since the server was started.

• Total number of TLS connections: The total number of TLS
connections since the server was started.
 Chapter 17. Monitoring IBM Tivoli Directory Server 557

– Operations counts: This tab counts the different type of operations
requested/competed with the server:

• Number of operations requested: The number of requests initiated
since the server was started.

• Number of operations completed: The number of requests completed,
since the server was started.

• Number of search operations requested: The number of searches
initiated since the server was started.

• Number of search operations completed: The number of searches
completed, since the server was started.

• Number of bind operations requested: The number of bind requests
since the server was started.

• Number of bind operations completed: The number of bind requests
completed since the server was started.

• Number of unbind operations requested: The number of unbind
requests since the server was started.

• Number of unbind operations completed: The number of unbind
requests completed since the server was started.

• Number of add operations requested: The number of add requests
since the server was started.

• Number of add operations completed: The number of add requests
completed since the server was started.

• Number of delete operations requested: The number of delete
requests since the server was started.

• Number of delete operations completed: The number of delete
requests completed since the server was started.

• Number of modify RDN operations requested: The number of modify
RDN requests since the server was started.

• Number of modify RDN operations completed: The number of modify
RDN requests completed since the server was started.

• Number of modify operations requested: The number of modify
requests since the server was started.

• Number of modify operations completed: The number of modify
requests completed since the server was started.

• Number of compare operations requested: The number of compare
requests since the server was started.
558 Understanding LDAP Design and Implementation

• Number of compare operations completed: The number of compare
requests completed since the server was started.

• Number of abandon operations requested: The number of abandon
requests since the server was started.

• Number of abandon operations completed: The number of abandon
requests completed since the server was started.

• Number of extended operations requested: The number of extended
requests since the server was started.

• Number of extended operations completed: The number of extended
requests completed since the server was started.

• Number of unknown operations requested: The number of unknown
requests since the server was started.

• Number of unknown operations completed: The number of unknown
requests completed since the server was started.

– Work queue: This tab gives the current status on the work queue. Do not
confuse this with the status of the worker threads.

• Number of worker threads available: The number of worker threads
available for work.

• Depth of the work queue: The current size of the work queue.

• Largest size of the work queue: The largest size that the work queue
has ever reached.

• Number of connections closed by automatic connection cleaner: The
number of idle connections closed by the automatic connection
cleaner.

• Number of times the automatic connection cleaner has run: The
number of times the automatic connection cleaner has run.

• Emergency thread currently active: The indicator of whether the
emergency thread is running.

• Number of times the emergency thread has been activated: The
number of times the emergency thread has been activated.

• Last time the emergency thread was activated: The last time the
emergency thread was activated.

– Directory cached attributes: This tab provides the information pertaining to
the directory’s cached attributes.

• Attribute: The name of the attribute.

• Number of cache clicks: The number of times the attribute filter has
been used after it was cached.
 Chapter 17. Monitoring IBM Tivoli Directory Server 559

• Cache size: The amount of memory used by the attribute.

• Cached attribute total size (in kilobytes): The amount of memory being
used by the cache. This number includes additional memory used to
manage the cache, that is not charged against the individual attributes.
Consequently, this total is larger than the total of the individual attribute
memory usage.

• Cached attribute configured size: The maximum amount of memory in
bytes assigned to this cache.

– Directory cache candidates: This tab gives information on which attributes
are good candidates for being put in the attribute cache.

• Attribute: The name of the attribute.

• Number of clicks: The number of times the attribute filter has been
used.

– Changelog cached attributes: This tab gives information on the cached
attributes pertaining to the changelog.

• Attribute: The name of the attribute.

• Number of cache clicks: The number of times the attribute filter has
been used after it was cached.

• Cache size: The amount of memory used by the attribute.

• Cached attribute total size (in kilobytes): The amount of memory being
used by the cache. This number includes additional memory used to
manage the cache, that is not charged against the individual attributes.
Consequently this total is larger than the total of the individual attribute
memory usage.

• Cached attribute configured size: The amount of memory assigned to
this cache.

– Changelog cache candidates: This tab provides information on the
attributes that are good candidates for being kept in the changelog cache.

• Attribute: The name of the attribute.

• Number of clicks: The number of times the attribute filter has been
used.

– Trace and logs: This tab provides information pertaining to the server
trace and the relevant logs.

• Trace enabled: The current trace value for the server. TRUE, if
collecting trace data, FALSE, if not collecting trace data.

• Trace message level: The current ldap_debug value for the server. The
value is in hexadecimal form, for example, 0x0=0, 0xffff=65535.
560 Understanding LDAP Design and Implementation

• Trace message log: The name of the file that contains the trace output.
If the value is stderr, the output is displayed in the command window
where the LDAP server was started. If the server was not started from
the command line, no data is displayed.

• Number of messages added to server logs: The number of error
messages recorded since the server started.

• Number of messages added to CLI error log: The number of DB2 error
messages recorded since the server started.

• Number of messages added to audit log: The number of messages
recorded by the audit log since the server started.

• Number of error messages added to audit log: The number of failed
operation messages recorded by the audit log.

Using command line
The above information about the server can be obtained using a ldapsearch
against base cn=monitor. The command for doing a monitor search is:

ldapsearch -D <adminDN> -w <adminPW> -s base -b cn=monitor objectclass=*

The information returned by the above search is as follows:

� version=IBM Tivoli Directory (SSL), Version 5.2.

� totalconnections: The total number of connections since the server was
started.

� total_ssl_connections: The total number of SSL connections since the server
was started.

� total_tls_connections: The total number of TLS connections since the server
was started.

� currentconnections: The number of active connections.

� maxconnections: The maximum number of active connections allowed.

� writewaiters: The number of threads sending data back to the client.

� readwaiters: The number of threads reading data from the client.

� opsinitiated: The number of requests since the server was started.

� livethreads: The number of worker threads being used by the server.

� opscompleted: The number of completed requests since the server was
started.

� entriessent: The number of entries sent by the server since the server was
started.
 Chapter 17. Monitoring IBM Tivoli Directory Server 561

� searchesrequested: The number of searches requested since the server was
started.

� searchescompleted: The number of searches completed since the server was
started.

� bindsrequested: The number of bind operations requested since the server
was started.

� bindscompleted: The number of bind operations completed since the server
was started.

� unbindsrequested: The number of unbind operations requested since the
server was started.

� unbindscompleted: The number of unbind operations completed since the
server was started.

� addsrequested: The number of add operations requested since the server
was started.

� addscompleted: The number of add operations completed since the server
was started.

� deletesrequested: The number of delete operations requested since the
server was started.

� deletescompleted: The number of delete operations completed since the
server was started.

� modrdnsrequested: The number of modify RDN operations requested since
the server was started.

� modrdnscompleted: The number of modify RDN operations completed since
the server was started.

� modifiesrequested: The number of modify operations requested since the
server was started.

� modifiescompleted: The number of modify operations completed since the
server was started.

� comparesrequested: The number of compare operations requested since the
server was started.

� comparescompleted: The number of compare operations completed since the
server was started.

� abandonsrequested: The number of abandon operations requested since the
server was started.

� abandonscompleted: The number of abandon operations completed since the
server was started.
562 Understanding LDAP Design and Implementation

� extopsrequested: The number of extended operations requested since the
server was started.

� extopscompleted: The number of extended operations completed since the
server was started.

� unknownopsrequested: The number of unknown operations requested since
the server was started.

� unknownopscompleted: The number of unknown operations completed since
the server was started.

� slapderrorlog_messages: The number of server error messages recorded
since the server was started or since a reset was performed.

� slapdclierrors_messages: The number of DB2 error messages recorded
since the server was started or since a reset was performed.

� auditlog_messages: The number of audit messages recorded since the
server was started or since a reset was performed.

� auditlog_failedop_messages: The number of failed operation messages
recorded since the server was started or since a reset was performed.

� filter_cache_size: The maximum number of filters allowed in the cache.

� filter_cache_current: The number of filters currently in the cache.

� filter_cache_click: The number of filters found in the cache.

� filter_cache_miss: The number of filters not found in the cache.

� filter_cache_bypass_limit: Search filters that return more entries than this limit
are not cached.

� entry_cache_size: The maximum number of entries allowed in the cache.

� entry_cache_current: The number of entries currently in the cache.

� entry_cache_click: The number of entries found in the cache.

� entry_cache_miss: The number of entries not found in the cache.

� acl_cache: A Boolean value indicating that the ACL cache is active (TRUE) or
inactive (FALSE).

� acl_cache_size: The maximum number of entries in the ACL cache.

� cached_attribute_total_size: The amount of memory used by the directory
attribute cache.

� cached_attribute_configured_size: The amount of memory assigned to the
directory attribute cache.

� currenttime: The current time on the server. The current time is in the format:
year-month-day hour:minutes:seconds GMT.
 Chapter 17. Monitoring IBM Tivoli Directory Server 563

� starttime: The time the server was started. The start time is in the format:
year-month-day hour:minutes:seconds GMT

� trace_enabled: The current trace value for the server. TRUE, if collecting
trace data, FALSE, if not collecting trace data. See ldaptrace for information
about enabling and starting the trace function.

� trace_message_level: The current ldap_debug value for the server. The
value is in hexadecimal form, for example: 0x0=0, 0xffff=65535

� trace_message_log: The current LDAP_DEBUG_FILE environment variable
setting for the server.

� en_currentregs: The current number of client registrations for event
notification.

� en_notificationssent: The total number of event notifications sent to clients
since the server was started.

� bypass_deref_aliases: The server runtime value that indicates if alias
processing can be bypassed. It displays true, if no alias object exists in the
directory, and false, if at least one alias object exists in the directory.

� available_workers: The number of worker threads available for work.

� current_workqueue_size: The current depth of the work queue.

� largest_workqueue_size: The largest size that the work queue has ever
reached.

� idle_connections_closed: The number of idle connections closed by the
Automatic Connection Cleaner.

� auto_connection_cleaner_run: The number of times that the Automatic
Connection Cleaner has run.

� emergency_thread_running: The indicator of whether the emergency thread
is running.

� totaltimes_emergency_thread_run: The number of times the emergency
thread has been activated.

� lasttime_emergency_thread_run: The last time the emergency thread was
activated.

Now let us see some examples as to how the above attributes help in tuning the
directory.

The following sections show examples of using values returned by the
ldapsearch command with “cn=monitor” to calculate the throughput of the server
and the number of add operations completed on the server in a certain
timeframe.
564 Understanding LDAP Design and Implementation

Throughput example: The following example shows how to calculate the
throughput of the server by monitoring the server statistic called opscompleted,
which is the number of operations completed since the LDAP server started.

Suppose the values for the opscompleted attribute obtained by issuing two
ldapsearch commands to monitor the performance statistics, one at time t1 and
the other at a later time t2, are opscompleted (t1) and opscompleted(t2)
respectively. The average throughput at the server during the interval between t1
and t2 can be calculated as:

(opscompleted(t2) - opscompleted(t1) - 3)/(t2 -t1)

Three is subtracted to account for the number of operations performed by the
ldapsearch command itself.

Workload example: The monitor attributes can be used to characterize the
workload, similar to the throughput example, but split out by type of operation.
For example, we can calculate the number of add operations that were
completed in a certain amount of time.

Suppose the values for the addscompleted attribute obtained by issuing two
ldapsearch commands to monitor the performance statistics, one at time t1 and
the other at a later time t2, are addscompleted (t1) and addscompleted(t2)
respectively. The number of add operations completed on the server during the
interval between t1 and t2 can be calculated as:

(addscompleted(t2) - addscompleted(t1) - 3)/(t2 -t1)

Three is subtracted to account for the number of operations performed by the
ldapsearch command itself.

Similar calculations can be done for other operations, such as
searchescompleted, bindscompleted, deletescompleted, and
modifiescompleted.

If you want to know the cache settings suitable for your environment, you note
down the cache settings at this point of time and also the relevant
performance/throughput. Then change the cache settings and note down the
throughput again.

Once you obtain a set of throughputs in the above manner, prepare the
trend/charts whereby you get to know the optimal value for the cache settings.
Likewise, we can tune the other parameters too and get their optimal value.
Please have a hands on with cn=monitor searches as they are the most powerful
means of monitoring the directory for performance.
 Chapter 17. Monitoring IBM Tivoli Directory Server 565

17.2.5 Analyzing changelog
Prior to analyzing the changelog, lets see why do we need to have a changelog
in place. The change log is maintained in the form of a separate database as
compared to the LDAP database, where the DIT is stored. It is used to record
changes to the schema or directory entries in the typical LDAP entry structure
that can be retrieved through the LDAP API. The change log records all update
operations that happen at the directory server: add, delete, modify, and modrdn.
The change log enables an IBM Tivoli Directory Server client application to
retrieve a set of changes that have been made to an IBM Tivoli Directory Server
database. The client might then update its own replicated or cached copy of the
data.

Viewing the changelog using the Web Administration console
To do this:

1. Log into the directory server using the Web administration tool.

2. Click the tab Directory management. Click Manage entries. Then expand
the suffix cn=changelog.

3. All the recorded changes to the DIT will appear below it in the format
changenumber=<integer>.

Figure 17-5 shows the screenshot of the changelog contents, with just one
change having been recorded, in this database.

Figure 17-5 Contents of the change log

If you want to see details on a particular change that was performed against the
directory server, you may click the Edit attributes button, shown above.
566 Understanding LDAP Design and Implementation

Viewing the changelog using ldapsearch
All the changenumbers under the suffix cn=changelog can be retrieved by the
following command:

ldapsearch -D cn=<adminDN> -w <adminPW> -b cn=changelog changenumber=*

Also a particular change number can be requested using:

ldapsearch -D cn=<adminDN> -w <adminPW> -b cn=changelog
changenumber=<integer>

It returns information in the following format:

changenumber=1,cn=changelog
objectclass=top
objectclass=changelogentry
objectclass=ibm-changelog
changenumber=1
targetdn=o=ibm,c=ind
changetype=modify
changetime=20031217094348
ibm-changeInitiatorsName=CN=ROOT
changes=replace: businesscategory
businesscategory: something

17.2.6 Analyzing log files
In this section we analyze the log files.

Audit log
Audit logging is used to improve the security of the directory server. A default
audit plug-in is provided with the directory server. Depending upon the audit
configuration parameters, this plug-in might log an audit entry in the default or
specified audit log for each LDAP operation the server processed. The system
administrator can use the activities stored in the audit log to check for suspicious
patterns of activity, in an attempt to detect security violations. If security is
violated, the audit log can be used to determine how and when the problem
occurred and perhaps the amount of damage done. This information is very
useful, both for recovery from the violation and, possibly, in the development of
better security measures to prevent future problems. We can also write our own

Note: Enabling the changelog is seen as a performance bottleneck,
because the directory server would have to write to the LDAP database as
well as log the relevant information in the changelog database. Therefore it
is advisable to have the changelog enabled only in the event that a
problem is being debugged or if another application in your organization
(that is, a meta-directory tool) required it to be on.
 Chapter 17. Monitoring IBM Tivoli Directory Server 567

audit plug-ins to either replace, or add more processing to, the default audit
plug-in.

By default the audit log is disabled.

The audit log can be configured to track various activities happening against the
directory server like attempted logins, requested operations, the timestamp of the
operations etc. It is a plain text file created in the /var/ldap directory in case of
unix systems (ldapinstalldir\ibm\ldap\var in the case of windows). The audit log
file is a crucial tool in monitoring the directory activities.

In order to start using the Audit Log, it first needs to enabled. As expected, there
are two ways of enabling the audit log.

Using Web administration tool
To use this:

1. Expand Logs in the navigation area, click Modify audit log settings.

2. Select Enable audit logging to use the audit log utility.

3. Select the Audit version you want to use. Version 1 maintains previous audit
logging capabilities for any applications that parse the audit log. Version 2
enables you to log extended operations, however, you might need to modify
existing applications that parse the audit log.

4. Select to either log Only failed attempts of the selected operations or to log All
attempts of the selected operations.

5. Enter the Path and file name for the audit log. The audit log can also be
directed to something other than a file, for example, a line printer.

6. Select the operations you wish to log. Consult the field help for additional
information about the various operations you can log.

– Bind - records connections to the server

– Unbind - records disconnections from the server

– Search - records LDAP search operations performed by any client

– Add - records additions to LDAP

– Modify - records modifications to LDAP

– Delete - records deletions from LDAP

Note: Members of the administrative group can view the audit log and the
associated settings but not modify them. Only the root administrator is allowed
to access, change or clear the audit log files.
568 Understanding LDAP Design and Implementation

– Modify RDN - records modifications made to RDNs

– Event notification - records event notifications

– Extended operations- records extended operations performed against the
server

7. Click OK to apply the changes or click Cancel to return to the IBM Tivoli
Directory Server Web Administration Welcome panel without making any
changes.

Figure 17-6 on page 570 shows the screenshot of the relevant panel, where you
would be doing these changes.

Note: If you have selected audit Version 1, selecting Extended operations
does not activate this function. You must select audit version 2 for the
auditing of extended operations to work.
 Chapter 17. Monitoring IBM Tivoli Directory Server 569

Figure 17-6 Panel to enable/disable the audit log

Using the command line
The similar operations can be done via the command using our very own
ldapmodify command. Here is how:

ldapmodify -D <adminDN> -w <adminPW> -i <filename>

Where <filename> contains:

dn: cn=audit, cn=localhost
changetype: modify
replace: ibm-audit
ibm-audit: true
-
replace: ibm-auditadd
ibm-auditadd: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable
570 Understanding LDAP Design and Implementation

-
replace: ibm-auditbind
ibm-auditbind: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable
-
replace: ibm-auditdelete
ibm-auditdelete: {TRUE|FALSE}
-
replace: ibm-auditextopevent
ibm-auditextopevent: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable
-
replace: ibm-auditfailedoponly
ibm-auditfailedoponly: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable
-
replace: ibm-auditlog
ibm-auditlog: <newpathname>
-
replace: ibm-auditmodify
ibm-auditmodify: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable
-
replace: ibm-auditmodifydn
ibm-auditmodifydn: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable
-
replace: ibm-auditsearch
ibm-auditsearch: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable
-
replace: ibm-auditunbind
ibm-auditunbind: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable
-
replace: ibm-auditversion
ibm-auditversion: {1|2}
#select 2, if you are enabling audit for extended operations
-
replace: ibm-auditExtOp
ibm-auditExtOp: {TRUE|FALSE}
#select TRUE to enable, FALSE to disable

Note: If you are using audit logging in Configuration only mode, the DN
specified is dn: cn=audit, cn=configuration. Any changes made to this DN
are overwritten with the dn: cn=audit, cn=localhost values when the server
is started in normal mode.
 Chapter 17. Monitoring IBM Tivoli Directory Server 571

Disabling the audit log
Again, we are going to see two ways to disable audit logging.

Using Web Administration
To use this:

1. Expand Logs in the navigation area, click Modify audit log settings.

2. Deselect Enable audit logging.

3. Click OK to apply the changes or click Cancel to return to the IBM Tivoli
Directory Server Web Administration Welcome panel without making any
changes.

Using the command line
The similar operations can be done via the command using our very own
ldapmodify command. Here is how:

ldapmodify -D <adminDN> -w <adminPW> -i <filename>

Where <filename> contains:

dn: cn=audit, cn=localhost
changetype: modify
replace: ibm-audit
ibm-audit: false

You do not need to deselect the individual operations to disable auditing.
Just running the above ldapmodify should suffice.

Viewing the audit log
The audit log displays, log entries, chronologically. Each non-message entry
contains a general information header followed by operation-specific data. For
example:

2000-03-23-16:01:01.345-06:00--V3 Bind--bindDN:cn=root
--client:9.1.2.3:12345--
ConnectionID:12--received:2000-03-23-16:01:01.330-06:00 --success
name: cn=root
authenticationChoice: simple
If the audit version is version 2 the header contains __AuditV2--__.
AuditV2--2003-07-22-09:39:54.421-06:00DST--V3 Bind--bindDN:

Note: If you are using audit logging in Configuration only mode, the DN
specified is dn: cn=audit, cn=configuration. Any changes made to this DN
are overwritten with the dn: cn=audit, cn=localhost values when the server
is started in normal mode.
572 Understanding LDAP Design and Implementation

cn=root--client: 127.0.0.1:8196--connectionID: 3--received:
2003-07-22-09:39:54.421-06:00DST--Success

The header is in the following format:

� Timestamp 1 __--__: The local time the entry is logged, that is, the time the
request was processed. The timestamp is in the format YYYY-MM-DDHH:
MM:SS.mmm=(or-)HH:MM. The =(or=)HH:MM is UTC offset. mmm is
milliseconds.

� Version number+[SSL]+[unauthenticated or anonymous] Operation __--__:
Shows the LDAP request that was received and processed. Version number
is either V2 or V3. SSL displays only when SSL was used for the connection.
unauthenticated or anonymous displays to indicate whether the request was
from an unauthenticated or anonymous client. Neither unauthenticated nor
anonymous are logged, in case the request is from an authenticated client.

� bindDN: Shows the bind DN. For V3 unauthenticated or anonymous requests,
this field is <*CN=NULLDN*>.

� client:Client IP address:Port number __--__: Shows the client IP address and
port number.

� ConnectionID: xxxx __--__: Is used to group all the entries received in the
same connection, meaning between the bind and unbind, together.

� received: Timestamp 2 __--__: Is the local time when the request was
received, or to be more specific, the beginning time when the request was
processed. Its format is the same as Timestamp 1.

Result or Status string Shows the result or status of the LDAP operation. For the
result string, the textual form of the LDAP resultCode is logged, for example,
success or operationsError, instead of 0 or 1.

Operation-specific data follows the header and displays operation-specific data,
for example,

Bind operations
name: Y249bWFuYWdlcg0K
authenticationChoice: simple

Add operations
entry: cn=Jim Brown, ou=sales,o=ibm_us,c=us
attributes: objectclass, cn, sn, telphonenumber

Delete operations
entry: cn=Jim Brown, ou=sales,o=ibm_us,c=us

Modify operations
object: cn=Jim Brown, ou=sales,o=ibm_us,c=us
add: mail
delete: telephonenumber

Now let us see how we can see the contents of the audit log.
 Chapter 17. Monitoring IBM Tivoli Directory Server 573

Using Web Administration
To do this:

1. Expand Logs in the navigation area, click View audit log.

2. The panel displays the first page of the audit log.The navigation arrows at the
bottom of the panel enable you to go to the Next page or to the Previous
page. From the menu, you can select a specific page, for example Page 6 of
16, and click Go to display that page of the audit log. You can:

a. Click Refresh to update the entries in the log.

b. Click Clear log to delete all entries in the audit log.

c. Click Close to return to the IBM Tivoli Directory Server Web
Administration Welcome panel.

Figure 17-7 shows the relevant screenshot of the panel you will see, when you
view the audit log via the Web Administration tool.

Figure 17-7 Contents of the audit log

Using the command line
To view the audit log through the command line, issue the following command
(for UNIX):

more /var/ldap/audit.log

Where /var/ldap/audit.log is the default path for the audit log.

To view and clear the audit log dynamically:

ldapexop -D <adminDN> -w <adminPW> -op readlog -log audit -lines all

Note: /var/ldap/audit.log is the default audit log for UNIX systems and
ldapinstalldir\var\audit.log is the default audit log for Windows systems. The
above command will not work if you have set a Custom path for the audit log.
574 Understanding LDAP Design and Implementation

ldapexop -D <adminDN> -w <adminPW> -op clearlog -log audit

The ldapexop tool can be used to fetch the whole or some required number of
lines from the audit log file. The command for the same is as shown below:

ldapexop -D <adminDN> -w <adminPW> -op readlog -log audit -lines all

It returns the audit log as follows:

authenticationChoice: simple
AuditV2--2003-12-17-14:53:36.554-05:00--V3 Unbind--bindDN: cn=root--client:
127.0.0.1:19728--connectionID: 33--received:
2003-12-17-14:53:36.554-05:00--Success
controlType: 2.16.840.1.113730.3.4.2
criticality: false
AuditV2--2003-12-17-14:53:36.654-05:00--V3 Unbind--bindDN: cn=root--client:
127.0.0.1:18704--connectionID: 31--received:
2003-12-17-14:53:36.654-05:00--Success
controlType: 2.16.840.1.113730.3.4.2
criticality: false
AuditV2--2003-12-17-14:54:33.065-05:00--V3 Bind--bindDN: cn=root--client:
9.24.104.185:20240--connectionID: 34--received:
2003-12-17-14:54:33.065-05:00--Success
name: cn=root
authenticationChoice: simple

Here is what is expected, when we clear the log and then try to read its contents:

C:\>ldapexop -D <adminDN> -w <adminPW> -op clearlog -log audit
audit log file cleared.
C:\>ldapexop -D -D <adminDN> -w <adminPW> -op readlog -log audit -lines all

Feb 22 00:23:44 2004 Log file cleared.
AuditV2--2004-02-22-00:23:44.645+05:00--V3 extended operation--bindDN:
cn=root--client: 127.0.0.1:3588--connectionID: 3--received:
2004-02-22-00:23:44.645+05:00--SuccessOID: 1.3.18.0.2.12.20
AuditV2--2004-02-22-00:23:44.655+05:00--V3 Unbind--bindDN: cn=root--
client: 127.0.0.1:3588--connectionID: 3--received:
2004-02-22-00:23:44.655+05:00--Success
AuditV2--2004-02-22-00:23:52.416+05:00--V3 Bind--bindDN: cn=root--
client: 127.0.0.1:3844--connectionID: 4--received:
2004-02-22-00:23:52.416+05:00--Success
name: cn=root
authenticationChoice: simple
AuditV2--2004-02-22-00:23:52.416+05:00--V3 extended operation--bindDN:
cn=root--client: 127.0.0.1:3844--connectionID: 4--received:
2004-02-22-00:23:52.416+05:00--Success

ibmslapd Error log
The errors pertaining to the server operations are logged in what is known as the
ibmslapd error log. This file can also be handy in some cases. For example, if
 Chapter 17. Monitoring IBM Tivoli Directory Server 575

you try to add entries with some object class violations, they can very easily be
noticed by means of this error log. You can note error messages like this in the
slapd error log:

Feb 15 04:26:31 2004 The required attribute sn is missing for entry
cn=user1,o=ibm,c=us.
Feb 15 04:26:31 2004 Entry cn=user1,o=ibm,c=us violates the schema
definition.

There are other errors too like the Master unable to contact the Replica for a
given reason. These also appear in the ibmslapd error log. So if there is any
problem pertaining to the server that you need to look at, feel free to go through
the ibmslapd error log and there might be a hint of the problem out there.

To modify error log settings, there are again two ways to do it. First, We will see
the necessary changes through the Web Administration Tool:

1. Expand Server administration in the navigation area, click Logs, click Modify
error log settings.

2. Enter the path and file name for the error log. Ensure that the path is valid. If
the file does not exist, it is created. The error log can also be directed to
something other than a file, for example, a line printer.

3. Select either Low, Medium, or High for the level of error logging.

a. Low logs the least amount of error information, for example:

Mar 29 11:03:23 2002 IBM Directory, Version 5.2
slapd started.

b. Medium logs a medium amount of error information, for example:

Mar 29 11:07:51 2002 Configuration read securePort 636.
Mar 29 11:07:51 2002 Plugin of type PREOPERATION is successfully loaded
from libDSP.dll.
Mar 29 11:07:51 2002 Plugin of type DATABASE is successfully loaded from
C:\Program Files\IBM\LDAP/bin/libback-rdbm.dll.
Mar 29 11:08:11 2002 Non-SSL port initialized to 389.
Mar 29 11:08:12 2002 IBM Directory, Version 5.2
slapd started.

Note: The error log, ibmslapd.log, is enabled by default.

Note: If you specify a file that is not an acceptable file name (for example,
invalid syntax or if the server does not have the rights to create and/or
modify the file), the attempt fails with the following error: LDAP Server is
unwilling to perform the operation.
576 Understanding LDAP Design and Implementation

c. High logs the most amount of error information, for example:

Mar 29 11:04:05 2002 Configuration read securePort 636.
Mar 29 11:04:05 2002 Configuration read cipher specifications mask to be
12288.
Mar 29 11:04:05 2002 Plugin of type PREOPERATION is successfully loaded
from libDSP.dll.
Mar 29 11:04:05 2002 Plugin of type DATABASE is successfully loaded from
C:\Program Files\IBM\LDAP/bin/libback-rdbm.dll
Mar 29 11:04:24 2002 Configuration file successfully read.
Mar 29 11:04:24 2002 Non-SSL port initialized to 389.
Mar 29 11:04:25 2002 IBM Directory, Version 5.2
slapd started.

4. Click OK to apply the changes or click Cancel to return to the IBM Tivoli
Directory Server Web Administration Welcome panel without making any
changes.

5. Click OK to return to the IBM Tivoli Directory Server Web Administration
Welcome panel.

Figure 17-8 shows the relevant screenshot.

Figure 17-8 ibmslapd error log settings

Using the command line
Issue the command:

ldapmodify -D <adminDN <-w >adminPW> -i <filename>
where <filename> contains:

dn: cn=Configuration
changetype: modify
replace: ibm-slapdErrorLog
ibm-slapdErrorLog: <newpathname>
-
replace: ibm-slapdSysLogLevel
 Chapter 17. Monitoring IBM Tivoli Directory Server 577

ibm-slapdSysLogLevel: {l | m | h}

To update the settings dynamically, issue the following ldapexop command:

ldapexop -D <adminDN> -w <adminPW> -op readconfig -scope entire

The ldapexop command updates only those attributes that are dynamic. For
more information on which attributes can be updated dynamically and which not,
you can go through Chapter 10, “Client tools” on page 237.

Viewing the error log
Use the following procedures to view the error log.

Using Web Administration
To use this:

1. Expand Logs in the navigation area, then click View error log.

2. The panel displays the first page of the error log and the navigation arrows at
the bottom of the panel enable you to go to the Next page or to the Previous
page. From the menu, you can select a specific page, for example Page 6 of
16, and click Go to display that page of the error log. You can:

a. Click Refresh to update the entries in the log.

b. Click Clear log to delete all entries in the administration daemon error log.

c. Click Close to return to the IBM Tivoli Directory Server Web
Administration Welcome panel.

Figure 17-9 shows the relevant screenshot, which shows a portion of the
messages logged.

Figure 17-9 Contents of the ibmslapd error log file
578 Understanding LDAP Design and Implementation

Using the command line
To view the error log, issue the following command (on UNIX):

more /var/ldap/ibmslapd.log

Where /var/ldap/ibmslapd.log is the default path for the ibmslapd error log.

To view and clear the error log dynamically:

ldapexop -D <adminDN> -w <adminPW> -op readlog -log slapd -lines all
ldapexop -D <adminDN> -w <adminPW> -op clearlog -log slapd

DB2 error log
In addition to the ibmslapd.log file, which can be accessed through the Web
Administration Tool, DB2 errors are logged in the db2cli.log file. Both files are
located in the var subdirectory of the IBM Tivoli Directory Server installation
directory on Windows platforms. There exist a lot of parameters at the DB2 level,
which will enhance our directory server’s performance. In case any of the
parameter is set below/above the acceptable limits, the relevant message will be
logged into the db2cli.log.

Server errors, by default, are logged in the \var\ibmslapd.log file.

DB2 errors are, by default, logged in the \var\db2cli.log file.

Modifying DB2 error log settings
As expected, there are two ways of modifying the settings of the DB2 Error log:

1. Expand Logs in the navigation area, click Modify DB2 log settings.

2. Enter the path and file name for the error log. Typically this is the db2cli.log
file located in the /var/ldap directory. Ensure that the path is valid. If the file
does not exist, it is created.

Note: /var/ldap/ibmslapd.log is the default error log for UNIX systems and
ldapinstalldir\var\ibmslapd.log is the default error log for Windows systems.

Note: The var subdirectory might include other DB2 files.

Note: /var/ldap/db2cli.log is the default DB2 error log for UNIX systems
and ldapinstalldir\var\db2cli.log is the default DB2 error log for Windows
systems.
 Chapter 17. Monitoring IBM Tivoli Directory Server 579

3. Click OK to apply the changes or click Cancel to return to the IBM Tivoli
Directory Server Web Administration Welcome panel without making any
changes.

4. Click OK to return to the IBM Tivoli Directory Server Web Administration
Welcome panel.

Figure 17-10 shows the relevant screenshot.

Figure 17-10 DB2 log settings

Using the command line
Issue the command:

ldapmodify -D <adminDN> -w <adminPW> -i <filename>
where <filename> contains:

dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas,
cn=Configuration
changetype: modify
replace: ibm-slapdCLIErrors
ibm-slapdCLIErrors: <newpathname>

To update the settings dynamically, issue the following ldapexop command:

ldapexop -D <adminDN> -w <adminPW> -op readconfig -scope single
"cn=Directory,cn=RDBM Backends,cn=IBM
Directory,cn=Schemas,cn=Configuration" ibm-slapdCLIErrors

The ldapexop command updates only those attributes that are dynamic. For
other changes to take effect you must restart the server. See Chapter 10, “Client
tools” on page 237, to see which attributes can be updated dynamically.

Viewing the DB2 error log
Use the following procedures to view the DB2 error log.

Using Web Administration
To do this:

1. Expand Logs in the navigation area, then click View DB2 log.
580 Understanding LDAP Design and Implementation

2. The panel displays the first page of the DB2 log and the navigation arrows at
the bottom of the panel enable you to go to the Next page or to the Previous
page. From the menu, you can select a specific page, for example Page 6 of
16, and click Go to display that page of the DB2 log. You can:

a. Click Refresh to update the entries in the log.

b. Click Clear log to delete all entries in the DB2 error log.

c. Click Close to return to the IBM Tivoli Directory Server Web
Administration Welcome panel.

Figure 17-11 shows the relevant screen shot.

Figure 17-11 DB2 log contents

Using the command line
To view the DB2 error log issue the following command (on UNIX):

more /var/ldap/db2cli.log

Where var/ldap/db2cli.log is the default path for the DB2 error log.

To view and clear the DB2 error log dynamically:

ldapexop -D <adminDN> -w <adminPW> -op readlog -log cli -lines all
ldapexop -D <adminDN> -w <adminPW> -op clearlog -log cli

Here is an example of example of the above commands:

C:\>ldapexop -D <adminDN> -w <adminPW> -op readlog -log cli -lines all
02/03/2004 10:24:57 PM native retcode = -601; state = "42710";
message = "[IBM][CLI Driver][DB2/NT] SQL0601N The name of the object
to be created is identical to the existing name "LDAPBP" of type
"BUFFERPOOL". SQLSTATE=42710 "

Note: /var/ldap/db2cli.log is the default DB2 error log for UNIX systems and
ldapinstalldir\var\db2cli.log is the default DB2 error log for Windows systems.
 Chapter 17. Monitoring IBM Tivoli Directory Server 581

C:\>ldapexop -D <adminDN> -w <adminPW> -op clearlog -log cli
cli log file cleared.

C:\>ldapexop -D <adminDN> -w <adminPW> -op readlog -log cli -lines all
Feb 22 03:49:07 2004 Log file cleared.

17.3 Operating system commands for monitoring ITDS
Sometimes it is required to track the resources consumed by the directory server
while running for long durations. Listed below are some OS-specific commands
to achieve the above goal.

AIX
To view information about the running process ibmslapd, issue the following
command:

ps auwx | grep -i ibmslapd

Linux
Command line tool to view information about the running process ibmslapd:

ps aux | grep -i ibmslapd

Graphical tool to view information about the running processes:

pstree (check the man pages for more details)

Solaris
Command line tool to view information about the running process ibmslapd:

ps -yel | grep -i ibmslapd

Graphical tool to view information about the running processes:

/usr/dt/bin/sdtprocess

Note: In case it is necessary to dig into DB2 errors further, you can go
through a file known as db2diag.log. On UNIX, the default path of
db2diag.log is: “<directory where you configured you’re ldap
database>/sqllib/sqldump/db2diag.log”. On Windows, the default path is
“<DB2 Installation path>\<You’re DB2 instance name>\db2diag.log”. For
example, “D:\Program files\IBM\SQLLIB\LDAPDB2\db2diag.log”. You can
change the default path using DB2 utilities. Refer to Chapter 20,
“Developing JNDI-based applications” on page 619, for further information
on db2diag.log.
582 Understanding LDAP Design and Implementation

You can specify the refresh rate at which the screen will be refreshed to show the
updated statistics.

Windows
Command line utility to view information about running processes: Download the
pview utility from the Microsoft Web site.

Graphical tool: The Processes tab in the Windows Task Manager can be used
for monitoring the resource usage.

HP-UX
Command line utility to view information about the running ibmslapd process:

ps -eaf | grep -i ibmslapd

All the above commands, shown for different operating systems, help us to get to
know two things.

� Firstly, if ibmslapd is still running.

� Secondly, how much has the process size grown till date and if it is within
permissible limits or going to click the limits soon.

If there is growth in process size, it is not necessarily a memory leak. For
example, if you have set your caches too large then as the number of misses on
the directory server cache increases the data cached increases, which in turn
increases the ibmslapd process size. The ulimits of the system (UNIX) play a
very significant role here, in order to regulate the systems’ resource utilization.
You can see the current ulimit settings using the command:

ulimit -a

Here is a sample output of the ulimits of a system:

bash-2.05a# ulimit -a
core file size (blocks, -c) 1048575
data seg size (kbytes, -d) 131072
file size (blocks, -f) 1048575
max memory size (kbytes, -m) 32768
open files (-n) 2000
pipe size (512 bytes, -p) 64
stack size (kbytes, -s) 32768
cpu time (seconds, -t) unlimited
max user processes (-u) 262144
virtual memory (kbytes, -v) unlimited

As seen above the (u)pper limit for the process memory size is 32 MB.
 Chapter 17. Monitoring IBM Tivoli Directory Server 583

If you have set the process memory size to unlimited then ibmslapd would keep
growing, till either the clients are happy with the entries in the cache or the entire
directory has been cached. If neither case satisfies, ibmslapd would keep
growing, ultimately bringing down the entire system to a hang condition. The only
alternative to do in this situation would be to reboot the system physically. In
order to avoid such issues, please ensure:

� You have set you’re systems’ ulimits appropriately.

� You have the LDAP caches set appropriately.

� You have DB2 bufferpools set appropriately.

By appropriately, we mean as per the availability of resources, so that if the
ibmslapd size grows beyond this extent, the OS will just pull out ibmslapd out of
the process table, that is, it’ll kill ibmslapd on its own.

Such things are most commonly observed while tuning the directory server to get
to know the answers to a set of performance queries. Queries like “What exact
figures of the caches will suit my environment?”, “What are the database
bufferpools we are supposed to set my systems to?”, “What are the attributes
that we want to cache”, “What should be the size of my attribute cache?” etc.
These are the types of tests where we need to have an eye on the size of the
ibmslapd process.

If anything unusual happens, either you have overshot one of you’re parameters
or there might be a genuine memory leak, which needs to be brought forth the
ITDS Support team.

Here is an example of the ps auwx command on AIX:

bash-2.05a# ps auwx | head -1
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
bash-2.05a# ps auwx | grep ibmslapd | grep -v grep
ldap 340136 0.2 1.0 13332 13444 - A Feb 20 30:14 ibmslapd

As seen above the current size of ibmslapd seems to be: 13 MB, which is very
well within limits. Make sure the size of ibmslapd does not show anomalous
growth in you’re environment.

Well, we have seen a lot of things in this chapter, which help in monitoring our
directory server. Prior to summarizing things, let us go over a couple more notes
which are worth having a look.
584 Understanding LDAP Design and Implementation

17.4 Summary
In summary:

� To start with the chapter, we looked into the reasons for monitoring our
directory server.

� Then we looked into the different monitoring tools:

– Client tools to monitor the directory server, whereby we saw that the
search to “cn=monitor” provides a lot of insight into the directory
performance.

– Log files helped us in knowing if there were any configuration issues that
need to be overcome for the smooth functioning of the database.

– A separate database which helped us in knowing what all changes took
place with the directory server at different instants of time.

� Then we saw how the OS utilities help in tracking the anomalies associated
with the directory server growth.

Note: See the following:

� In the Web Administration Tool the Logfiles field in the task title bar
accesses the Web Administration console log files. The IBM Tivoli
Directory Server log files are accessible by using the procedures specified
in the sections, we have just discussed.

� On Windows-based systems, if a path begins with the drive letter and a
colon, it is assumed to be the full path. A path without the drive letter, starts
in the installation tree. As examples: c:\tmp\mylog is a full path, while
\tmp\mylog is interpreted as c:\program files\ibm\ldap\tmp\mylog.

� The simplest way to get to a problem is to know the time when it has
occurred. The log files are timestamped. So you just compare the different
log files simultaneously for the activities at a given instant of time and there
you are, very close to the problem cause. If multiple LDAP servers are
involved (for example, debugging a replication issue), keeping them time
synchronized is handy (Only of course if time synchronization if feasible).
 Chapter 17. Monitoring IBM Tivoli Directory Server 585

586 Understanding LDAP Design and Implementation

Part 4 Developing

directory-enabled
applications

As seen throughout this book, many applications are already LDAP-enabled.
They utilize LDAP directories for various purposes, user information,
authentication/authorization, configuration settings, and so forth. User
applications can benefit from the advantages of directories as well. This chapter
gives ideas on how to leverage LDAP directories in self-written applications and
introduces the various programming interfaces and methods to directory-enable
applications.

For example, a company sets up an enterprise LDAP directory for e-mail clients
to use to retrieve e-mail addresses. The information in the directory can be used
for various other purposes. The payroll application, for example, could use the
directory to retrieve employee addresses. Employees may also want to update
their own information in the directory. All of these uses require some sort of
programming unless the company has bought software that does exactly what is

Part 4
© Copyright IBM Corp. 1998, 2004. All rights reserved. 587

needed. Virtually all applications whether they are written in C++, Java, Visual
Basic, etc., can be LDAP-enabled due to the variety of different application
interfaces available.

IBM Directory Server provides a set of Application Programming Interfaces
(APIs) that allow users to search a directory or perform operations, such as
additions, modifications, or deletions of directory entries. This part of the book
contains some examples of how to use APIs in a C or Java application to search
for a specific directory entry or to add a new entry into a directory.
588 Understanding LDAP Design and Implementation

Chapter 18. Debugging IBM Tivoli
Directory Server related
issues

This chapter discusses the various debugging and tracing capabilities provided
by ITDS 5.2. These facilities provide a directory administrator greater insight into
what on side of the directory any given time.

18
© Copyright IBM Corp. 1998, 2004. All rights reserved. 589

18.1 Overview
The process of installing and configuring ITDS, for various reasons, is not always
error free. The directory administrator can encounter problems with basic
installation of the server, configuring various server components, or the server
might fail to start for no obvious reason.

Debugging is the process of finding the cause of the problem using various tools
and techniques and eliminating them. Due of these inherent problems, ITDS
provides administrators various command line options, tools and detailed log
files that help the user find the cause of the problem.

18.2 Debugging problems
The following sections describe how to debug configuration problems, directory
server errors, directory server debug modes, and DB2 debug logs.

18.2.1 Debugging configuration problems
The first thing that is to be done after installation of the product is the
configuration. If this fails then there is no way you can go but to resolve the issue.
The very basic steps towards making the IBM Tivoli Directory Server up and
running are:

� Configuring an Admin DN and password

� Configuring the Directory server database

The above basic tasks are performed by using the configuration tools provided
by the directory server. These are:

� ldapcfg: Command-line tool for configuring the directory server (admin dn,
password, database and other tasks).

� ldapxcfg: GUI for doing the same tasks as ldapcfg. In other words, it is the
GUI equivalent of ldapcfg.

� ldapucfg: Command-line tool for unconfiguring the directory server(admin dn,
password, directory and changelog database etc.).

While the configuration of Admin DN and password is fairly straightforward and is
less error prone, the database configuration may not be that easy. Generally, the
only reasons the configuration of the Admin DN fails are if the IBM Directory
configuration file (<ldapinstalldir>/etc/ibmslapd.conf) has had the permissions
accidentally changed, or if the user enters an invalid DN. If the database
590 Understanding LDAP Design and Implementation

configuration fails, the following sources can be checked to find the cause of the
failure:

1. Output on the screen

All of the configuration programs are either started from a console command
line prompt (ldapcfg, ldapucfg) or open a background console (ldapxcfg). As
the database configuration progresses, status messages (and limited error
messages) are displayed in the associated console window. If a problem
occurs, the user should copy these messages to the system clipboard and
then save them in a file for the support teams.

2. DB2 log files

If the error is a direct error from DB2, then DB2 often creates message/error
files in the /tmp directory (on UNIX platforms). If the user has a database
configuration problem on UNIX systems, they need to examine all of the files
in the /tmp directory that were created around the time of the attempted
configuration. On Windows systems, examine any DB2 error logs in the
directory named for the instance you were trying to configure under the DB2
install directory under. For example, if your were trying to create the default
ldapdb2 instance and database, and if your DB2 was installed in D:\sqllib,
then you need to examine the files in the D:\sqllib\ldapdb2 directory if it exists.
Especially look for and examine the db2diag.log file in that directory.

3. IBM Directory logs for configuration issues

IBM Directory logs most configuration errors in the file ldacfg.out. On UNIX
platforms, this file can be found in the /tmp directory. On Windows platforms,
this file is created in the root directory of the drive you ran configuration from.

If the above sources are not sufficient for determining the cause of the problem,
we can resort to advanced debugging. In advanced debugging we set two
environment variables and collect the relevant logs as explained below:

1. JAVA_DEBUG

Set this environment variable to any non-empty value, for example:

JAVA_DEBUG=1

On UNIX platforms, use export JAVA_DEBUG=1. This causes certain Java
debug information built into the code to be displayed on stdout (the console).
The best practice is to redirect the output to a file and then analyses the
same.

2. LDAP_DBG

Set this environment variable to any non-empty value. For example:

LDAP_DBG =1
 Chapter 18. Debugging IBM Tivoli Directory Server related issues 591

On UNIX platforms, use export LDAP_DBG=1. This causes a debug file to be
created for the IBM support and development teams. The file name that is
created is dbg.log. It is created in /var/ldap/ directory.

On the Windows NT and Windows 2000 platforms, dbg.log is created in the
<ldapinstalldir> \var directory.

18.2.2 Debugging directory server related errors using log files
When a problem occurs that appears to be related to the IBM Directory Server,
you should first check the following files for error messages. The default
locations of these files are /var/ldap in case of Unix and <ldapinstalldir>\var in
case of windows.

� ibmslapd.log: When the server starts up, it logs all messages to this file.
During the normal operations of the directory server, if any operation is
requested of the server, which it does not like to do, it would log the same. For
instance, if a user tries to add an object with an invalid schema, server will not
add the same and would record the relevant message in ibmslapd.log.
Moreover, you can also get information like the number of additions that
ldif2db did, or the number of entries that db2ldif managed to export
successfully etc. Hence, ibmslapd.log is quite handy in resolving issues.

� audit.log: The audit log shows what searches are being performed and the
parameters used in each search. The audit log also shows the timestamp of
when a client binds and unbinds from the directory, for that matter it
timestamps all the operations it is supposed to log. Observing these
measurements allows the LDAP administrator to identify LDAP operations
that take a long time to complete.

� db2cli.log: All errors encountered while the directory server tries to access the
backend database using CLI (Call Level Interface) routines are logged into
the db2cli.log file.

You can change the location of these files by modifying the appropriate settings
from the Web administration tool or by directly editing the ibmslapd.conf file.

For more information on how to handle the above log files, please go through
Chapter 17, “Monitoring IBM Tivoli Directory Server” on page 547.

18.2.3 Using server debug modes
If the above listed log files do not provide enough information about the problem,
you can run the IBM Tivoli Directory Server in a special debug mode that
generates very detailed information. An ibmslapd trace provides a list of the SQL
commands issued to the DB2 database. These commands can help you identify
operations that are taking a long time to complete.
592 Understanding LDAP Design and Implementation

Here is a snippet of the server debug trace:

053:08:12:32 T1452 61882676 423 usec SQLExecute => 0, hstmt=20001
053:08:12:32 T1452 61882977 26 usec SQLFetch => 100, hstmt=20001

The above statements show that the time taken to do the SQLExecutes of the
statement with a handle of 20001 is 423 micro seconds and that the time
required by the SQLFetch for the same SQL statement is 26 micro seconds.

In some cases, the log files you have collected seem to provide that some
problem had occurred with the directory server, but fail to hint at the probable
cause. The debug trace would help in such situations, as it would give more
detailed steps of the server operations. The best example would be, suppose
due to some error, the database starts up in configuration mode. The logs will not
provide you the problem cause. They will just hint that there was a problem with
the server. So how do you get to the root of the problem? Of course yes, by
running the server in debug mode. That helps out to know the exact cause of the
server starting up in configuration mode. You just correct the problem, pointed to,
by the trace, and there you are, you’re server is up and running once again.

The server executable ibmslapd must be run from a command prompt to enable
debug output. The syntax is as follows:

ldtrc on -l 20000000
ibmslapd -h <bitmask>

The above means to turn (on) the ldap trace and keep a buffer of 20 Million lines.
that is, out of the total trace information only the last 20 Million lines would be
kept in the buffer and not more than that. This is handy sometimes, in situations
where you want to reduce the size of the debug file to be analyses and are sure
that you would stop the server instantly when the problem occurs. Let us see
what the above commands mean. First We will look into what ldtrc means for us.

ldtrc
This command is used for enabling/disabling the trace options for ibmslapd. In
the sense that you would need to use this command to turn on the trace options
for allowing ibmslapd to run in debug mode. What debug level ibmslapd runs at is
a later issue. This command is just a preparatory step towards enabling the
debug mode of ibmslapd.

ldtrc usage:

Usage: ldtrc (chg|clr|dmp|flw|fmt|inf|off|on) options
chg|change : change the trace mask, pid.tid, cpid or maxSevereErrors
clr|clear : clear the trace
dmp|dump : dump the trace to a binary trace file
flw|flow : show control flow of the trace
fmt|format : format the trace
 Chapter 18. Debugging IBM Tivoli Directory Server related issues 593

inf|info|information : get information on the trace
off : turn the trace off
on : turn the trace on

For more information type ldtrc (chg|clr|dmp|flw|fmt|inf|off|on) help

The further details for the above shall not be given here and can be found in the
description of ldaptrace in one of the following sections.

ibmslapd in debug mode
Once you have turned on the trace options using ldtrc, we can go ahead with
collecting the server debug information by running ibmslapd in debug mode. The
server is run in debug mode by specifying a bitmask. The bitmask helps the
server in deciding the set of operations it is supposed to run with extensive
tracing. Like if you have replication related issues and want to debug the
replication operations of the server, you can turn on just the flags pertaining to
replication (1024) that is, specify this debug bitmask while starting the server. A
value of 65535 for the bitmask indicates that the maximum debug output should
be generated. Table 18-1 describes the various flags you can set in the bitmask.

Table 18-1 Debug categories

Hex Decimal Value Description

0x0001 1 LDAP_DEBUG_TRACE Entry and exit from routines

0x0002 2 LDAP_DEBUG_PACKETS Packet activity

0x0004 4 LDAP_DEBUG_ARGS Data arguments from requests

0x0008 8 LDAP_DEBUG_CONNS Connection activity

0x0010 16 LDAP_DEBUG_BER Encoding and decoding of data

0x0020 32 LDAP_DEBUG_FILTER Search filters

0x0040 64 LDAP_DEBUG_MESSAGE Messaging subsystem activities and
events

0x0080 128 LDAP_DEBUG_ACL Access Control List activities

0x0100 256 LDAP_DEBUG_STATS Operational statistics

0x0200 512 LDAP_DEBUG_THREAD Threading statistics

0x0400 1024 LDAP_DEBUG_REPL Replication statistics

0x0800 2048 LDAP_DEBUG_PARSE Parsing activities

0x1000 4096 LDAP_DEBUG_PERFORMANCE Relational backend performance
statistics
594 Understanding LDAP Design and Implementation

Now depending upon the type of operations you want to debug, just form the
relevant bitmask by ORing the individual bitmasks and pass the consolidated
bitmask to ibmslapd, during its startup.

The trace output will be directed to the standard output. It is recommended that
you redirect the same to a file for analyzing later, as the console buffer might not
be sufficient to retain all the information on the screen. The file redirection can be
achieved by following any of the given steps below.

For Windows:

ibmslapd -h bitmask > filename 2>&1
OR
set LDAP_DBG_FILE=filename
ibmslapd -h <bitmask> 2>&1

For Unix:

ibmslapd -h bitmask 2&>1 | tee filename
OR
export LDAP_DBG_FILE=filename
ibmslapd -h <bitmask> 2>&1

Running a trace on several operations will definitely result in slow performance,
so remember to turn the trace off when you are finished using it by the following
command:

ldtrc off

It is not always feasible to have the server run in debug mode for all times
especially in a production environment, where high performance is always a
mandate. In such circumstances, it is recommended to go for dynamic tracing, as
will be seen in the next section.

Dynamic tracing
Sometimes it is observed that there are problems with the directory server, after
running the directory server for a long time that is, say of the order of eight hours.
The log files indicate that there is some problem, but it is not clear. However, it is
essential to get to know the problem, because that’s impacting business. What

0x2000 8192 LDAP_DEBUG_RDBM Relational backend activities (RDBM)

0x4000 16384 LDAP_DEBUG_REFERRAL Referral activities

0x8000 32768 LDAP_DEBUG_ERROR Error conditions

0xffff 65535 LDAP_DEBUG_ANY All levels of debug

Hex Decimal Value Description
 Chapter 18. Debugging IBM Tivoli Directory Server related issues 595

do we do in such cases? It is not feasible to run the server in debug mode for say
8 hours and then analyze the tons of data that this will generate, taking a lot more
time in debugging the issue. In some cases, we aren’t even sure that the problem
would get generated after taking all the efforts of running the server in debug
mode, in a planned downtime. Such situations are common and in such
circumstances, it is better to go for dynamic tracing of the server. That would not
impact the server’s performance, during the period when we know that the
problem will not occur and also the amount of trace generated would be
comparatively much smaller to amount generated using the static tracing. The
utility being used for dynamic tracing is known as ldaptrace. Let us study this tool
in more depth.

ldaptrace
The administration tracing utility, ldaptrace, is used to dynamically activate or
deactivate tracing of the Directory Server. This extended operation can also be
used to set the message level and specify the name of the file, where the output
is written. If LDAP trace facility (ldtrc) options are requested, they must be
preceded by --.

To display syntax help for ldaptrace, type:

ldaptrace -?

Here is a synopsis of what sort of parameters ldaptrace would take:

ldaptrace -a port -l [on|off|clr|chg|info|dump] --[ldtrc options] -D
adminDn -h hostname -K keyfile -m debugLevel -N key_name -o debugFile -p
port -P key_pw -t [start|stop] -v -w adminPW -Z -?

Options of ldaptrace
The options are:

� -a port: Specifies an alternate TCP port where IBM Administration Daemon
(ibmdiradm), not the Directory Server, is listening. The default port is 3538. If
not specified and -Z is specified, the default SSL port 3539 is used.

Note: While the ldaptrace utility can be used with SSL or TLS, only the simple
bind mechanism is supported.

Note: Only the administrator or a member of the administrative group can use
this utility.

Using ldaptrace consumes resources and affects the performance of the
server.
596 Understanding LDAP Design and Implementation

� -l [on|off|clr|chg|info|dump] -[ldtrc options]:

– on: Turns on the tracing facility. You can specify any of the following ldtrc
options preceded by an extra -.

• [-m <mask>] where <mask> =
<products>.<events>.<components>.<classes>.<functions>.

• [-p <pid>[.<tid>]] traces only the specified process or thread.

• [-c <cpid>] traces only the specified companion process.

• [-e <maxSevereErrors>] stops tracing after the maximum number of
severe errors (maxSevereErrors) is reached.

• [-s | -f <fileName>] sends the output to shared memory or a file.

• [-l [<bufferSize>] | -i [<bufferSize>]] specifies to retain the last or the
initial records. The default buffer is 1M.

• [-this <thisPointer>] trace only the specified object.

– off: Turns off the tracing facility.

– clr: Clears the existing trace buffer.

– chg: The trace must be active before you can use the chg option to
change the values for the following ldtrc options:

• [-m <mask>] where <mask> =
<products>.<events>.<components>.<classes>.<functions>.

• [-p <pid>[.<tid>]] traces only the specified process or thread.

• [-c <cpid>] traces only the specified companion process.

• [-e <maxSevereErrors>] stops tracing after the maximum number of
severe errors (maxSevereErrors) is reached.

• [-this <thisPointer>] trace only the specified object.

– info: Gets information about the trace. You must specify the source file
which can be either a binary trace file, or trace buffer and a destination file.
The following is an example of the information that the info parameter
gives:

C:\>ldtrc info
Trace Version : 1.00
Op. System : NT
Op. Sys. Version : 4.0
H/W Platform : 80x86
Mask : *.*.*.*.*.*

Note: The tracing facility must be on for server data to be traced.
 Chapter 18. Debugging IBM Tivoli Directory Server related issues 597

pid.tid to trace : all
cpid to trace : all
this pointer to trace : all
Treat this rc as sys err: none
Max severe errors : 1
Max record size : 32768 bytes
Trace destination : shared memory
Records to keep : last
Trace buffer size : 1048576 bytes
Trace data pointer check: no

– dump: Dumps the trace information to a file. This information includes
process flow data as well as server debug messages. You can specify the
name of the destination file where you want to dump the trace. The default
destination files is:

For Unix-based systems:
/var/ldap/ibmslapd.drace.dump
For Windows-based systems:
<installationpath>\var\ibmslapd.trace.dump

� -h ldaphost: Specify an alternate host on which the Directory Server and the
Administration Daemon are running.

� -K keyfile: Specify the name of the SSL or TLS key database file with default
extension of kdb. If the key database file is not in the current directory, specify
the fully-qualified key database filename. If a key database filename is not
specified, this utility will first look for the presence of the SSL_KEYRING
environment variable with an associated filename. If the SSL_KEYRING
environment variable is not defined, the default keyring file will be used, if
present.

A default keyring file that is, ldapkey.kdb, and the associated password stash file
that is, ldapkey.sth, are installed in the /lib directory under LDAPHOME, where
LDAPHOME is the path to the installed LDAP support. LDAPHOME varies by
operating system platform:

� AIX operating systems - /usr/ldap
� HP-UX operating systems - /usr/IBMldap
� Linux operating systems - /usr/ldap
� Solaris operating systems - /opt/IBMldaps
� Windows operating systems - c:\Program Files\IBM\LDAP

Note: This file contains binary ldtrc data that must be formatted with the
ldtrc format command.

Note: This is the default install location. The actual LDAPHOME is determined
during installation.
598 Understanding LDAP Design and Implementation

See IBM Directory C-Client SDK Programming Reference for more information
about default key database files, and default Certificate Authorities. This
document can be found at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

If a keyring database file cannot be located, a “hard-coded” set of default trusted
certificate authority roots is used. The key database file typically contains one or
more certificates of certificate authorities (CAs) that are trusted by the client.
These types of X.509 certificates are also known as trusted roots. For more
information on managing an SSL or TLS key database, see “SSL/TLS support”
on page 455.

This parameter effectively enables the -Z switch.

� -m debuglevel: Set the mask debugging level for server debug messages.
Refer Table 20-1 on page 622 for more information on the debuglevel to be
used. It is same as the bitmask, we pass to ibmslapd, as already discussed.

� -N certificatename: Specify the label associated with the client certificate in
the key database file. If the LDAP server is configured to perform server
authentication only, a client certificate is not required. If the LDAP server is
configured to perform client and server Authentication, a client certificate
might be required. Certificatename is not required if a default
certificate/private key pair has been designated as the default. Similarly,
certificatename is not required if there is a single certificate/private key pair in
the designated key database file. This parameter is ignored if neither -Z nor
-K is specified.

� -o debugfile: Specifies the output file name for the server debug messages.

� -p port: Specify an alternate TCP port where the ldap server is listening. The
default LDAP port is 389. If not specified and -Z is specified, the default LDAP
SSL port 636 is used.

� -P keyfilepw: Specify the key database password. This password is required
to access the encrypted information in the key database file, which may
include one or more private keys. If a password stash file is associated with
the key database file, the password is obtained from the password stash file,
and the -P parameter is not required. This parameter is ignored if neither -Z
nor -K is specified.

� -t [start|stop]:

– start starts the collection of server trace data.
– stop stops the collection of server trace data.

� -v: Specifies to run in verbose mode.
 Chapter 18. Debugging IBM Tivoli Directory Server related issues 599

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

� -w adminPW | ? : Use adminPW as the password for authentication. Use the
? to generate a password prompt. Using this prompt prevents your password
from being visible through the ps command.

� -?: Displays the help screen.

Now let us see some examples for using the ldaptrace utility.

To turn the ldtrc facility on and start the server trace with a 2M trace buffer, issue
the command:

ldaptrace -h <hostname> -D <adminDN> -w <adminpw> -l on -t start --l
2000000

To stop the server trace, issue the command:

ldaptrace -h <hostname> -D <adminDN> -w <adminpw> -t stop

To turn off the ldtrc facility, issue the command:

ldaptrace -h <hostname> -D <adminDN> -w <adminpw> -l off

To collect the trace over SSL, issue the command:

ldaptrace -h <hostname> -D <adminDN> -w <adminPW> -Z -K <SSL key db> -P
<SSL key db password> -l on -t start --l 2000000

Thus using ldaptrace we can debug the server dynamically. Consequently we
can maintain the performance of the server, by not running it in debug mode all
the time and by taking the desired debug information as and when necessary.

18.2.4 DB2 error log file
The main db2 log file you need to check in case of errors is db2diag.log. This file
is mainly meant for the support people and the developers to analyze.

In case of UNIX systems, it is located in <Directory containing your
database>/sqllib/db2dump directory. In windows it is located in
x:\sqllib\<instance_name> directory where x is the drive where DB2 is installed.

You can control the level of detailed information that is written to the db2diag.log
file by using the DIAGLEVEL configuration parameter and the
DLFM_LOG_LEVEL registry value.

Note: The location of the db2diag.log file is controlled by the DB2 server
configuration parameter DIAGPATH, so the directory paths on your system
might be different from the default paths.
600 Understanding LDAP Design and Implementation

DIAGLEVEL
Determines the severity of DB2 diagnostic information recorded in the
db2diag.log error log file. Valid values are from 1–4. 1 denotes that a minimal
amount of information is to be recorded, and 4 denotes that the maximum
amount of information is to be recorded. The default setting is 3. You can
increase the amount of error information recorded using the following command:
db2 update dbm cfg using DIAGLEVEL 4. This setting should be changed only at
the request of IBM service or development for debugging purposes.

DLFM_LOG_LEVEL
Determines the severity of DLFM diagnostic information recorded in the
db2diag.log error log file. Its default setting is LOG_ERR. You can increase the
amount of error information recorded using the following command:

db2set DLFM_LOG_LEVEL=LOG_DEBUG

18.3 Summary
In summary:

� To start with, we went through the necessity of debugging the server.

� Then we went through different types of the problems encountered with the
directory server and the means to debug the same.

– Configuration problems
– Server related problems

• Using log files
• Using the server debug trace
• Using the dynamic trace facility to debug server operations

� Finally we went through debugging issues pertaining to DB2.
 Chapter 18. Debugging IBM Tivoli Directory Server related issues 601

602 Understanding LDAP Design and Implementation

Chapter 19. Developing C-based
applications

Many C-based applications will want to make use of directory based information.
The IBM Directory Server C-Client SDK includes various sample LDAP client
programs, and an LDAP client library used to provide application access to the
LDAP servers. In this chapter, sample code is provided to connect and search a
directory and get the results. In addition sample code is provided to modify a
directory entry. More information about the C-Client SDK can be found at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

19
© Copyright IBM Corp. 1998, 2004. All rights reserved. 603

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

19.1 Overview
Whether writing new C-based applications or modernizing existing applications,
there are many benefits from directory-enabling them. The IBM Directory Server
C-Client SDK provides a rich set of application programming interfaces (APIs)
that allow developers to search and update entries in an LDAP directory. This
chapter gives examples of how to use some of these APIs for searching and
updating the directory.

The set of LDAP APIs are designed to provide a suite of functions that can be
used to develop directory-enabled applications. Directory enabled applications
will typically connect to one or more directories and perform various
directory-related operations, such as:

� Performing binds
� Adding entries
� Searching the directory and obtaining the resulting list of entries
� Deleting entries
� Modifying entries
� Renaming entries
� Setting LDAP controls

The type of information that is managed in the directory depends on the nature of
the application. Directories are often used to provide public access to information
about people, including:

� Name information
� Phone numbers
� E-mail addresses
� Fax numbers
� Mailing addresses

Increasingly, directories are being used to manage and publish other types of
information, including:

� Configuration information
� Public key certificates (managed by Certification Authorities)
� Access control information
� Locating information (how to find a service)

The LDAP APIs provide for both synchronous and asynchronous access to a
directory. Asynchronous access makes it easy for the application to do other
work while waiting for the results of a potentially lengthy directory operation to be
returned by the server.
604 Understanding LDAP Design and Implementation

Source code, example makefile, and executable programs are provided with the
IBM Directory Server Client SDK for performing the following operations:

� ldapchangepwd - changes a user's password
� ldapsearch - searches the directory
� ldapmodify - modifies information in the directory
� ldapdelete - deletes information from the directory
� ldapmodrdn - modifies the Relative Distinguished Name (RDN) of an entry in

the directory

19.2 Typical API usage
The basic interaction is as follows:

1. A connection is made to an LDAP server by calling either ldap_init or
ldap_ssl_init, which is used to establish a secure connection over Secure
Sockets Layer (SSL).

2. An LDAP bind operation is performed by calling ldap_simple_bind. The bind
operation is used to authenticate to the directory server. Note that the LDAP
V3 API and protocol permits the bind to be skipped, in which case the access
rights associated with anonymous access are obtained.

3. Other operations are performed by calling one of the synchronous or
asynchronous routines (for example, ldap_search_s or ldap_search followed
by ldap_result).

4. Results returned from these routines are interpreted by calling the LDAP
parsing routines, which include operations such as:

– ldap_first_entry, ldap_next_entry
– ldap_get_dn
– ldap_first_attribute, ldap_next_attribute
– ldap_get_values
– ldap_parse_result (new for LDAP V3)

5. The LDAP connection is terminated by calling ldap_unbind.

When handling a client referral to another server, the ldap_set_rebind_proc
routine defines the entry point of a routine called when an LDAP bind operation is
needed.

For more detailed information on the API calls mentioned above, please refer to
the IBM Tivoli Directory Server 5.2 C-Client SDK Programming Reference Guide.
This guide is available at:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html
 Chapter 19. Developing C-based applications 605

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

19.3 API flow when searching a directory
This section provides an overview of what APIs can be used to perform a search
operation on a LDAP directory. This example, based on LDAP Version 3 APIs,
shows one way of searching the directory using a non-secure session in
synchronous mode. There are also APIs available to initiate an SSL session to
the LDAP server. The APIs are documented in the order they have to be used.
Figure 19-1 shows an overview of the APIs and the order in which they are used.

Figure 19-1 Overview of APIs used for searching a directory

In the example given in Figure 19-1 the APIs are processed in a certain order.
The following information explains the purpose of each API used in the example.

19.3.1 ldap_init()
The ldap_init() API initializes a session with an LDAP server. The server is not
actually contacted until an operation is performed that requires it, allowing
various options to be set after initialization, but before actually contacting the
host. It allocates an LDAP structure that is used to identify the connection and
maintain per-connection information. The input parameters required are the host
and port number of the LDAP server. The ldap_init() function returns a pointer

ldap_init()

ldap_search_s()

ldap_first_entry()

ldap_next_entry()

More
entries?

ldap_unbind_s()

Process
Entry

Process
Entry

Yes

No

Process
Entry

ldap_first_attribute()

ldap_get_values()

ldap_next_attribute()

ldap_get_values()

More
attributes?

YesNo
Return

ldap_simple_bind_s()
606 Understanding LDAP Design and Implementation

to an LDAP structure, which should be passed to subsequent calls to other LDAP
functions such as ldap_simple_bind_s() and ldap_search_s().

19.3.2 ldap_simple_bind_s()
The ldap_simple_bind_s() function is used to authenticate a distinguished name
(DN) to a directory server. There are other APIs available to authenticate users
with a different authentication method. With LDAP Version 3 the bind API can be
skipped allowing an anonymous connection to the directory server. However,
anonymous access will have limited access on the majority of LDAP servers. The
ldap_simple_bind_s() API requires as input parameters: the LDAP structure ld
as returned by the ldap_init() API, the distinguished name (DN) of the entry
performing the bind, and the password. The DN used has to have the authorities
to perform the intended changes. The return code of this API indicates a
successful bind or another error code.

19.3.3 ldap_search_s()
The ldap_search_s() API is used to perform an LDAP search operation.
ldap_search_s() is a synchronous request. This API requires the LDAP structure
that was returned by the ldap_init() API as an input parameter. The remaining
input parameters define the search base, scope of search, search filter,
attributes to be returned, and whether to return only attribute names or names as
well as values. Entries returned from the search (if any) are contained in the res
parameter. When an LDAP operation completes and the result is obtained as
described, a list of LDAPMessage structures is returned. This is referred to as
the search result chain. A pointer to the first of these structures is returned by
ldap_search_s() API. However, the results cannot be used in the form returned.
They have to be parsed by the corresponding APIs to process the returned
entries, their attributes, and the attribute values as depicted in Figure 19-1 on
page 606.

19.3.4 ldap_first_entry()
In the search example, this API is used to parse results for the first entry received
from the synchronous LDAP search function ldap_search_s(). Used an input
parameters are the LDAP structure that was returned by the ldap_init() API
and the result LDAPMessage structure returned by the ldap_search_s() API.
The latter value is the pointer to the first entry returned by the search function.
The return value is the pointer to the first entry of the search results and is
required as an input parameter for the ldap_first_attribute() API.
 Chapter 19. Developing C-based applications 607

19.3.5 ldap_first_attribute()
The ldap_first_attribute() API returns the first attribute in an entry.
ldap_first_attribute() takes the LDAP structure returned by the ldap_init()
API and an entry returned by ldap_first_entry() or ldap_next_entry(). In
addition it has an output parameter that contains a pointer to an opaque data
structure for data encoded with Basic Encoding Rules (BER). This pointer is
used in subsequent calls to the ldap_next_attribute() API to keep track of the
current position. It returns a pointer to a buffer containing the first attribute type in
the entry.

19.3.6 ldap_get_values()
The ldap_get_values() API is used to retrieve attribute values from an LDAP
entry as returned by ldap_first_entry() or ldap_next_entry(). The input
parameters for the ldap_get_values() API are the pointer to the entry as
returned by the ldap_first_entry() or ldap_next_entry() APIs and the pointer
to the buffer containing the attribute type as returned by the
ldap_first_attribute() or ldap_next_attribute() APIs. The
ldap_get_values() returns a NULL-terminated array of the attribute's values.
Remember that an attribute value can contain more than one value.

19.3.7 ldap_next_attribute()
Once the values of the first attribute have been processed, a loop can be used to
process the remaining attributes of the current entry. The
ldap_next_attribute() API takes the LDAP structure returned by the
ldap_init() API and the entry returned by ldap_first_entry() or
ldap_next_entry(). In addition it has an input/output parameter that contains the
pointer that is used to keep track of the current position. For the first time the
ldap_next_atttribute() API is called, the pointer is the one returned by the
ldap_first_attribute() API. It returns a pointer to a buffer containing the next
attribute type in the entry. Processing continues with the ldap_get_values() API
until a NULL value is received indicating that no more attributes are available in
the current entry.

19.3.8 ldap_get_values()
The ldap_get_values() API is now used to retrieve attribute values from the
subsequent attributes returned by the ldap_next_attribute() API.
608 Understanding LDAP Design and Implementation

19.3.9 ldap_next_entry()
After the attributes and values of the first entry have been processed, the next
entry from the search results can be processed using the ldap_next_entry()
API. The input parameters needed are the LDAP structure that was returned by
the ldap_init() API. The second parameter is the pointer to the entry as
returned by the ldap_first_entry() or for subsequent calls to the
ldap_next_entry() API by the ldap_next_entry() API. The return value is the
pointer to the next entry of the search results and is required as an input
parameter for the ldap_first_attribute() and ldap_next_attribute() APIs.
The next entries' attributes and their values can now be processed using the next
entry as described in ldap_first_attribute(). A return value of NULL indicates
that no more entries are in the search results to be processed.

19.3.10 ldap_unbind_s()
After all entries have been processed the application must unbind from the LDAP
server using, as in this example, the ldap_unbind_s() API. The API is used to
end the connection to the LDAP server and free the resources contained in the
LDAP structure that was created by the ldap_init() API.

19.4 Sample code to search a directory
The sample application shown in Example 19-1 was written to help developers
understand the various tasks involved to use the API to search an LDAP-based
directory. It was written to provide a proof of concept.

Example 19-1 Code to search a directory using the C API

/* c_search.c - generic program to display ldap search results to STDOUT */

#include <stdio.h>
#include <string.h>

Note: Several of the APIs mentioned in this section allocate memory and
resources. It is strongly recommended to use APIs, such as ldap_memfree(),
ldap_msgfree(), and ldap_control_free(), to free up the allocated
resources.

Important: The sample application shown in Example 19-1 does not cover
and act on all possible exceptions, nor is it fully tested under all possible
circumstances. It is a working application that can be used as an example and
be extended to build a complete application.
 Chapter 19. Developing C-based applications 609

#include <stdlib.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <ldap.h>

/* global variables */
static char *binddn = "cn=root";
static char *bindpwd = "password";
static char *ldaphost = "serverA.ibm.com";
static int ldapport = LDAP_PORT;
static char *ldapbase = "o=ibm,c=us";
static int referrals = LDAP_OPT_ON;
static int deref = LDAP_DEREF_NEVER;
static int ldapversion = LDAP_VERSION3;

main(int argc, char **argv)
{
 int rc; // return code
 int i = 0; // counter
 const char *errormsg = NULL;// error msg
 LDAP *ld; // Ldap Object
 LDAPMessage *searchResult;// LDAPMessage used to get searchResult
 LDAPMessage *ldapEntry;// LDAPMessage used to retrieve entries
 BerElement *ber;// BER element
 char *attr = NULL;// attribute pointer
 char **values = NULL;// values pointer

 /* open connection to server */
 if ((ld = ldap_init(ldaphost, ldapport)) == NULL)
 {
 perror("ldap_init");
 exit(1);
 }

 // BIND to server using userid and password
 rc = ldap_simple_bind_s(ld, binddn, bindpwd);

 // Check to make sure BIND was successful otherwise exit
 if (rc != LDAP_SUCCESS)
 {
 errormsg = ldap_err2string(ldap_get_errno(ld));
 fprintf(stderr, "ldap_bind_s: %s \n", errormsg);
 exit(rc);
 }

 // Perform search for all user objects in directory
 rc = ldap_search_s(ld, ldapbase, LDAP_SCOPE_SUBTREE,
"(objectclass=inetorgperson)", NULL, 0, &searchResult);
610 Understanding LDAP Design and Implementation

 // Check to ensure search was successful
 if (rc != LDAP_SUCCESS)
 {
 errormsg = ldap_err2string(ldap_get_errno(ld));
 fprintf(stderr, "ldap_search_s: %s \n", errormsg);
 exit(rc);
 }

 // Get first entry from searchResult object
 ldapEntry = ldap_first_entry(ld, searchResult);

 // Continue to loop until we have no more entries
 while (ldapEntry != NULL)
 {
 // output dn to STDOUT
 printf("%s\n", ldap_get_dn(ld, ldapEntry));

 // Get first attribute
 attr = ldap_first_attribute(ld, ldapEntry, &ber);

 // Continue to loop as long as we still have attributes
 while (attr != NULL)
 {
 // Get the array of values for the current attribute
 values = ldap_get_values(ld, ldapEntry, attr);

 i=0;
 // Enumerate thru the array until we have printed all values to screen
 while (values[i] != NULL)
 {
 printf("%s=%s\n", attr, values[i]);
 i++;
 }

 // Get the next attribute
 attr = ldap_next_attribute(ld, ldapEntry, ber);
 }

 // Get the next entry
 ldapEntry = ldap_next_entry(ld, ldapEntry);
 printf("\n");
 }

 // Clean up allocated memory
 ldap_msgfree(searchResult);
 ldap_ber_free(ber);
 ldap_memfree(attr);
 ldap_value_free(values);
 Chapter 19. Developing C-based applications 611

 /* unbind and exit */
 ldap_unbind_s(ld);
 exit(rc);
}

19.5 API flow when updating a directory entry
This section provides an overview of what APIs can be used to perform an
update of attributes for an existing entry in the LDAP directory. This example,
based on LDAP Version 3 APIs, shows how to perform the update using a
non-secure session in synchronous mode. There are also APIs available to
initiate an SSL session to the LDAP server. The APIs are documented in the
order they have to be used. Figure 19-2 shows an overview of the APIs and the
order in which they are used.

Figure 19-2 Overview of API used for updating a directory entry

In the example shown in Figure 19-2, the application will perform an update of
the existing entry with the DN of uid=mjordan,ou=People,o=ibm,c=us.
Example 19-2 shows the current attributes and Example 19-3 on page 613
shows the new attributes after the update has been performed.

Example 19-2 Current attributes before being updated

Entry: uid=mjordan,ou=People,o=ibm,c=us
Attribute: cn Value: Michael Jordan
Attribute: uid Value: mjordan
Attribute: sn Value: Jordan
Attribute: givenName Value: Michael
Attribute: telephoneNumber Value: 202-555-1234
Value: 919-555-9876
Attribute: mail Value: mjordan@yahoo.com

ldap_init()

ldap_modify_s()

ldap_unbind_s()

ldap_simple_bind_s()
612 Understanding LDAP Design and Implementation

Attribute: objectclass Value: top
Value: person
Value: organizationalperson
Value: inetorgperson

Example 19-3 Attribute values after being updated

Entry: uid=mjordan,ou=People,o=ibm,c=us
Attribute: cn Value: Michael Jordan
Attribute: uid Value: mjordan
Attribute: sn Value: Jordan
Attribute: givenName Value: Michael
Value: Mike
Attribute: employeeNumberValue: 23
Attribute: mail Value: mjordan@yahoo.com
Attribute: objectclass Value: top
Value: person
Value: organizationalperson
Value: inetorgperson

As shown in Example 19-3, the common name (cn), last name (sn), userid (uid),
and e-mail address (mail) attributes remain unchanged. The first name
(givenName) was changed, the telephone numbers have been deleted, and the
employee number (employeeNumber) was added. The following descriptions
contain an overview of each API that is involved in the update process.

19.5.1 ldap_init()
The ldap_init() API initializes a session with an LDAP server. The server is not
actually contacted until an operation is performed that requires it, allowing
various options to be set after initialization, but before actually contacting the
host. It allocates an LDAP structure that is used to identify the connection and
maintain per-connection information. The input parameters required are the host
and port number of the LDAP server. The ldap_init() function returns a pointer
to an LDAP structure, which should be passed to subsequent calls to other LDAP
functions such as ldap_simple_bind_s() and ldap_search_s().

19.5.2 ldap_simple_bind_s()
The ldap_simple_bind_s() function is used to authenticate a distinguished name
(DN) to a directory server. There are other APIs available to authenticate users
with a different authentication method. With LDAP Version 3 the bind API can be
skipped allowing an anonymous connection to the directory server. However,
anonymous access will have limited access on the majority of LDAP servers. The
ldap_simple_bind_s() API requires as input parameters: The LDAP structure ld
 Chapter 19. Developing C-based applications 613

as returned by the ldap_init() API, the distinguished name (DN) of the entry
performing the bind, and the password. The DN used has to have the authorities
to perform the intended changes. The return code of this API indicates a
successful bind or another error code.

19.5.3 ldap_modify_s()
The ldap_modify_s() API is a synchronous API that can be used to add, replace,
and delete attributes from an existing entry. It takes several input parameters.
The first one is the LDAP structure as returned by the ldap_init() API. The
second parameter is the DN of the entry to be changed. It is not the DN used for
the ldap_simple_bind_s() API unless the authenticated DN is the one that
needs to be changed. The third parameter, named mods, is more complex. It is a
NULL-terminated array of modifications to be performed to the entry. Each
element of the mods array is a pointer to an LDAPMod structure. In regards to
the changes described in Example 19-3 on page 613, three LDAPMod structure
elements are required.

Element 1 (changes the first name):

� mod_op: Set to 0x02 (LDAP_MOD_REPLACE).

� mod_type: Specifies the name of the attribute. In this case it is givenName.

� mod_vals: The mod_vals field specifies a pointer to a NULL-terminated array
of values to add, modify, or delete. In this case the pointer points to an array
with three elements. The first two elements contain the first name values. The
third element is a null pointer.

Element 2 (adds the employee number):

� mod_op: Set to 0x00 (LDAP_MOD_ADD).

� mod_type: Specifies the name of the attribute. In this case it is
employeeNumber.

� mod_vals: The mod_vals field specifies a pointer to a NULL-terminated array
of values to add, modify, or delete. In this case the pointer points to an array
with two elements. The first element contains the employee number and the
second a null pointer.

Element 3 (removes the telephone number):

� mod_op: Set to 0x01 (LDAP_MOD_DELETE).

� mod_type: Specifies the name of the attribute. In this case telephoneNumber.

� mod_vals: The mod_vals field specifies a pointer to a NULL-terminated array
of values to add, modify, or delete. Since this element is supposed to delete
614 Understanding LDAP Design and Implementation

the mail attribute, mod_vals is set to NULL. The pointer can also point to a
specific value to be removed.

An LDAPMod element is not necessary for last name (sn) and first name
(givenName) attributes, as they remain unchanged. All modifications are
performed in the order in which they are listed.

The return value of the ldap_modify_s() API indicates whether the modification
was successful or not.

19.5.4 ldap_unbind_s()
After all entries have been processed the application must unbind from the LDAP
server using, as in this example, the ldap_unbind_s() API. The API is used to
end the connection to the LDAP server and free the resources contained in the
LDAP structure that was created by the ldap_init() API.

19.6 Sample code to update a directory entry
Important: The sample application shown in Example 19-4 was written to help
developers understand the various tasks involved to use the API to search an
LDAP-based directory. It was written to provide a proof of concept.

Example 19-4 Code to update a directory using the C API

/* c_modify.c - simple program to modify an ldap user */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <ldap.h>

/* global variables */
static char *binddn = "cn=root";
static char *bindpwd = "password";
static char *ldaphost = "serverA.ibm.com";
static int ldapport = LDAP_PORT;

Important: The sample application shown in Example 19-4 does not cover
and act on all possible exceptions, nor is it fully tested under all possible
circumstances. It is a working application that can be used as an example and
be extended to build a complete application.
 Chapter 19. Developing C-based applications 615

static char *ldapbase = "o=ibm,c=us";
static int referrals = LDAP_OPT_ON;
static int deref = LDAP_DEREF_NEVER;
static int ldapversion = LDAP_VERSION3;

main(int argc, char **argv)
{
 int rc; // return code
 int i = 0; // counter
 const char *errormsg = NULL;// error msg
 LDAP *ld; // Ldap Object
 LDAPMod **mod;// Ldap Modification Object
 char *givenName[] = {"Michael", "Mike", NULL};// array of givenName values,
NULL terminated
 char *employeeNum[] = {"23", NULL};// array of employeeNumber values, NULL
terminated

 /* open connection to server */
 if ((ld = ldap_init(ldaphost, ldapport)) == NULL)
 {
 perror("ldap_init");
 exit(1);
 }

 // perform simple bind to server
 rc = ldap_simple_bind_s(ld, binddn, bindpwd);

 if (rc != LDAP_SUCCESS)
 {
 errormsg = ldap_err2string(ldap_get_errno(ld));
 fprintf(stderr, "ldap_bind_s: %s \n", errormsg);
 exit(rc);
 }

 printf("Connection complete\n");

 // Construct the array of LDAPMod structures representing the attributes
 mod = (LDAPMod **)malloc((4) * sizeof(LDAPMod *));

 // Allocate the memory for each of the Mod objects
 for (i = 0; i < 3; i++)
 {
 if ((mod[i] = (LDAPMod *)malloc(sizeof(LDAPMod))) == NULL)
 {
 fprintf(stderr, "Cannot allocate memory");
 }
 }

 // set up mod object with attributes we want to modify
616 Understanding LDAP Design and Implementation

 // replace the current value of givenName with Mike
 mod[0]->mod_op = LDAP_MOD_REPLACE;
 mod[0]->mod_type = "givenName";
 mod[0]->mod_values = givenName;

 // Add the employeenumber of 23
 mod[1]->mod_op = LDAP_MOD_ADD;
 mod[1]->mod_type = "employeeNumber";
 mod[1]->mod_values = employeeNum;

 // Delete the attribute telephoneNumber
 mod[2]->mod_op = LDAP_MOD_DELETE;
 mod[2]->mod_type = "telephoneNumber";
 mod[2]->mod_values = NULL;

 // NULL terminate the array
 mod[3] = NULL;

 // Perform the modify operation.
 rc = ldap_modify_s(ld, "uid=mjordan,ou=People,o=ibm,c=us", mod);

 if (rc != LDAP_SUCCESS)
 {
 errormsg = ldap_err2string(ldap_get_errno(ld));
 fprintf(stderr, "ldap_modify_s: %s \n", errormsg);
 exit(rc);
 }

 printf("Modification complete\n");

 /* unbind and exit */
 ldap_unbind_s(ld);
 printf("Connection complete\n");
 exit(rc);
}

 Chapter 19. Developing C-based applications 617

618 Understanding LDAP Design and Implementation

Chapter 20. Developing JNDI-based
applications

Java applications, whether running as a stand-alone application, a servlet, or
another form, can also utilize information stored in an LDAP-accessible directory.
The industry-standard Java interface for connecting and interfacing with
directories is called the Java Naming and Directory Interface (JNDI). JNDI is a
Java Standard Extension. With JNDI, developers can connect seamlessly to
multiple naming and directory services. They can build powerful and portable
directory-enabled Java applications by using this interface. In this chapter, a
sample application is provided that searches a directory, and displays the results
to STDOUT. Another application is provided that updates certain attributes of a
directory user. This sample application demonstrates the standard Java API calls
used when working with LDAP directories. For more information on the JNDI
interface and how to use it, refer to:

http://java.sun.com/products/jndi/docs.html

Any Java application, whether it is a servlet, a server application, or a client
application, can be directory-enabled. Developers can exploit LDAP directory
information, for example, for automatically addressing payment slips, retrieving
user information at a user help desk, or performing application authentication.
Developers can even serialize Java objects, such as GUI elements, into an
LDAP directory and dynamically load them by all Java applications. The
advantage of this method is, for example, that corporate-wide GUI design

20
© Copyright IBM Corp. 1998, 2004. All rights reserved. 619

http://java.sun.com/products/jndi/docs.html

requirements can be deployed and changed very easily without recompiling
programs or even touching the Java programs. The Java package that allows
developers to directory-enable their applications is the Java Naming and
Directory Interface (JNDI) developed by Sun Microsystems, Inc. There are also
other Java LDAP clients available, for example the Java LDAP client from
OpenLDAP (http://www.openldap.org). This client is written directly to the
LDAP protocol. This chapter shows, based on a pair of sample applications, how
to use the JNDI interface. However, it does not provide a complete description of
the package and its included classes. For the most current information, as well
as comprehensive tips for LDAP Users section, refer to the following Web page:

http://java.sun.com/products/jndi/
620 Understanding LDAP Design and Implementation

http://www.openldap.org
http://java.sun.com/products/jndi/

20.1 The JNDI
JNDI, defined by Sun Microsystems, Inc., provides naming and directory
functionality to Java programs. JNDI is an API independent of any specific
directory service implementation. It enables seamless access to directory objects
through multiple naming facilities.

The definition prevents, by design, the appearance of any
implementation-specific artifacts in the API. The unified API is designed to cover
the common case. Providing this unified interface does not imply that access to
unique features of a particular service, such as LDAP, is precluded; additional
classes can be added to access service-unique features. JNDI can be used by a
wide range of Java programs running on servers and traditional clients. JNDI can
also accommodate a thin client by specifying a service provider that provides a
proxy-style protocol where access to specific naming and directory services is
relegated to a server. Security is dealt with by individual service providers;
however, security-related problems can be returned to the client.

As discussed above, JNDI provides a generalized naming and directory service
interface. For example, JNDI could be used to retrieve files from a file system. In
this case, a file system acting as a naming service could return the file that is
bound to a particular file name. JNDI could also be used to access an LDAP
directory, performing searches and retrieving attributes. JNDI provides an API
that applications use to access a naming and directory service. The naming and
directory service could be provided by any of a variety of servers, such as LDAP,
NDS, or a file system. JNDI provides a Service Provider Interface (SPI) that
enables access to the particular underlying directory service.

JNDI provides classes that implement a naming interface for applications, such
as the file system example, that only look up names and access objects bound to
names. JNDI also provides a directory interface that extends the naming
interface. The directory interface adds functionality to access attributes and
schema.

In JNDI terminology, a name is made up of individual components called atomic
names that correspond to RDNs in LDAP. A sequence of atomic names is a
compound name. An LDAP DN is a compound name. Since the underlying
naming and directory services can have different name syntaxes, the SPI
provides an implementation of a NameParser that can break a name into its
component parts. For example, LDAP RDNs are separated by commas; DNS
names are separated by periods, and so on. Composite names are compound
names that span different name spaces. For example, an LDAP URL can contain
both a DNS and an LDAP name, as, for instance, in
ldap://serverA.ibm.com/uid=mjordan,ou=people,o=ibm,c=us.
 Chapter 20. Developing JNDI-based applications 621

Names are interpreted within a context. A context can be thought of as a
particular node in the Directory Information Tree (DIT). If the current context is
o=ibm,c=us, then the atomic name ou=people refers to the child node in the DIT
with the DN ou=people,o=ibm,c=us. The node ou=people,o=ibm,c=us is also
called a subcontext of o=ibm,c=us. A name space is traversed from context to
subcontext like a file system is traversed from a directory to the directory subtree.

The DirContext interface extends the Context interface by adding operations
specific to a directory service such as accessing attributes and searching. An
application must establish an initial directory context as a starting point from
which to do searches or traverse the DIT. The initial directory context is usually
the name of an LDAP server.

JNDI does provide a mechanism for using extended operations and extended
responses, and provides some implementations of these, for example, the
StartTLS operation. Searches use a search filter as defined in The String
Representation of LDAP Search Filters, RFC 2254, which is available at
http://www.ietf.org/rfc/rfc2254.txt?number=2254. A SearchControls object
passed to the search method can be set to control search characteristics such as
the scope of the search, the number of entries returned, the time limit, etc. Also,
the entire schema name space can be browsed, and object and attribute schema
definitions can be retrieved.

When a directory context is established, it is passed to an environment that
contains preferences and controls to access the directory service. The
environment specifies the SPI to use, the security level for binding to the server,
and so on. The environment is a Hashtable or Properties list of (key, value) pairs.
The environment settings could be coded in the application, retrieved from the
system properties, or retrieved from a file. Table 20-1 lists some of the important
environment properties.

Table 20-1 Environment settings and their descriptions

Environment property Description

java.naming.factory.initial Contains the class name of the initial
context factory. The property value should
be the fully qualified class name of the
factory class that is being used to create
an initial context.

java.naming.provider.url LDAP URL that specifies the LDAP
server.

java.naming.ldap.version Specifies if server supports LDAP Version
2 or 3.
622 Understanding LDAP Design and Implementation

http://www.ietf.org/rfc/rfc2254.txt?number=2254

20.2 Searching the directory
This section explains the JNDI methods required to search a directory using the
JDNI interface. Performing searches is one of the most common functions JNDI
is used for. Example 20-1 shows a sample Java application that performs a
search on a directory and displays the results in LDIF format to STDOUT.

Example 20-1 Java application using JNDI that performs a directory search

import java.util.Hashtable;
import javax.naming.ldap.InitialLdapContext;
import javax.naming.*;
import javax.naming.directory.*;

public class JavaSearch
{

public static void main(String args[])
{

InitialLdapContext ctx = null;
Hashtable hashtable = null;

// Set up default values for LDAP info
String url = "ldap://serverA.ibm.com:389";
String username = "cn=root";
String password = "password";
String base = "o=ibm,c=us";

try
{

// Set up LDAP config settings
hashtable = new Hashtable();

 hashtable.put("java.naming.ldap.version", "3");

java.naming.referral Specifies if referrals should be followed,
ignored, or throw an exception.

java.naming.security.authentication Authentication method used to bind to
LDAP server: None, simple, or strong.

java.naming.security.principal Distinguished name of user to
authenticate.

java.naming.security.credentials Password or other security credential.

java.naming.security.protocol Specifies whether the connection to the
LDAP server is secure (SSL).

Environment property Description
 Chapter 20. Developing JNDI-based applications 623

 hashtable.put("java.naming.factory.initial",
"com.sun.jndi.ldap.LdapCtxFactory");
 hashtable.put("java.naming.security.authentication", "Simple");
 hashtable.put("java.naming.referral", "follow");

 hashtable.put("java.naming.provider.url", url);
hashtable.put("java.naming.security.principal", username);
hashtable.put("java.naming.security.credentials", password);

// Make LDAP connection
ctx = new InitialLdapContext(hashtable, null);
System.out.println("Connection established");

// Set up Search Controls
SearchControls sc = new SearchControls();
sc.setSearchScope(SearchControls.SUBTREE_SCOPE);

// perform search on directory
NamingEnumeration results = ctx.search(base,

"(objectclass=inetorgperson)", sc);

// loop until we have gotten all entries returned by search
while (results.hasMore())
{

// get the SearchResult object
SearchResult sr = (SearchResult)results.next();

// ouptput DN of entry
System.out.println(sr.getName() + "," + base);

// get the attributes and attribute list
Attributes attrs = sr.getAttributes();
NamingEnumeration attrList = attrs.getAll();

// while we have attributes
while (attrList.hasMore())
{

Attribute attr = (Attribute)attrList.next();

// Get the attribute's values
NamingEnumeration values = attr.getAll();
while (values.hasMore())
{

// output the attribute name and value
System.out.println(attr.getID() + "=" + values.next());

}
}
System.out.println();

 }
624 Understanding LDAP Design and Implementation

// Close the connection to LDAP
ctx.close();

}
catch (Exception ex)
{

System.out.println("EXCEPTION = " + ex.toString());
 }

}
}

Each JNDI method used in the application will be described in detail. The sample
application imports the JDNI packages shown in Example 20-2.

Example 20-2 JNDI packages that are imported

import java.util.Hashtable;
import javax.naming.ldap.InitialLdapContext;
import javax.naming.*;
import javax.naming.directory.*;

20.2.1 Creating the directory context
A context can be thought of as a bind, in terms of API calls. The context specifies
to which LDAP server to connect, what DN and password to use for the bind,
what authentication method to use, and so forth. An instance of the
javax.naming.ldap.InitialLdapContext class needs to be created. There are
several constructors for this class. However, to properly initialize the context, an
environment must be provided as the parameter. This can be accomplished by
instantiating a Hashtable class called hashtable. The next step adds the following
entries to the hashtable:

� Context.INITIAL_CONTEXT_FACTORY - A constant that stores the name of
the environment property for specifying the initial context factory to be used.
The value of the property has to be the fully qualified class name of the
factory class that will create an initial context. The application will use the
default Sun LDAP factory, which is shipped with JNDI.

� Context.PROVIDER_URL - This constant holds information about the LDAP
server address and its port. In this case, the server address and port are
provided via a variable url, which is defined at the beginning of the
application.

� Context.SECURITY_AUTHENTICATION - This constant specifies what kind
of authentication is being used when binding to the directory server. The
possible values depend on the service provider that is used. In this case, the
application used the Sun JNDI interface, which supports the authentication
 Chapter 20. Developing JNDI-based applications 625

mechanisms none, simple, and strong. Other service providers, such as
IBM's JNDI might also support SASL or other values. The simple
authentication method uses DNs and passwords in clear text for
authentication.

� Context.SECURITY_PRINCIPAL - This constant defines the DN to be used
for authentication. The sample application uses the directory server's
administrative DN of cn=root to authenticate.

� Context.SECURITY_CREDENTIALS - This constant defines the password to
be used for authentication.

The last step of creating the directory context is using the Hashtable hashtable
as a parameter for the constructor InitialLdapContext constructor. The name of
the context is later being used as a "handle" to the connection. The context can
be used for search, get, and update operations.

20.2.2 Performing the search
After the context has been created, a search operation can be performed using
the new context. The directory context provides several search() methods. The
methods differ by the type and number of parameters they require, but they all
have one thing in common, they return an enumeration of objects. The returned
objects are instances of the SearchResult class.

The sample application uses the following search method:

public NamingEnumeration search(String name, String filter, SearchControls
cons) throws NamingException

The first parameter of the selected search() method specifies the name of the
context or object to search. In the example, this parameter has the value
o=ibm,c=us, or the top of the directory tree. This means the search will start at
the top of the tree. If the directory tree had multiple subcontexts for each
organization, the search could be narrowed to search for employees within a
specific organization by specifying a subcontext for the search (for example -
ou=employees,ou=Tivoli,o=ibm,c=us).

The second parameter represents the search filter. The filter specifies the search
criteria. In the example, the search filter is (objectclass=inetorgperson). This
filter will return all inetorgperson objects (standard person object) within the
directory.

The third parameter defines the search controls. Search controls are used to
control the behavior of a search operation. In this example, a search controls
object sc is created. Two search control properties are set. The first one defines
the scope of the search operation. A SUBTREE_SCOPE specifies that the
626 Understanding LDAP Design and Implementation

search operations start at the search base defined in the first parameter of the
search() method and searches through all subcontexts. The search could also
be limited to just the context as defined in the search base. The second property
defines the maximum number of search results that are returned. A value that is
used in many applications is 100. This value should always be set to avoid a
multitude of problems. Imagine a directory with 200,000 entries, and somebody
searched for all entries that have an e-mail address. Assuming that all entries
contain an e-mail address, the search would return all 200,000 entries. In this
case, the client application might not be designed or have the required resources
to handle all the responses. The SearchControls class documentation contains
further information on all available properties that can be defined.

The search method returns, for each directory entry found, a separate instance
of SearchResult in a NamingEnumeration object.

20.2.3 Processing the search results
At this point in the application, the search has found entries that match the
search filter. The search results are stored in a NamingEnumeration object
results. Each element in the NamingEnumeration object is an instance of the
SearchResult class and contains all attributes returned by the search. The
search results need to be processed in a nested approach, such as the while
loop in the example.

The program checks first if the search returned a result by using the hasMore()
method of the NamingEnumeration class. The while loop processes as long as
there are more elements in the NamingEnumeration object answer. Within the
while loop, the NamingEnumeration next() method is used to retrieve the next
element and cast it to a SearchResult object sr. The sr object holds all attributes
of the directory entry in the object class Attributes. The distinguished name of the
object is then outputted to stdout.

Using the getAttributes() method of the SearchResult class, the attributes are
retrieved from the search result and stored in the Attributes attrs object. Using
the getAll() method of the Attributes object, a NamingEnumeration object
attrList is returned with all of the Attribute objects available. By looping through
the attrList object, each of the Attribute objects can be retrieved with the
NamingEnumeration next() method. Finally, with the actual Attribute object attr,
all of the attributes' values can be retrieved using the getAll() method. This
returns another NamingEnumeration object called values that contains a list of
the values. By looping through this values object, the attribute name and value
pair can finally be outputted to stdout. If the attribute contains more than one
value, than there will be a line for each value.
 Chapter 20. Developing JNDI-based applications 627

After all entries have been processed, the directory context ctx is closed and the
example code is complete.

20.3 Changing a directory entry
This section explains the JNDI methods required to modify a directory entry
using the JDNI interface. Performing modifications to entries is another common
JNDI function. Adding, modifying, or deleting attributes or an entire entry also
requires creating a context. However, there are different methods for creating or
deleting entire directory entries or, in LDAP terms, subcontexts, and for adding,
modifying, or deleting attributes for an individual entry. The context's
createSubcontext() method is used to create a new entry and the
destroySubcontext() method to remove or delete an entry. The
modifyAttributes() method is used to add, modify, and delete attributes for a
directory entry or subcontext. The sample application shows only the more
complex task of modifying attributes. This section describes the important parts
of the code for creating the context, getting all attributes of the entry to changed,
and performing the update on the selected entry. Example 20-3 shows the
sample Java application that performs a simple modification of an entry in the
directory (replaces the current givenName attribute, adds an employeenumber
attribute, and removes the telephoneNumber attribute).

Example 20-3 Java application using JNDI to change a directory entry

import java.util.Hashtable;
import javax.naming.ldap.InitialLdapContext;
import javax.naming.*;
import javax.naming.directory.*;

public class JavaModify
{

public static void main(String args[])
{

InitialLdapContext ctx = null;
Hashtable hashtable = null;

// Set up default values for LDAP info
String url = "ldap://serverA.ibm.com:389";
String username = "cn=root";
String password = "password";
String base = "o=ibm,c=us";

try
{

// Set up LDAP config settings
hashtable = new Hashtable();
628 Understanding LDAP Design and Implementation

 hashtable.put("java.naming.ldap.version", "3");
 hashtable.put("java.naming.factory.initial",
"com.sun.jndi.ldap.LdapCtxFactory");
 hashtable.put("java.naming.security.authentication", "Simple");
 hashtable.put("java.naming.referral", "follow");

 hashtable.put("java.naming.provider.url", url);
hashtable.put("java.naming.security.principal", username);
hashtable.put("java.naming.security.credentials", password);

// Make LDAP connection
ctx = new InitialLdapContext(hashtable, null);
System.out.println("Connection established");

// Perform modifications
ModificationItem[] mods = new ModificationItem[3];

// replace (update) givenName attribute with 2 values
Attribute mod0 = new BasicAttribute("givenname", "Mike");
mod0.add("Michael");
mods[0] = new ModificationItem(DirContext.REPLACE_ATTRIBUTE, mod0);

// add employeeNumber attribute
Attribute mod1 = new BasicAttribute("employeenumber", "23");
mods[1] = new ModificationItem(DirContext.ADD_ATTRIBUTE, mod1);

// remove telephone number attribute
Attribute mod2 = new BasicAttribute("telephonenumber");
mods[2] = new ModificationItem(DirContext.REMOVE_ATTRIBUTE, mod2);

// Perform modification of user
ctx.modifyAttributes("uid=mjordan,ou=People," + base, mods);
System.out.println("Modification is complete");

// Close the connection to LDAP
ctx.close();
System.out.println("Connection ended");

}
catch (Exception ex)
{

System.out.println("EXCEPTION = " + ex.toString());
 }

}
}

 Chapter 20. Developing JNDI-based applications 629

20.3.1 Creating the directory context
A context can be thought of as a bind, in terms of API calls. The context specifies
to which LDAP server to connect, what DN and password to use for the bind,
what authentication method to use, and so forth. An instance of the
javax.naming.ldap.InitialLdapContext class needs to be created. There are
several constructors for this class. However, to properly initialize the context, an
environment must be provided as the parameter. This can be accomplished by
instantiating a Hashtable class called hashtable. The next step adds the following
entries to the hashtable:

� Context.INITIAL_CONTEXT_FACTORY - A constant that stores the name of
the environment property for specifying the initial context factory to be used.
The value of the property has to be the fully qualified class name of the
factory class that will create an initial context. The application will use the
default Sun LDAP factory, which is shipped with JNDI.

� Context.PROVIDER_URL - This constant holds information about the LDAP
server address and its port. In this case, the server address and port are
provided via a variable url, which is defined at the beginning of the
application.

� Context.SECURITY_AUTHENTICATION - This constant specifies what kind
of authentication is being used when binding to the directory server. The
possible values depend on the service provider that is used. In this case, the
application used the Sun JNDI interface, which supports the authentication
mechanisms none, simple, and strong. Other service providers, such as
IBM's JNDI might also support SASL or other values. The simple
authentication method uses DNs and passwords in clear text for
authentication.

� Context.SECURITY_PRINCIPAL - This constant defines the DN to be used
for authentication. The sample application uses the directory server's
administrative DN of cn=root to authenticate.

� Context.SECURITY_CREDENTIALS - This constant defines the password to
be used for authentication.

The last step of creating the directory context is using the Hashtable hashtable
as a parameter for the constructor InitialLdapContext constructor. The name of
the context is later being used as a "handle" to the connection. The context can
be used for search, get, and update operations.

20.3.2 Performing the modification
The first thing needed to perform modifications, is an array of ModificationItem
objects. One object will be needed for each attribute that needs to be added,
removed, or replaced. In the sample application a ModificationItem array named
630 Understanding LDAP Design and Implementation

mods is created with three elements. The next step is to fill this array with the
proper ModificationItem objects. A ModificationObject constructor requires two
things. First, it requires the modification to perform (ADD, REPLACE, and
REMOVE). Second, it requires an Attribute object to use for the modification.

In the sample application, the first modification is to replace the user's first name
(givenName attribute) with the values "Mike" and "Michael". A BasicAttribute
object named mod0 is created with the attribute name of "givenName" and the
initial value of "Mike". A second value "Michael" is then added to the mod0 object
using the add() method of the BasicAttribute class. Finally, a ModificationItem is
created in the first element of the mods array with a
DirContext.REPLACE_ATTRIBUTE operation and the mod0 object.

The second modification is to add the employeeNumber attribute with the value
"23". Again, a BasicAttribute object named mod1 is created with the attribute
name of "employeeNumber" and the value of "23". Next, a ModificationItem is
created in the second element of the mods array with a
DirContext.ADD_ATTRIBUTE operation and the mod1 object.

The third modification is to remove the telephoneNumber attribute. A
BasicAttribute object named mod2 is created with the attribute name of
"telephoneNumber" with no values. Although a value could be specified, it does
not make a difference because the attribute is being removed. The final
ModificationItem is created in the third element of the mods array with a
DirContext.REMOVE_ATTRIBUTE operation and the mod2 object.

Now that the ModifcationItem array is complete, the update to the directory entry
can be performed. The InitialDirContext modifyAttributes() method is used to
update the directory entry. The following modifyAttributes() method is used in
the sample application:

public void modifyAttributes(String name, ModificationItem[] mods) throws
NamingException

This first parameter is a string representation of the directory entry's DN to be
changed. In the sample application this value is
"uid=mjordan,ou=People,o=ibm,c=us". The next parameter is the
ModificationItem array mods that was created above. Assuming the call returns
successfully, than the modifications are complete. Otherwise a NamingException
would be thrown. After the call completes, the ctx is closed and the sample
application is complete.
 Chapter 20. Developing JNDI-based applications 631

632 Understanding LDAP Design and Implementation

Part 5 Appendixes

We are providing a few appendixes that provide additional information on
LDAP-related topics, or additional information on topics covered in this book.
Specifically, we are providing DSML Version 2 information, directory integration
using IBM Tivoli Directory Integrator, moving RACF users to TDBM, and schema
changes that are not allowed.

Part 5
© Copyright IBM Corp. 1998, 2004. All rights reserved. 633

634 Understanding LDAP Design and Implementation

Appendix A. DSML Version 2

This appendix covers:

� DSML introduction
� IBM DSML V2 service implementation
� IBM DSML V2 service installation, configuration and execution.
� Java programming examples on DSML

By the end of this appendix, you will better understand the answers to the
following issues:

� What is DSML?
� Why use DSML?
� What is the difference of DSML and LDAP?
� How does IBM support DSML V2 in IBM Directory Server?
� What DSML structure and operations does IBM support?
� How to install, configure, debug and execute IBM DSML service in IBM

Directory Server?
� How to program functions that execute DSML operations in Java?

A

© Copyright IBM Corp. 1998, 2004. All rights reserved. 635

DSML Version 2 Introduction
This section provides an introduction to the history of DSML, the different DSML
versions and their differences.

DSML
Directory Services Markup Language (DSML) is an XML for representing
directory information. It is a generic import/export format for directory information.
Directory information in DSML can be shared between DSML-aware applications
without exposing the LDAP protocol.

XML provides an effective way to present and transfer data; Directory services
allow you to share and manage data, and are thus a necessary prerequisite for
conducting online business; DSML is designed to make directory service more
dynamic by employing XML. DSML is an XML schema for working with
directories, it is defined using a Document Content Description (DCD). Thus,
DSML allows XML programmers to access LDAP-enabled directories without
having to write to the LDAP interface or use proprietary directory-access APIs,
and provides one consistent way to work with multiple dissimilar directories.

DSML Version 1.0
DSML V1.0 was released at the end of 1999, it only provides a meta expression
of directory data model and structure, and it has a lack of support for querying
and updating operations to directories. In order to do queries or updates with
DSML V1.0, a DSML/LDAP tool is needed such as Active Directory Services
Interfaces, or dsmltools which is a set of Java utilities for handling DSML v1.0
data, such as querying LDAP directory with query result in DSML format, import
DSML data into LDAP directory (For more information, please refer to the Web
site (http://www.dsmltools.org).

DSML Version 2.0
DSML v2.0 was released in 2001, it provides a method for expressing directory
queries, updates, and results of these operations in XML format. This version
becomes more useful for most programmers.

DSML Version 2 URN
The base URN for DSML Version 2 is:

urn:oasis:names:tc:DSML:2:0:core
636 Understanding LDAP Design and Implementation

http://www.dsmltools.org

This URN provides the core namespace consisting of the individual operations
and responses, a request envelope, a response envelope and an envelope
grouping the entries, references and result of a search operation.

See Example A-1 on how to use the DSMLv2 URN.

Example: A-1 Using the DSML Version 2 URN

<xml:batchRequest xmlns:dsml=”urn:oasis:names:tc:DSML:2:0:core”>

DSML v2 is not required to be a strict superset of DSML v1, but it is desirable for
DSML v2 to follow the design of DSML v1 where possible.

Difference between DSML v1 and DSML v2
DSML v1 represents LDAP directories in XML, represents the 'state' of a
directory.

DSML v2 represents the 'operation' that an LDAP directory can perform and the
result of such operations.

Difference between DSML v2 and LDAP
The following represents the differences between DSML Version 2 and LDAP:

� Authentication: LDAP request contains authentication, DSML request is not
used to authenticate the requestor. This is because that a DSML v2
document can be transported via a variety of mechanisms. But it does not
mean that DSML v2 cannot be used to authenticate the requestor, in fact,
DSML v2 includes an Auth request that MAY be used to associate a security
principal with a collection of DSML v2 operations.

� Grouping operations: LDAP does not include a method of grouping
operations to be expressed in a single request. DSMLv2 can group multiple
LDAP operations to be expressed in one request document. DSML v2
specifies a simple positional correspondence between individual requests
within a request document and individual responses within a response
document.

� DSMLv2 eliminates a redundant level of nested element, the LDAPMessage,
that is caused by the systematic translation of RFC 2251.

� Defaulting: DSMLv2 uses defaulting in a few places where LDAP does not,
this is because defaulting works more naturally in XML documents than in
ASN.1 structures. In DSMLv2 the string-valued elements matchedDN and
errorMessage (from LDAPResult in LDAP) and attributes (from
SearchRequest in LDAP) are optional and the default values are empty
 Appendix A. DSML Version 2 637

string. The sizeLimit, timeLimit, and typesOnly elements (from
SearchRequest in LDAP) have default value as 0, 0, and FALSE respectively.

Typical DSML Transaction
A typical DSML transaction contains the following steps:

1. XML application sends DSML query across HTTP network.

2. DSML Service receives the query and translates into LDAP query.

3. DSML Service retrieves data from directories, and translate back into DSML
format.

4. DSML Service sends the query result back to the XML application cross the
HTTP network.

See Figure A-1 for a representation of these steps.

Figure A-1 Steps for a typical DSML transaction

DSML Version 2 - IBM implementation
This section discusses IBM’s Implementation of DSML Version 2.

ITDS DSML Version 2 support
IBM Directory Server DSML v2 support extends the reach of the directory to Web
services. Expose the directory and deliver it to Web services through XML
coding. An enterprise's customers could, for example, make changes to directory
data such as phone numbers or street addresses themselves over the Internet
rather than calling in to customer service.

ITDS DSML Version 2 support includes the following implementation:

� IBM DSML Server: It provides DSML service to receive DSML request from
users, executes DSML operations in LDAP server and sends DSML response
back to the users.

� IBM DSML Client: It is used by users to submit DSML requests.

XML Application

DSML
1 2

34

DSML Service

Directory

HTTP

DSML LDAP
1

4

638 Understanding LDAP Design and Implementation

� IBM DSML structure, LDAP schema definition in DSML, request and
response association, and supported DSML operations.

� IBM DSML bindings.

� IBM DSML communication between the two major IBM directory products:
ITDI and ITDS.

IBM DSML Server
IBM's DSML Server provides two basic components: SOAP binding component
and file binding component. A binding defines how the DSML v2 XML fragments
are sent as request and responses in the context of a specific transport such as
SOAP, SMTP, or a simple data file.

� The SOAP binding component allows user to submit a SOAP request over
HTTP protocol. It must be deployed within an Apache SOAP v2.3 webapp.
The DSML v2 'server' is a servlet in Servlet/JSP engine in the application
server. See Figure A-2 for the SOAP binding component flow.

Figure A-2 SOAP binding component flow

Note that it is also feasible to convert DSML to HTTP using XSLT, and to
inject it into the Web-based application flow.

� File binding component: allows a user to submit a request via XML input file. It
resides on the same computer as the client, and is invoked by the
DsmlFileClient. The DSML v2 'server' is a command-line program, as is
typical for LDIF. The client invokes the 'server' program runs on the same
computer as the server, and the input and output of the server are files
consisting of DSML v2 documents. The DSML v2 server uses LDAP to
communicate with the LDAP server. See Figure A-3 on page 640 for the file
binding component flow.

3
JNDI

Response

4
DSML

Response

DSML Service

HTTP
4

DSML
Response

DSML
Request

1

JNDI
Request

2

DSML
Request

1

LDAP Server
 Appendix A. DSML Version 2 639

Figure A-3 File binding component flow

IBM's DSML Server installation requires a servlet-supporting application server
such as WebSphere Application Server, Apache SOAP v2.3. To use DSML,
Java 1.3.1 is required.

DsmlSoap Client
It is used to submit an SOAP request, the SOAP request is an XML file
containing a BatchRequest to an LDAP server. The SOAP server is specified by
a URL provided in a command line argument at runtime.

DsmlFile Client
It is used to submit an XML file containing a BatchRequest to an LDAP server via
a DSML server sitting on the same machine as the client. Both the client and
server are contained in dsml.jar, therefore, this requirement should always be
satisfied.

IBM DSML Version 2 top-level structure
There are two types of DSMLv2 document: The request document and the
response document. In a DSMLv2-based interaction between a client and a
server there is a pairing of requests and responses: For each request document
submitted by the client there is one response document produced by the server.

The top-level elements of a request fragment is a BatchRequest which contains
zero, one, or many individual request elements, and the top-level elements of a
response fragment is a BatchResponse which consists of zero, one or many
individual response elements.

Such a batch request-response pair can be used to verify that a server is capable
of processing DSMLv2 documents.

 DSML Client

LDAP Server

DSML

DSML Server

DSML
Client/Server

LDAP
Request

2

3
LDAP

Response
640 Understanding LDAP Design and Implementation

Defining directory schema in DSML
DSML also can define directory schemas, and store schema information for both
object classes and attribute types. This is very useful when you want to create
any unavailable schemas.

DSML object classes
See Example A-2 for the DSML schema definition for person object class.

Example: A-2 DSML schema definition for person object class

<dsml:dsml xmlns:dsml="http://www/dsml.org/dsml">
<dsml:directory-schema>

<dsml:class id="person" superior="#top" type="structural">
<dsml:name>person</dsml:name>
<dsml:description>Person as defined in RFC2256</dsml:description>
<dsml:object-identifier>2.5.6.6</dsml:object-identifier>
<dsml:attribute ref="#sn" required="true"/>
<dsml:attribute ref="#cn" required="true"/>
<dsml:attribute ref="#userPassword" required="false"/>
<dsml:attribute ref="#telephoneNumber" required="false"/>
<dsml:attribute ref="#seeAlso" required="false"/>
<dsml:attribute ref="#description" required="false"/>

</dsml:class>
... ...

</dsml:directory-schema>
</dsml:dsml>

This DSML schema definition of person object class is equivalent to the 'person'
object class definition in RFC2256:

(2.2.5.6 NAME 'person' SUP top STRUCTURAL MUST (sn $ cn) MAY (userPassword
$ telephoneNumber $ seeAlso $ description))

DSML attribute types
See Example A-3 for the DSML schema definition for telephoneNumber attribute.

Example: A-3 DSML schema definition for telephoneNumber attribute

<dsml:directory-schema>
<dsml:attribute-type id="telephoneNumber">

<dsml:name>telephoneNumber</dsml:name>
<dsml:description>telephone Number from RFC2256</dsml:description>
<dsml:object-identifier>2.5.4.20</dsml:object-identifier>
<dsml:syntax bound="32">1.3.6.1.4.1.1466.115.121.1.50</dsml:syntax>
<dsml:equality>telephoneNumberMatch</dsml:equality>
<dsml:substring>telephoneNumberSubstringMatch</dsml:substring>

</dsml:attribute-type>
 Appendix A. DSML Version 2 641

</dsml:directory-schema>

This DSML schema definition of telephoneNumber attribute is equivalent to the
'telephoneNumber' attribute definition in RFC2256:

(2.5.4.20 NAME 'telephoneNumber' EQUALITY telephoneNumberMatch SUNSTR
telephoneNumberSubstringMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.50(32))

Request and response association
The client and server associate an individual response in a BatchResponse with
the corresponding individual request in a BatchRequest using one (or both) of
the following methods: positional correspondence or RequestID.

In a positional correspondence, the nth response element corresponds to the nth
request element.

See Example A-4 for a valid batch request-response pair using positional
correspondence.

Example: A-4 Valid batch request-response pair using positional correspondence

DSMLv2 Request Document:

<batchRequest xmlns="urn:oasis:names:tc:DSML:2:0:core">
<modifyRequest>...</modifyRequest>
<addRequest>...</addRequest>

<delRequest>...</delRequest>
<addRequest>...</addRequest>

</batchRequest>

DSMLv2 Response Document:

<batchResponse xmlns="urn:oasis:names:tc:DSML:2:0:core">

<modifyResponse>...</modifyResponse>
<addResponse>...</addResponse>

<delResponse>...</delResponse>
<addResponse>...</addResponse>

<addResponse>...</addResponse>

</batchResponse>
642 Understanding LDAP Design and Implementation

The alternative to positional correspondence is the use of the optional requestID
attribute. When the client specifies a value for requestID in a request (for
example, in an addRequest), the server MUST return the same value in the
corresponding response (for example, in an addResponse). The client need not
specify a requestID when positional correspondence is also used, although in
some cases it may find this useful. For example, when using the file binding for a
large file, some clients may find it more convenient to associate failed responses
with requests using requestID rather than position.

A client must not send a request with requestID="0", as this value is reserved for
unsolicited notifications.

A BatchRequest element may contain the optional XML-attribute responseOrder,
which influences how the server orders individual responses within the
BatchResponse. The valid values are ordered and unordered. If this attribute is
omitted, the default value is ordered.

In a BatchRequest with responseOrder="ordered", the server MUST return a
BatchResponse in which the individual responses maintain a positional
correspondence with the individual requests.

Syntax errors
If the server detects the syntax error from the request document before
performing any directory operations on behalf of the client, the response will look
like Example A-5.

Example: A-5 Response to a syntax error in request document

<batchResponse xmlns="urn:oasis:names:tc:DSML:2:0:core">
<errorResponse type="malformedRequest">

<message>Unknown element 'bogusRequest' line 87 column 4</message>
</errorResponse>

</batchResponse>

The errorResponse element contains details about the error.

If the server performs one or more directory operations on behalf of the client
before detecting the syntax error, the server's response contains the response
element for each operation that it performed, followed by an errorResponse
element. See Example A-6.

Example: A-6 Response to a syntax error after performing directory operations

DSML v2 request containing the syntax error:
<batchRequest xmlns="urn:oasis:names:tc:DSML:2:0:core">

<modifyRequest>...</modifyRequest>
<addRequest>...</addRequest>
 Appendix A. DSML Version 2 643

<bogusRequest>...</bogusRequest>
<addRequest>...</addRequest>s
...

</batchRequest>

DSML v2 reponse to syntax error in request:
<batchResponse xmlns="urn:oasis:names:tc:DSML:2:0:core">

<modifyResponse>...</modifyResponse>
<addResponse>...</addResponse>
<errorResponse type="malformedRequest">

<message>Unknown element 'bogusRequest' line 87 column 4</message>
</errorResponse>

</batchResponse>

Failures
A client may produce a request document that is syntactically correct but that
contains a request that fails when the provider executes it. Failure is defined as
follows:

� The DSMLv2 provider was unable to connect to a server (represented as an
errorResponse with type="couldNotConnect").

� The DSMLv2 provider connected to a server, but the server closed the
connection without responding to the request (represented as an
errorResponse with type="connectionClosed").

� The server returned an LDAPResultCode other than 0 ("success"), 6
("compareTrue"), 5 ("compareFalse"), or 10 ("referral").

When a request execution fails, the server does not attempt to execute later
requests within the document. The server produces a response element for each
request element that was attempted, including the one that failed.

See Example A-7 for a DSMLv2 request that contains a request that fails.

Example: A-7 DSML v2 request that contains a request that fails

DSMLv2 Request containing a request that fails:
<batchRequest xmlns="urn:oasis:names:tc:DSML:2:0:core">

<modifyRequest>...</modifyRequest>
<addRequest>...</addRequest>
<delRequest>...</delRequest>
<addRequest>...</addRequest>

</batchRequest>

DSMLv2 Response - One request not attempted:
<batchResponse xmlns="urn:oasis:names:tc:DSML:2:0:core">

<modifyResponse>...</modifyResponse>
<addResponse>...</addResponse>
644 Understanding LDAP Design and Implementation

<errorResponse type="connectionClosed"/>
</batchResponse>

Parallel processing
A BatchRequest element MAY contain the optional XML-attribute processing,
which influences how the server can process the request elements. The valid
values are sequential and parallel. If this attribute is omitted, the default value is
sequential.

See Example A-8 for BatchRequest that uses parallel processing.

Example: A-8 batchRequest definition using the parallel processing attribute

<batchRequest xmlns="urn:oasis:names:tc:DSML:2:0:core" processing="parallel">
...

</batchRequest>

In a BatchRequest with processing="sequential", the server must preserve
sequential semantics, that is, it behaves as already described regardless of the
value of the responseOrder attribute. The effect of processing the BatchRequest
must be as if the request elements were executed in the order they occur within
the envelope.

In a BatchRequest with processing="parallel", the server MAY execute the
request elements in any order. This form of processing is useful when a request
contains multiple updates and the client knows that the updates are independent,
as might be the case when DSMLv2 is used to bulk-load a directory. It is also
useful when a request contains multiple queries and no updates.

In a BatchRequest with processing="parallel" and responseOrder="unordered",
the client MUST specify a unique requestID for each individual request in the
envelope. In this case, the server MAY return the responses in any order within
the BatchResponse envelope; for example, in the order in which the operations
complete, to improve server efficiency. If the client fails to specify a requestID for
each request, the server MUST return an errorResponse with
type="malformedRequest".

Resuming on error
A BatchRequest element MAY contain the optional XML-attribute onError, which
influences how the server responds to failures while processing request
elements. The valid values are: exit and resume. If this attribute is omitted, the
default value is exit.

See for a batchRequest definition that contains the onError attribute.
 Appendix A. DSML Version 2 645

Example: A-9 batchRequest definition using the onError attribute

<batchRequest xmlns="urn:oasis:names:tc:DSML:2:0:core" onError="resume">
...

</batchRequest>

In a BatchRequest with onError="exit", the server stops executing request
elements as soon as one request element fails, and the response that is sent
implicitly includes a notAttempted response for all requests that do not otherwise
have a response.

If processing="parallel" and onError="exit", the server stops initiating execution
of new request elements as soon as one request element fails.

If the provider does not attempt to execute a request element, but needs to
provide a response in order to maintain positional correspondence, it generates
an errorResponse with type="notAttempted", as shown in Example A-10.

Example: A-10 errorResponse with type=”notAttempted”

DSMLv2 Request with parallel execution containing a request that fails:
<batchRequest xmlns="urn:oasis:names:tc:DSML:2:0:core"

 processing="parallel" onError="resume">
<modifyRequest>...</modifyRequest>
<addRequest>...</addRequest>
<delRequest>...</delRequest>
<addRequest>...</addRequest>

</batchRequest>

DSMLv2 Response - two requests not successful
<batchResponse xmlns="urn:oasis:names:tc:DSML:2:0:core">

<modifyResponse>...</modifyResponse>
<errorResponse type="notAttempted"/>
<delResponse>

<resultCode code="32" descr="noSuchObject"/>
</delResponse>

</batchResponse>

In a BatchRequest with onError="resume", the server executes the remaining
request elements even though one or more requests have failed. This form of
processing is most useful when processing="parallel".

IBM DSML LDAP Operations
This section discusses IBM DSML LDAP Operations.
646 Understanding LDAP Design and Implementation

ITDS DSML Request Structure
With the exception of extendedRequest, each individual request element
contains:

� A dn attribute (as in DSMLv1) containing a distinguished name.
� Zero or more control elements representing LDAP Controls.

See Example A-11for a few examples of LDAP request elements.

Example: A-11 LDAP request elements

<batchRequest xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:oasis:names:tc:DSML:2:0:core">

<modifyRequest dn="CN=Joe Smith, OU=Dev, DC=Example, DC=Com">
...

</modifyRequest>
<addRequest dn="OU=Sales,DC=Example, DC=Com">

...
</addRequest>
<delRequest dn="CN=Alice,OU=HR,DC=Example,DC=Com">

<control>...</control>
<control>...</control>

</delRequest>
<searchRequest>

<control>...</control>
...

</searchRequest>
</batchRequest>

See Example A-12 for an example of an LDAP Control.

Example: A-12 LDAP Control

<control type="1.2.840.113556.1.4.619" criticality="true">
<controlValue

xsi:type="xsd:base64Binary">RFNNTHYyLjAgcm9ja3MhIQ==
</controlValue>

</control>

See Example A-13 for a few examples of LDAP response elements.

Example: A-13 LDAP response elements

<batchResponse xmlns="urn:oasis:names:tc:DSML:2:0:core">

...

<modifyResponse>
 Appendix A. DSML Version 2 647

<resultCode code="53" descr="unwillingToPerform"/>
<errorMessage>System Attribute may not be modified</errorMessage>

</modifyResponse>

<addResponse>
<resultCode code="0" descr="success"/>

</addResponse>

<addResponse>
<control>...</control>
<control>...</control>
<resultCode code="0" descr="success"/>

</addResponse>

 ...

</batchResponse>

The matchedDN and errorMessage elements are optional and default to the
empty string.

The resultCode element has an optional descr attribute.

DsmlValues
The definition of DsmlValue permits the following types: UTF-8, base64Binary,
and any URI. The URI type is used to indicate that the contents of the value are
to be found at a location defined by the URI.

Auth
The authRequest provides a means for a client to indicate that access control for
the following requests is to be interpreted as though the requests are performed
by the security principal identified by the principal attribute. The value of the
principal attribute is an authzId, as defined by [RFC 2829]. This can be useful if
the DSMLv2 server (or an LDAP server to which the DSMLv2 server connects) is
capable of supporting proxy authorization [ID-ProxyAuth].

At most one authRequest may occur within a BatchRequest and if it does occur,
it must be the first request. If authRequest operations are not supported by the
server to which the BatchRequest is sent, then the server must not process the
following requests and must return a BatchResponse with an authResponse
containing an LDAPResultCode of 'authMethodNotSupported'. If authRequest
operations are supported, then if there are access rights errors, processing
proceeds as for a BatchRequest without an authRequest; that is, an appropriate
errorResponse is generated, etc.

See Example A-14 on page 649 for an example of an authRequest.
648 Understanding LDAP Design and Implementation

Example: A-14 authRequest example

<authRequest principal="dn:CN=Bob Rush,OU=Dev,DC=Example,DC=COM"/>

See Example A-15 for an example of an authResponse.

Example: A-15 authReqponse example

<authResponse>
<resultCode code="0"/>

</authResponse>

Modify
DSMLv2 specifies each attribute modification by attaching an operation attribute
to an attr element. As in LDAP, an operation can be add, delete, or replace.

See Example A-16 for an example of a modifyRequest.

Example: A-16 modifyRequest example

<?xml version="1.0" encoding="UTF-8"?>
<dsml:batchRequest xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<dsml:modifyRequest dn="cn=chunhui yang,o=ibm">
<modification name="telephoneNumber" operation="add">

<value>123 456 7890</value>
<value>919 824 9855</value>

</modification>
<modification name="sn" operation="replace">

<value>Richard</value>
</modification>

</dsml:modifyRequest>
</dsml:batchRequest>

See Example A-17 for an example of a modifyResponse.

Example: A-17 modifyResponse example

<modifyResponse>
<resultCode code="53" descr="unwillingToPerform"/>
<errorMessage>System Attribute may not be modified</errorMessage>

</modifyResponse>
 Appendix A. DSML Version 2 649

Search
The DSMLv2 search encoding is based on the LDAP search encoding, but with
some changes as described in Section A. In the searchRequest encoding:

� baseObject. Following DSMLv1 conventions, the distinguished name of the
search base is expressed as the XML attribute dn.

<searchRequest dn="OU=Marketing,DC=Example,DC=COM" />

� sizeLimit, timeLimit, typesOnly. These elements default to 0, 0, and FALSE
respectively.

� attributes. In RFC 2251, attributes is a sequence of attribute names, which is
translated into a sequence of elements containing attribute names.

See Example A-18 for an example of the attributes element.

Example: A-18 attributes element example

<attributes>
<attribute name="sn"/ >
<attribute name="givenName"/>
<attribute name="title"/>

</attributes>

See Example A-19 for a full SearchRequest example.

Example: A-19 searchRequest example

<?xml version="1.0" encoding="UTF-8"?>
<dsml:batchRequest xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<dsml:searchRequest
dn="o=ibm"
scope="wholeSubtree"
derefAliases="neverDerefAliases"
sizeLimit="1000">

<dsml:filter>
<dsml:and>

<dsml:substrings name="givenName">
<initial>S</initial>

</dsml:substrings>
<dsml:equalityMatch name="objectclass">

<value>inetorgperson</value>
</dsml:equalityMatch>

</dsml:and>
</dsml:filter>
<dsml:attributes>

<dsml:attribute name="cn"/>
<dsml:attribute name="sn"/>
650 Understanding LDAP Design and Implementation

<dsml:attribute name="l"/>
</dsml:attributes>
</dsml:searchRequest>

</dsml:batchRequest>

The response to a searchRequest is logically called a searchResponse.
According to RFC 2251, a search response contains:

� Zero to many searchResultEntry
� Zero to many searchResultReference
� One searchResultDone

DSMLv2 permits wrapping all of these related elements into one
searchResponse envelope.

Each searchResultEntry, searchResultReference, and searchResultDone MAY
have zero or more LDAP controls, consistent with RFC 2251.

See Example A-20 for an example of a searchResultEntry (with terminating
searchResultDone).

Example: A-20 searchResultntry example

<searchResponse>
<searchResultEntry dn="OU=Development,DC=Example,DC=COM">

<attr name="allowedAttributeEffective">
<value>description</value>
<value>ntSecurityDescriptor</value>
<value>wwwHomepage</value>

</attr>
</searchResultEntry>
<searchResultEntry dn="CN=David,OU=HR,DC=Example,DC=COM">

<attr name="objectclass"><value>person</value></attr>
<attr name="sn"><value>Johnson</value></attr>
<attr name="givenName"><value>David</value></attr>
<attr name="title"><value>Program Manager</value></attr>

</searchResultEntry>
<searchResultEntry dn="CN=JSmith, OU=Finance,DC=Example,DC=COM">

<attr name="objectclass"><value>top</value></attr>
<attr name="objectclass"><value>person</value></attr>
<attr name="objectclass"><value>organizationalPerson</value></attr>
<attr name="sn"><value>Smith</value></attr>

</searchResultEntry>
<searchResultDone>

<control type="1.2.840.113556.1.4.621" criticality="false">
<controlValue xsi:type="xsd:base64Binary">

U2VhcmNoIFJlcXVlc3QgRXhhbXBsZQ==
</controlValue>

</control>
 Appendix A. DSML Version 2 651

<resultCode code="0"/>
</searchResultDone>

</searchResponse>

See Example A-21 for an example of a searchResultReference.

Example: A-21 searchResultReference example

<searchResponse>
<searchResultReference>

<ref>ldap://srv01.example.com/OU=Marketing,DC=Example,DC=COM</ref>
<ref>ldap://srv05.fabrikam.com/DC=Fabrikam,DC=COM</ref>

</searchResultReference>
...

</searchResponse>

Add
See Example A-22 for an example of an addRequest.

Example: A-22 addRequest example

<?xml version="1.0" encoding="UTF-8"?>
<dsml:batchRequest xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<dsml:addRequest dn="cn=chunhui yang,o=ibm">
<attr name="objectclass">

<value>top</value>
</attr>
<attr name="objectclass">

<value>person</value>
</attr>
<attr name="objectclass">

<value>organizationalPerson</value>
</attr>
<attr name="objectclass">

<value>inetorgperson</value>
</attr>
<attr name="sn">

<value>Yang</value>
</attr>
<attr name="givenName">

<value>chunhui</value>
</attr>
<attr name="title">

<value>ITDS consultant</value>
</attr>

</dsml:addRequest>
652 Understanding LDAP Design and Implementation

</dsml:batchRequest>

See Example A-23 for an example of an addResponse.

Example: A-23 addResponse example

<addResponse>
<resultCode code="0"/>
<errorMessage>completed</errorMessage>

</addResponse>

Delete
See Example A-24 for an example of a delRequest.

Example: A-24 delRequest example

<?xml version="1.0" encoding="UTF-8"?>
<dsml:batchRequest xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<dsml:delRequest dn="cn=deleteperson,o=ibm">
</dsml:delRequest>

</dsml:batchRequest>

See Example A-25 for an example of a delResponse.

Example: A-25 delResponse example

<delResponse matchedDN="OU=HR,DC=Example,DC=COM">
<resultCode code="32" descr="noSuchObject"/>
<errorMessage>DSDEL::230234</errorMessage>

</delResponse>

ModifyDN
See Example A-26 for an example of a modDNRequest.

Example: A-26 modDNRequest example

<modDNRequest dn="CN=Alice Johnson,DC=Example,DC=COM"
newrdn="Alice Weiss"
deleteoldrdn="true"
newSuperior="OU=Marketing,DC=Example,DC=COM"/>

See Example A-27 on page 654 for an example of a modDNResponse.
 Appendix A. DSML Version 2 653

Example: A-27 modDNResponse example

<modDNResponse>
<resultCode code="0" descr="success"/>
</modDNResponse>

Compare
See Example A-28 for an example of a compareRequest.

Example: A-28 compareRequest example

<compareRequest dn="CN=Johnson,OU=HR, DC=Example,DC=COM">
<assertion name="sn"><value>Johnson</value></assertion>

</compareRequest>

See Example A-29 for an example of a compareResponse.

Example: A-29 compareResponse example

<compareResponse>
<resultCode code="6" descr="compareTrue"/>

</compareResponse>

Extended Operation
See Example A-30 for an example of an extendedRequest.

Example: A-30 extendedRequest example

<extendedRequest>
<requestName>1.3.563.52.424</requestName>
<requestValue

xsi:type="xsd:base64Binary">TFNNTHYyLjAgcm9ja3MhIQ==
</requestValue>

</extendedRequest>

See Example A-31 for an example of an extendedResponse.

Example: A-31 extendedResponse example

<extendedResponse>
<resultCode code="0"/>
<response xsi:type="xsd:base64Binary">RFNNTHYyLjAgcm9ja3MhIQ==</response>

</extendedResponse>
654 Understanding LDAP Design and Implementation

Bindings
DSMLv2 defines two normative bindings:

� A SOAP request/response binding
� A file binding that serves as the DSMLv2 analog of LDIF

SOAP Binding
The following describes the DSMLv2 SOAP [W3C SOAP] request/response
binding.

The namespace for DSMLv2 is "urn:oasis:names:tc:DSML:2:0:core". This
namespace is used at the top-level element of the <body> of each SOAP request
and response. Default namespace designations may be used.

All SOAP requests and responses in this binding MUST use the xml encoding
"UTF-8".

Each SOAP request body contains a single batchRequest. A SOAP node
SHOULD indicate in the 'SOAPAction' header field the element name of the
top-level element in the <body> of the SOAP request.

Each SOAP response body contains a single batchResponse.

A SOAP Fault is used only when an error occurs outside the scope of DSMLv2
processing. For example, the SOAP Server is not able to find or connect to a
DSMLv2 server to process a DSMLv2 document. If errors happen during
DSMLv2 processing, then they are conveyed as a DSMLv2 response document
in the SOAP response message.

See Example A-32 for an example of a SOAP request.

Example: A-32 SOAP request example

<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/"
se:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<se:Body xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core">

<dsml:batchRequest>
<dsml:modifyRequest>...</dsml:modifyRequest>
<dsml:addRequest>...</dsml:addRequest>
...

</dsml:batchRequest>
</se:Body>

</se:Envelope>

See Example A-33 on page 656 for an example of a SOAP response.
 Appendix A. DSML Version 2 655

Example: A-33 SOAP response example

<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/"
se:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<se:Body xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core">

<dsml:batchResponse>
<dsml:modifyResponse>...</dsml:modifyResponse>
<dsml:addResponse>...</dsml:modifyResponse>
...

</dsml:batchResponse>
</se:Body>

</se:Envelope>

See for an example of a SOAP fault.

Example: A-34 SOAP Fault example

<se:Envelope xmlns:se="http://schemas.xmlsoap.org/soap/envelope/"
se:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<se:Body>
<se:Fault>

<faultcode>se:Server</faultcode>
<faultstring>Server Error</faultstring>
<detail>Cannot connect to a DSMLv2 server</detail>

</se:Fault>
</se:Body>

</se:Envelope>

This binding does not specify any SOAP headers.

A minimal implementation supports DsmlValue URIs of type file, which are
evaluated by the client provider using the security context associated with the
client. Individual implementations may support additional URI types. If the client
provider is unable to resolve the URI to a value that can transferred to the server,
then the provider must return an errorResponse with type="unresolvableURI".

Authentication in this binding is the ID and password which comes in as part of
HTTP authentication, and is reused to bind to LDAP.

File binding
The file binding is an alternative to the LDAP Data Interchange Format (LDIF)
described by [RFC 2849]. Its primary advantages over LDIF are:

� Use of XML, which is more natural for many clients to generate and to parse
than LDIF. Also benefits from the comparative wealth of tools.

� Formalization of output on error conditions, such as in the event the directory
server is unavailable or the directory server returns an LDAP error.
656 Understanding LDAP Design and Implementation

The top-level document for the input file is an element of type BatchRequest with
name batchRequest. The top-level document for the output file is an element of
type BatchResponse with name batchResponse.

A minimal implementation supports DsmlValue URIs of type file, which are
evaluated by the command-line program using the security context associated
with the process running the command-line program. Individual implementations
MAY support additional URI types. If the client provider is unable to resolve the
URI to a value that can transferred to the server, then the command-line program
MUST return an errorResponse with type="unresolvableURI".

The file binding authenticates to the directory using the user identity and
password with which the command-line program was invoked.

DSML communication between ITDI and ITDS
ITDI is IBM's another directory product which focuses on directory integration
practice. It can acts as a DSML client or a DSML service to communicate with
ITDS DSML server.

ITDS DSML Client to ITDI DSML Service
ITDS DSML client application sends DSML request to ITDI, and ITDI HTTP EH
will trigger an AssemblyLine which uses HTTP client connector and SOAP
parser to deconstruct the DSML request, connects to ITDS server and executes
the operation defined in the DSML request, and then sends the DSML response
back to ITDS DSML client application.

ITDI DSML Client to ITDS DSML Server
ITDI can uses its HTTP client connector to send DSML request, ITDS DSML
server receives the DSML request, parses the DSML document, convert the
DSML operation into JNDI operation, executes the requested operation in the
LDAP server via JNDI, and sends DSML response back to ITDI.

ITDS DSML Service Deployment
This section covers the detailed steps of ITDS DSML service installation,
configuration, and execution.
 Appendix A. DSML Version 2 657

Installation
In order to install ITDS DSML Service, you will need to download the DSML.zip
file, install application server (WAS), install SOAP, and then install DSML into
WAS. These steps are described in the following section.

DSMLzip file
Directory Services Markup Language (DSML) is installed as a .zip file named
DSML.zip in the installpath/idstools (or installpath\idstools for Windows
systems) directory when you install the Web Administration Tool.

After you unzip the DSML.zip file, the DSML.zip file can be found in your
<LDAPHome>\idstools directory, the following files are contained in the .zip file.

DSMLReadme.txt
Describes the files in the package and more detailed instructions on how to
install and configure DSML and placement of .jar files.

dsml.pdf
Describes how to use DSML. This file is in PDF format.

dsml.htm
Describes how to use DSML, in HTML format.

Install Application Server (WAS)
The Application Server is required.The embedded Websphere Application
Server 5.0 Express provided with the IBM Directory Server installation is
preferred. Tomcat is also supported. The following steps should be performed
when installation the application server:

� Install IBM Directory 5.2 with WebAdmin package and Websphere
Application Server and GSKit6.

� Configure your ITDS 5.2 Admin DN and Password, and database (in order to
test WAS with the Web Admin).

� Make sure the Websphere Application Server Express starts successfully.

Note: During standard IBM Directory Server installation, you must select the
WebAdmin package.

Note: The Web Administration Tool is NOT for the faint of heart: Requires
specific Java files and CLASSPATH setup, knowledge of installing apps into
the Application Server, plus knowledge of SOAP and XML.
658 Understanding LDAP Design and Implementation

� Type the following commands in the installation folder\appsrv\bin directory:

In Windows: startServer server1
In Unix: startServer.sh server1

� Test WAS by starting the WebAdmin at the following default URL:

http://<hostname>:9080/IDSWebApp/IDSjsp/Login.jsp

� If desired, go ahead and configure your new 5.2 LDAP server into WAS.

Install Java SDK 1.3.1
Java SDK 1.3.1 (not just the JRE) is needed. WebSphere Express contains an
acceptable version in the ...\appsrv\java\ directory. The preferred level of the
1.3.1 SDK is Service Release 2 or greater. This can be obtained at:

http://www.alphaworks.ibm.com/aw.nsf/download/xml4j

On this page, download File: XML4J-bin.4.1.2.zip. The files needed from this zip
file are xercesImpl.jar, xmlParserAPIs.jar.

Install SOAP
To install:

� Apache SOAP 2.3 must be installed into the Application Server before
installing our DSML. This can be obtained at:

http://xml.apache.org/dist/soap/version-2.3

On this page, download file soap-bin-2.3.zip. The files needed from this zip
file are soap.war, soap.jar.

� Some specific Java packages must be downloaded from the Web in order to
get some of the Java .jar files required by DSML. (See Table A-1 for the Java
files that are needed.)

Unzip the packages and copy the .jar files to <WAS>\appsrv\lib.

Copy the soap.war file to <WAS>\appsrv\installableApps.

� Configure Apache SOAP 2.3 into WAS.

Set your JAVA_HOME and CLASSPATH to values discussed in the
DSMLreadme.txt file.

– Download the 5 JAR files listed in Table A-1 to install the DSML Server.
These files are required for the install.bat or install.sh file to work.

Table A-1 JAR files needed to install the DSML Server

Filename Description Download location

mail.jar Java Mail http://java.sun.com/products/javamail/
 Appendix A. DSML Version 2 659

http://xml.apache.org/dist/soap/version-2.3
http://www.alphaworks.ibm.com/aw.nsf/download/xml4j
http://java.sun.com/products/javamail/

– Set the CLASSPATH variable to point all of the jar files you downloaded.

CLASSPATH should point to soap.jar, xercesImpl.jar, xmlParserAPIs.jar
xerces.jar, activation.jar, and mail.jar.

Additional classpath setting that is not included in the dsmlreadme.txt file
and WAS:

appsrv\installedApps\DefaultNode\soap.war.ear\soap.war\WEB-INF\classes

Such as:

C:\PROGRA~1\IBM\LDAP\appsrv\installedApps\DefaultNode\soap.war.ear\soap.
war\WEB-INF\classes;

See Example A-35 for an example of classpath settings.

Example: A-35 CLASSPATH settings

.;C:\PROGRA~1\IBM\LDAP\appsrv\lib\jaf-1.0.2\activation.jar;
C:\PROGRA~1\IBM\LDAP\appsrv\lib\javamail-1.3.1\mail.jar;
C:\PROGRA~1\IBM\LDAP\appsrv\lib\xml4j-4_2_2\XercesImpl.jar;
C:\PROGRA~1\IBM\LDAP\appsrv\lib\xml4j-4_2_2\XMLParserAPIs.jar;
C:\PROGRA~1\IBM\LDAP\appsrv\installedApps\DefaultNode\soap.war.ear\soap.war\WEB
-INF\classes;

– Set the JAVA_HOME variable to <WASinst>/java/.

JAVA_HOME must point to a true Java 1.3.1 SDK (not just a JRE). The
<WAS>/appsrv/java directory contains an acceptable 1.3.1 JDK.

– Set the PATH variable to <WASinst>/java/bin.

– Make sure the file soap.war is in the <WAS>/appsrv/installableApps
directory.

– GSKit6 (which comes with our product) contains several .jar files that are
needed by DSML.

� Run the following WAS command (one long line).

activation.jar JavaBeans http://java.sun.com/products/javabeans/g
lasglow/jaf/html

XercesImpl.jar XML4Java http://www.alphaworks.ibm.com/aw.nsf/dow
nload/xml4j

XMLParserAPIs.jar XML4Java http://www.alphaworks.ibm.com/aw.nsf/dow
nload/xml4j

soap.jar Apache SOAP http://xml.apache.org/dist/soap/version-
2.3/

Filename Description Download location
660 Understanding LDAP Design and Implementation

http://java.sun.com/products/javabeans/glasglow/jaf/html
http://www.alphaworks.ibm.com/aw.nsf/download/xml4j
http://www.alphaworks.ibm.com/aw.nsf/download/xml4j
http://xml.apache.org/dist/soap/version-2.3/

The command shown in Example A-36is the Windows version, and you
should replace '<WAS>' with the directory where the WAS 'appsrv' directory
exists.

Example: A-36 WAS command

<WAS>\appsrv\bin\wsadmin.bat -conntype NONE -node DefaultNode
 -c "$AdminApp install {<WAS>/appsrv/installableApps/soap.war}
 {-configroot \"<WAS>\config\" -node DefaultNode -usedefaultbindings
 -nodeployjb -appname soap.war -context \"soap\"}

See Example A-37 for an example of how to create a soapinstall.bat file to run
the WAS command.

Example: A-37 soapinstall.bat file

wsadmin.bat -conntype NONE -c "$AdminApp install {C:\Program
Files\IBM\LDAP\appsrv/installableApps/soap.war} {-configroot \"C:\Program
Files\IBM\LDAP\config\" -node DefaultNode -usedefaultbindings -nodeployejb
-appname soap.war -contextroot \"soap\"}"

After the installation, you will see something similar to Example A-38.

Example: A-38 soapinstall.bat output messages

C:\Program Files\IBM\LDAP\appsrv\bin>soapinstall

C:\Program Files\IBM\LDAP\appsrv\bin>wsadmin.bat -conntype NONE -c "$AdminApp
install {C:\Program Files\IBM\LDAP\appsrv/installableApps/soap.war}
{-configroot \"C:\Program Files\IBM\LDAP\config\" -node DefaultNode
-usedefaultbindings -nodeployejb -appname soap.war -contextroot \"soap\"}"

WASX7357I: By request, this scripting client is not connected to any server
process. Certain configuration and application operations will be available in
local mode.
ADMA6016I: Add to workspace META-INF/application.xml
ADMA6017I: Saved document C:\Program
Files\IBM\LDAP\appsrv\wstemp\Scriptf95c04264e\workspace\cells\DefaultNode\appli
cations\soap.war.ear\deployments\soap.war\META-INF\ibm-applcation-bnd.xmi
ADMA6016I: Add to workspace META-INF/ ibm-applcation-bnd.xmi
ADMA6017I: Saved document C:\Program
Files\IBM\LDAP\appsrv\wstemp\Scriptf95c04264e\workspace\cells\DefaultNode\appli
cations\soap.war.ear\deployments\soap.war\META-INF\MANIFEST.MF
ADMA6016I: Add to workspace META-INF/ MANIFEST.MF

Note: Make sure all the back-slashes, double-quotes, and backslashes are
correct.
 Appendix A. DSML Version 2 661

ADMA6017I: Saved document C:\Program
Files\IBM\LDAP\appsrv\wstemp\Scriptf95c04264e\workspace\cells\DefaultNode\appli
cations\soap.war.ear\deployments\soap.war\WEB-INF\web.xml
ADMA6016I: Add to workspace soap.war/WEB-INF/web.xml
ADMA6017I: Saved document C:\Program
Files\IBM\LDAP\appsrv\wstemp\Scriptf95c04264e\workspace\cells\DefaultNode\appli
cations\soap.war.ear\deployments\soap.war\WEB-INF\ibm-web-bnd.xmi
ADMA6016I: Add to workspace soap.war/WEB-INF/ibm-web-bnd.xml
ADMA5005I: Application soap.war configured in WebSphere repository
ADMA5037I: Starting backup of app at C:\Program
Files\IBM\LDAP\appsrv\wstemp\Scriptf95c04264e\workspace\cells\DefaultNode\appli
cations\soap.war.ear
ADMA5037I: Completed backup of app at C:\Program
Files\IBM\LDAP\appsrv\wstemp\Scriptf95c04264e\workspace\cells\DefaultNode\appli
cations\soap.war.ear
ADMA5037I: Application binaries saved in C:\Program
Files\IBM\LDAP\appsrv\wstemp\Scriptf95c04264e\workspace\cells\DefaultNode\appli
cations\soap.war.ear
ADMA5037I: Deleting directory tree
C:\DOCUME~1\ADMINI~1\LOCALS~1\Temp\app_f95c0454e5
ADMA5011I: Cleanup of temp dir for app soap.war done.
ADMA5031I: Application soap.war installed successfully

� Stop and restart the WAS server after a successful SOAP install.

You will see information similar to Example A-39 during the restart process.

Example: A-39 Restart WAS output

C:\Program Files\IBM\LDAP\appsrv\bin>stopServer server1
ADMU0116I: Tool information is being logged in file C:\Program
 Files\IBM\LDAP\appsrv\logs\server1\stopServer.log
ADMU3100I: Reading configuration for server: server1
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server server1 stop completed.

C:\Program Files\IBM\LDAP\appsrv\bin>startServer server1
ADMU0116I: Tool information is being logged in file C:\Program
 Files\IBM\LDAP\appsrv\logs\server1\startServer.log
ADMU3100I: Reading configuration for server: server1
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server server1 open for e-business; process id is 900

Install DSML into WAS
To install:

� Make sure the WAS Express server has restarted successfully.

� Test SOAP is working through WAS by opening a browser and going to the
URL:
662 Understanding LDAP Design and Implementation

http://<yourmachinename>:9080/soap/servlet/rpcrouter

� You should see a page with a message similar to SOAP RPC Router - Sorry,
we do not speak via HTTP GET ... use HTTP POST, as shown in Figure A-4.

Figure A-4 Testing SOAP through WAS

� Install DSML using the following commands from the c:\dsml\ directory:

– On Windows platforms:

install <SOAPHomeDir> <RPCRouterURL>

– On UNIX platforms:

chmod u+x install.sh
./install.sh <SOAPHomeDir> <RPCRouterURL>

See Example A-40 for a Windows example.

Example: A-40 Installing DSML on Windows

install <WAS>\appsrv\installedApps\DefaultNode\soap.war.ear\soap.war
http://<yourmachinename>:9080/soap/servlet/rpcrouter

You should see some files copied with a message at the end that says if there
were no error messages the install was successful, as shown in
Example A-41. There should not be any Java exceptions.

Note: If there is a space (such as C:\Program Files\...) in your
JAVA_HOME, you should quote "%JAVA_HOME%" in the install.bat file.
 Appendix A. DSML Version 2 663

Example: A-41 DSML install output

C:\Program Files\IBM\LDAP\idstools\DSML>install
C:\Progra~1\IBM\LDAP\appsrv\installedApps\DefaultNode\soap.war.ear\soap.war
http://lcoalhost:9080/soap/servlet/rptrouter

1 file(s) copied.
.\jars\auibase.jar
.\jars\dsml.jar
.\jars\IBMLDAPJavaBer.jar
.\jars\regex4j.jar

4 file(s) copied.
.\jars\auibase.jar
.\jars\dsml.jar
.\jars\IBMLDAPJavaBer.jar
.\jars\regex4j.jar

4 file(s) copied.
1 file(s) copied.
1 file(s) copied.

Verified existence of logs directory:
C:\Progra~1\IBM\LDAP\appsrv\installedApps\DefaultNode\soap.war.ear\soap.war\log
s.
Verified existence of WEB-INF/lib directory:
C:\Progra~1\IBM\LDAP\appsrv\installedApps\DefaultNode\soap.war.ear\soap.war\WEB
-INF\lib.
Deploying the eCopy service....
Verify that its there
Deployed Services:
Urn:oasis:.namesLtcLDSML:2:0:core
If you have not received any errors during the install, installation is now
complete. Please restart your application server.

C:\Program Files\IBM\LDAP\idstools\DSML>

If you see the Java exception as shown in Example A-42, it means that your
localhost is not found.

Example: A-42 Java exception for localhost not found

Exception in thread "main" [SOAPException: faultCode=SOAP-ENV:Client; msg=Error
opening socket: java.net.UnknownHostException:
localhost;targetException=java.lang.IllegalArgumentException: Error opening
socket: java.net.UnknownHostException: lcoalhost]

at org.apache.soap.transport.http.SOAPHTTPConnection.send(Unknown Source)
at org.apache.soap.rpc.Call.invoke(Unknown Source)
at org.apache.soap.server.ServiceManagerClient.invokeMethod(Unknown Source)
at org.apache.soap.server.ServiceManagerClient.deploy(Unknown Source)
at org.apache.soap.server.ServiceManagerClient.main(Unknown Source)
664 Understanding LDAP Design and Implementation

If you see the Java exception as shown in Example A-43, it means that your
class path for those required jar files are not set correctly.

Example: A-43 Java exception for CLASSPATH not being set correctly

[Error] Thu Dec 11 19:56:38 EST 2003 <== DsmlSoapClient.main(String[])
(Exception)
java.io.FileNotFoundException:

C:\Program Files\IBM\LDAP\idstools\DSML\DsmlRequest.xml
(The system cannot find the file specified)

at java.io.FileInputStream.open(Native Method)
at java.io.FileInputStream.<init>(FileInputStream.java:103)
at java.io.FileInputStream.<init>(FileInputStream.java:66)
at sun.net.www.protocol.file.FileURLConnection.connect

(FileURLConnection.java:69)
at sun.net.www.protocol.file.FileURLConnection.getInputStream

(FileURLConnection.java:156)
at java.net.URL.openStream(URL.java:960)
at org.apache.xerces.impl.XMLEntityManager.setupCurrentEntity

(Unknown Source)
at org.apache.xerces.impl.XMLVersionDetector.determineDocVersion

(Unknown Source)
at org.apache.xerces.parsers.XML11Configuration.parse(Unknown Source)
at org.apache.xerces.parsers.DTDConfiguration.parse(Unknown Source)
at org.apache.xerces.parsers.XMLParser.parse(Unknown Source)
at org.apache.xerces.parsers.DOMParser.parse(Unknown Source)
at org.apache.xerces.jaxp.DocumentBuilderImpl.parse(Unknown Source)
at javax.xml.parsers.DocumentBuilder.parse(DocumentBuilder.java:124)
at com.ibm.ldap.dsmlClient.DsmlSoapClient.main(DsmlSoapClient.java:205)

� When DSML is successfully installed, you will receive the messages
"Deploying Service" and "Verifying". You are then prompted to restart your
application server.

SSL with DSML
The following documentation should be reviewed to help set up SSL with DSML.

� DSMLReadme.txt file (located inside the DSML.zip file)
� IBM Directory Server 5.1 Administration Guide - Chapter 7
� IBM Directory Server 5.1 Installation and Configuration Guide - Appendix G
� GSKit documentation

Some of the main tasks associated with setting up SSL are:

� Creating the key database/trust store database with the ikeyman utility on the
Directory Server machine.

� Creating a self-signed certificate for LDAP server (or acquiring a real
certificate).
 Appendix A. DSML Version 2 665

� Exporting the LDAP server's SSL certificate into the key database.

� Importing the LDAP certificate to WAS for 1-way handshaking.

� Creating a self-signed certificate for SOAP server if 2-way SSL handshaking
is desired.

� Updating the <JAVA_HOME>\jre\lib\security\java.security file with proper
provider information.

� Updating SOAP's DSMLSSLConfig.xml file to recognize the certificate.

Configuration
DSML Service configuration settings include the logging and SSL settings on the
server.

Logging
The DSML server will log to the file defined by the LogFile parameter in the
trace.properties file, the default LogFile name is DSMLLLog.txt. What gets
logged is defined by four configurable options that are also set in the
trace.properties file contained in <SOAPHomeDir>\WEB-INF.

The four options and descriptions that can be set in the trace.properties file are:

� trace.information: Possible values are true and false. When set to false, log
messages that are informational in nature will be suppressed. Otherwise, they
will be written to the log file.

� trace.diagnostic: Possible values are true and false. When set to false, log
messages that are diagnostic (tracing) in nature will be suppressed.
Otherwise, they will be written to the log file.

� trace.warning: Possible values are true and false. When set to false, warning
messages will be suppressed. Otherwise, they will be written to the log file.

� trace.error: Possible values are true and false. When set to false, error
messages will be suppressed. Otherwise, they will be written to the log file.

See Example A-44 on page 666 for an example of the trace.properties file.

Example: A-44 Logging options in the trace.properties file

trace.information=false
trace.diagnostic=false
trace.warning=true

Note: As more tracing options are turned on, performance will drop.
666 Understanding LDAP Design and Implementation

trace.error=true

SSL
Modify the java.security file in your %JAVA_HOME%\jre\lib\security directory as
follows:

� After the line "security.provider.1=sun.security.provider.Sun" place the
following 2 lines (if you have other providers installed, the numbers may be
different):

security.provider.2=com.ibm.crypto.provider.IBMJCE
security.provider.3=com.ibm.crypto.provider.IBMJCA

� The following options must be set in the DSMLSSLConfig.xml file located in
<SOAPHome>\WEB-INF\classes\security directory for SSL to be used.

– SSL: Toggles the use of SSL. Once SSL is turned "on," all bindings
between the DSML server and an LDAP server will be made using SSL. If
the DSML server attempts to bind to a non-secure port on an LDAP server
with SSL turned on, it will fail.

– dsmlKeyRingFile: Specifies the fully qualified pathname to the Keyring file
to be used in secure connections.

– dsmlKeyRingPassword: Password for Keyring File.

– dsmlKeyRingFiletype: Keyring file type.

– dsmlTrustStoreFile: Specifies the fully qualified pathname to the trust
store file to be used in secure connections.

– dsmlTrustStorePassword: Password for trust store file.

– dsmlTrustStoreFiletype: Trust store file type.

See Example A-45 for an example of the DSMLSSLConfig.xml file.

Example: A-45 DSMLSSLConfig.xml file

<?xml version="1.0" encoding="UTF-8" ?>
<DsmlSSLConfigxmlns="sslConfig"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<SSL>off</SSL>
<dsmlKeyRingFile>d:\keyrings\namtp2.jks</dsmlKeyRingFile>
<dsmlKeyRingPassword>secret</dsmlKeyRingPassword>
<dsmlKeyRingFiletype>jks</dsmlKeyRingFiletype>
<dsmlTrustStoreFile>d:\keyrings\namtp2.jks</dsmlTrustStoreFile>

Note: The DSMLSSLConfigFileSchema.xsd file must be in the
%JAVA_HOME%/jre directory. (This is done by default during installation.)
 Appendix A. DSML Version 2 667

<dsmlTrustStorePassword>secret</dsmlTrustStorePassword>
<dsmlTrustStoreFiletype>jks</dsmlTrustStoreFiletype>

</DsmlSSLConfig>

Execution
In this section we will discover how to execute IBM DSML service.

Server
Execution of the server is broken up into the SOAP binding component and the
file binding component. The DMSL request is transformed into a JNDI call and it
does all of the request for you to the LDAP server via JNDI.

SOAP binding
After DSML server has been deployed within SOAP, requests are made against
it by submitting them to the SOAP webapp's messagerouter servlet. For Tomcat
users, this URL should be similar to
http://host:port/soap/servlet/messagerouter. Simply submit a SOAP
request to this URL, and you should receive a corresponding SOAP response.
For the DSML SOAP component to function, the message files must be present
in SOAPHomeDir\msg.

File binding
Execution of the server via file binding is achieved by invoking the DsmlFileClient
with an XML input file containing a batchRequest element. To execute the
DsmlFileClient, the message files must be present in a directory listed in the
CLASSPATH.

Clients
There are two types of DSML Clients applications in IBM DSML Service:
DsmlSoapClient and DsmlFileClient.

DsmlSoapClient
Description: Used to submit a DSML request via SOAP to a DSML server
deployed within a SOAP webapp.

Note: Most of the configuration of the clients is performed via command line at
runtime. The only option configurable before runtime is the classpath, the
requirements for which are listed above in the INSTALLATION section.

Note: The DSMLSSLConfigFileSchema.xsd file must be in the
%JAVA_HOME%/jre directory. (This is done by default during installation.)
668 Understanding LDAP Design and Implementation

Syntax:

java com.ibm.ldap.dsmlClient.DsmlSoapClient LDAP-userid LDAP-password [OPTIONS]

Options:

� -d debug - specified level of tracing (logically OR'ed bit flags - add numbers of
desired debug levels)
– ERROR = 1
– WARNING = 2
– DIAGNOSTIC = 4
– INFORMATION = 8

� -i inputFileName - File containing DSMLrequest
� -l logFileName - Log file name (full path)
� -o outputFileName - File to contain DSML response
� -S DSMLSOAPserver - URL to SOAP messagerouter
� -s LDAP Server URL - LDAP server to which the DSML request applies

Defaults:

� debug = 3 (WARNING + ERROR)
� LDAP Server URL = DSML server default
� logFileName = DsmlLog.txt in the current directory
� inputFileName = DsmlRequest.xml in the current directory
� outputFileName = DsmlResponse.xml in the current directory

LDAP user ID and password, as well as SOAP user ID and password must be
supplied.

DsmlFileClient
Description: Used to submit a file bound DSML request via a DSML server
residing on the same computer as DsmlFileClient.

Syntax:

java com.ibm.ldap.dsmlClient.DsmlFileClient LDAP-userid LDAP-password [OPTIONS]

Options:

� -d debug - specified level of tracing (logically OR'ed bit flags - add numbers of
desired debug levels)
– ERROR = 1
– WARNING = 2
– DIAGNOSTIC = 4
– INFORMATION = 8

� -i inputFileName - File containing DSML request
� -l logFileName - Log file name (full path)
� -o outputFileName - File to contain DSML response
 Appendix A. DSML Version 2 669

� -s LDAP Server URL - LDAP server to which the DSML request applies

Defaults:

� debug = WARNING + ERROR (3)
� inputFileName = DsmlRequest.xml in the current directory
� logFileName = DsmlLog.txt in the current directory
� outputFileName = DsmlResponse.xml in the current directory
� ldapServer = ldap://localhost:389/

LDAP user ID and password must be supplied.

See Example A-46 for an example of using DsmlFileClient to submit a DSML
search request.

Example: A-46 Using DsmlFileClient to submit a DSML search request

java com.ibm.ldap.dsmlClient.DsmlFileClient LDAP-userid LDAP-password

The DSML request file can be AddRequest, DelRequest, ModifyRequest,
SearchRequest.

Note that if you want the DsmlFileClient to connect to the LDAP server using
SSL, the DSMLSSLConfig.xml file must be in a directory that is in your
CLASSPATH. See the SSL section of this document for information about the
format of the DSMLSSLConfig.xml file.

Note that you need to copy DSMLSSLConfigFileSchema.xsd from the dsml
unzipped folder to C:\Program Files\Java\j2re1.4.1_05.

There are extra classpath settings needed to run the DsmlFileClient. The
classpath needs the following dsml jar files: dsml.jar, etc. as the following
C:\DSML\jars\auibase.jar;C:\DSML\jars\dsml.jar;C:\DSML\jars\regex4j.jar;C:\DS
ML\jars\IBMLDAPJavaBer.jar;C:\DSML; and be sure to set the servlet.jar
classpath: C:\DSML\servlet.jar.

See Example A-47 on how to set a classpath.

Example: A-47 Setting the CLASSPATH

Set classpath=.;C:\DSML\jars\auibase.jar;C:\DSML\jars\dsml.jar;
C:\DSML\jars\regex4j.jar;
C:\DSML\jars\IBMLDAPJavaBer.jar;
C:\DSML;
C:\Progra~1\IBM\LDAP\appsrv\lib\j2ee.jar;
C:\PROGRA~1\IBM\LDAP\appsrv\lib\jaf-1.0.2\activation.jar;
C:\PROGRA~1\IBM\LDAP\appsrv\lib\javamail-1.3.1\mail.jar;
C:\PROGRA~1\IBM\LDAP\appsrv\lib\xml4j-4_2_2\XercesImpl.jar;
670 Understanding LDAP Design and Implementation

C:\PROGRA~1\IBM\LDAP\appsrv\lib\xml4j-4_2_2\XMLParserAPIs.jar;
C:\Progra~1\IBM\LDAP\appsrv\lib\soap.jar;
C:\PROGRA~1\IBM\SQLLIB\java\db2java.zip;
C:\PROGRA~1\IBM\SQLLIB\java\db2jcc.jar;
C:\PROGRA~1\IBM\SQLLIB\java\db2jcc_license_cu.jar;
C:\PROGRA~1\IBM\SQLLIB\bin;
C:\PROGRA~1\IBM\SQLLIB\java\common.jar;

You should be able to see the result of running the rundsmlfileclient command
as being similar to Example A-48.

Example: A-48 Output from the rundsmlfileclient command

C:\Program Files\IBM\LDAP\idstools\DSML>rundsmlfileclient

C:\Program Files\IBM\LDAP\idstools\DSML>java
com.ibm.ldap.dsmlClient.DsmlFileClient cn=root manager
[Info] CSA Toolkit Version 1 Release 3
(c) Copyright IBM Corporation 2001, 2003. All rights reserved.

Using:
 Input file name: DsmlRequest.xml
 Output file name: DsmlResponse.xml
 LDAP server: ldap://localhost:389/

Finished processing DSML BatchRequests.
Results are in file: DsmlResponse.xml

DSMLRequest.xml
See Example A-49 for an example of a DSMLRequest.xml that can be used for
DSML client to issue the request.

Example: A-49 DSMLRequest.xml for DSML client to issue a request

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body xmlns:dsml="urn:oasis:names:tc:DSML:2:0:core">

<dsml:batchRequest>
<dsml:addRequest dn="cn=chunhui Yang, o=ibm.c=us">

<dsml:attr name="objectclass">
<dsml:value>person</dsml:value>

</dsml:attr>
<dsml:attr name="objectclass">

<dsml:value>top</dsml:value>
</dsml:attr>
<dsml:attr name="cn">

<dsml:value>chunhui yang</dsml:value>
 Appendix A. DSML Version 2 671

</dsml:attr>
<dsml:attr name="sn">

<dsml:value>yang</dsml:value>
</dsml:attr>

</dsml:addRequest>
</dsml:batchRequest>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Troubleshooting
This section covers some common errors and causes that you may encounter
during IBM DSML v2 implementation.

� Error: Exception in thread "main" java.lang.NoClassDefFoundError:
org/w3c/dom/Node

Cause: XMLParserAPIs.jar missing from CLASSPATH or
JAVA_HOME/jre/lib/ext

� Error: Exception in thread "main" java.lang.NoClassDefFoundError:
com/ibm/jsse/IBMJSSEProvider

Cause: ibmjsse.jar missing from CLASSPATH or JAVA_HOME/jre/lib/ext

� Error: Exception in thread "main" java.lang.NoClassDefFoundError:
org/apache/soap/util/xml/XMLParserUtils

Cause: soap.jar missing from CLASSPATH or JAVA_HOME/jre/lib/ext

� Error: Exception in thread "main"
javax.xml.transform.TransformerFactoryConfigurationError: Provider
org.apache.xalan.processor.TransformerFactoryImpl not found

Cause: xalan.jar missing from CLASSPATH or JAVA_HOME/jre/lib/ext

� Error of DSMLv2.xsd:

The Error message will be like the one shown in Example A-50.

Example: A-50 DSMLv2.xsd error message

[Error] Fri Dec 12 21:23:30 EST 2003 Error at File:
file:///C:/Program%20Files/IBM/LDAP/idstools/DSML/DsmlRequest.xml
[Error] Fri Dec 12 21:23:30 EST 2003 Line: 1
[Error] Fri Dec 12 21:23:30 EST 2003 Column: 79
[Error] Fri Dec 12 21:23:30 EST 2003 cvc-elt.1: Cannot find the declaration of
element 'SOAP-ENV:Envelope'.
[Error] Fri Dec 12 21:23:30 EST 2003 org.xml.sax.SAXParseException: cvc-elt.1:
Cannot find the declaration of element 'SOAP-ENV:Envelope'.
672 Understanding LDAP Design and Implementation

at
org.apache.xerces.util.ErrorHandlerWrapper.createSAXParseException(Unknown
Source)

at org.apache.xerces.util.ErrorHandlerWrapper.error(Unknown Source)
at org.apache.xerces.impl.XMLErrorReporter.reportError(Unknown Source)
at org.apache.xerces.impl.XMLErrorReporter.reportError(Unknown Source)
at org.apache.xerces.impl.xs.XMLSchemaValidator.handleStartElement(Unknown

Source)
at org.apache.xerces.impl.xs.XMLSchemaValidator.startElement(Unknown

Source)
at org.apache.xerces.impl.XMLNSDocumentScannerImpl.scanStartElement(Unknown

Source)
at

org.apache.xerces.impl.XMLNSDocumentScannerImpl$NSContentDispatcher.scanRootEle
mentHook(Unknown Source)

at
org.apache.xerces.impl.XMLDocumentFragmentScannerImpl$FragmentContentDispatcher
.dispatch(Unknown Source)

at
org.apache.xerces.impl.XMLDocumentFragmentScannerImpl.scanDocument(Unknown
Source)

at org.apache.xerces.parsers.XML11Configuration.parse(Unknown Source)
at org.apache.xerces.parsers.DTDConfiguration.parse(Unknown Source)
at org.apache.xerces.parsers.XMLParser.parse(Unknown Source)
at org.apache.xerces.parsers.DOMParser.parse(Unknown Source)
at org.apache.xerces.jaxp.DocumentBuilderImpl.parse(Unknown Source)
at javax.xml.parsers.DocumentBuilder.parse(DocumentBuilder.java:124)
at com.ibm.ldap.dsmlClient.DsmlSoapClient.main(DsmlSoapClient.java:205)

Causes: This is because in the xsd document, it should use single quote (')
instead of double quote (") as shown in Example A-51.

Example: A-51 xsd document quote problem

……
<xsd:pattern value='[0-2]\.[0-9]+(\.[0-9]+)*'/>

</xsd:restriction>
……

� Known issues:

The DSML file client throws a java exception similar to Example A-52 on
page 673 when it is set up to communicate using SSL and the user tries to
connect to an LDAP server that does not use SSL.

Example: A-52 SSL Java exception

SSL IS ON javax.naming.CommunicationException: 9.182.21.228:389. Root exception
is javax. net.ssl.SSLProtocolException: end of file

at com.ibm.jsse.bd.a(Unknown Source)
 Appendix A. DSML Version 2 673

at com.ibm.jsse.b.a(Unknown Source)
at com.ibm.jsse.b.write(Unknown Source)
at com.sun.jndi.ldap.Connection.<init>(Connection.java:226)
at com.sun.jndi.ldap.LdapClient.<init>(LdapClient.java:127)
at com.sun.jndi.ldap.LdapCtx.connect(LdapCtx.java:2398)
at com.sun.jndi.ldap.LdapCtx.<init>(LdapCtx.java:258)
at

com.sun.jndi.ldap.LdapCtxFactory.getInitialContext(LdapCtxFactory.java:91)
at javax.naming.spi.NamingManager.getInitialContext(NamingManager.java:674)

at javax.naming.InitialContext.getDefaultInitCtx(InitialContext.java:255)
at javax.naming.InitialContext.init(InitialContext.java:231)
at javax.naming.InitialContext.<init>(InitialContext.java:207)
at

javax.naming.directory.InitialDirContext.<init>(InitialDirContext.java:92)
at com.ibm.ldap.dsml.DsmlRequest.processRequests(DsmlRequest.java:767)
at com.ibm.ldap.dsml.DsmlServer.processDsmlRequest(DsmlServer.java:253)
at com.ibm.ldap.dsml.DsmlServer.processDsmlRequest(DsmlServer.java:402)
at com.ibm.ldap.dsml.DsmlServer.processDsmlRequest(DsmlServer.java:373)
at com.ibm.ldap.dsml.DsmlServer.processDsmlRequest(DsmlServer.java:296)
at com.ibm.ldap.dsmlClient.DsmlFileClient.main(DsmlFileClient.java:203)

The exception is not fatal and the output XML file is generated.

Java programming examples on DSML
DSML v2 integrates XML and directories by providing the ability to perform
nearly all LDAP operations in XML. DSML v2 operations are purely based on
LDAP counterparts, so LDAP information and operations can be directly mapped
to DSML v2 operations.

As we explained earlier, on the server side, each DMSL request is transformed
into a JNDI call and it does all of the request for you to the LDAP server via JNDI;
on the client side, an xml application submits DSML requests cross HTTP
network. In this section, we provide some sample programming codes to show
you how to manipulate DSML request in Java. 4.2.1–4.2.3 are some sample java
programming codes for DSML client, 4.2.4–4.2.6 are some sample java
programming codes to parse dsml document, execute dsml query both in LDAP
and SOAP, and retrieve result back on the server.

JNDI introduction
JNDI provides a standard interface to various directory and name services
through the extensible provider architecture, it offers powerful ability to perform
all the important LDAP operations from Java. The benefit of using DSML and
JNDI to access a server that is providing DSML information via HTTP is that you
674 Understanding LDAP Design and Implementation

don't need to expose information natively with LDAP in a server, especially in an
enterprise environment, it is almost impossible to expose its directory
information.

JNDI functionality is under javax.naming hierarchy, javax.naming classes are
used to handle simple name services, and javax.naming.directory classes are
extended and used to handle complex directory service.

The common two JNDI drivers for LDAP are:

� Sun LDAP provider for JNDI: com.sun.jndi.ldap.LdapCtx.Factory, it is part of
main J2SE distribution.

� IBM LDAP provider for JNDI: com.sun.jndi.ldap.LdapCtx.Factory, it is part of
IBM directory server client development kit.

All JNDI operations are performed by DirContext object which connects to LDAP
server and then proceeds the JNDI operations. The connection has to be closed,
and a NamingException will be thrown for you to handle.

Program examples
This section covers some of the basic Java programming on DSML manipulation
with the latest DSML v2 operation capabilities. It covers from creation of a
connection, creation of DSML document on the fly, sending DSML request and
retrieving DSML response on the client side, to parsing of DSML document,
converting DSML request to JNDI LDAP request, and retrieving JNDI LDAP
operation result back on the server side.

DSML Client - Create the connection
Example A-53 shows you how to create the URL connection of the DSML server.

Example: A-53 DSML Client - Create the connection

……
url = new URL(DsmlURL);
connection = url.openConnection();
connection.setRequestProperty ("Authorization", "Basic " + encoding);
httpConn = (HttpURLConnection) connection;

……

DSML Client - Set the HTTP parameters
Example A-54 shows you how to set the HTTP parameters for the dsml request.

Example: A-54 DSML Client - Set the HTTP parameters

……
 Appendix A. DSML Version 2 675

httpConn.setRequestProperty("Content-Length",
String.valueOf(b.length));

httpConn.setRequestProperty("Content-Type","text/xml; charset=utf-8");
httpConn.setRequestProperty("SOAPAction",SOAPAction);
httpConn.setRequestMethod("POST");
httpConn.setDoOutput(true);
httpConn.setDoInput(true);

……..

DSML Client - Generate DSML document
If you need to generate DSML request document on the fly, you can use either
Document Object Model (DOM) or Simple APIs for XML (SAX) which are
interfaces to dynamically access and update document content.

See Example A-55 for an example of generating DSML document.

Example: A-55 DSML Client - Generate DSML document

……
//build new DOM document
DoucmentBuilder builder=factory.newDocumentBuilder();
dsmlDoc=builder.newDocument();

……
//create dsml batchRequest element
Element br=(Element) dsmlDoc.createElement("dsml:batchRequest");
br.setAttribute("xml:dsml", "urn:oasis:names:tc:DSML:2:0:core");
//create add request which is the child element of batchRequest element
Element ar=(Element) dsmlDoc.createElement("dsml:addRequest");
ar.setAttribute("dn", dn);
ar.appendChild(dsmlDoc.createTextNode("\n");
br.appendChild(ar);

……
//create other dsml elements
……

ITDS DSML service does not require you to code anything to generate DSML
document, all you need to do is to create a dsml document in a editor, and
specify the dsml file name in the DSML client application commands.

DSML Client - Get DSML servlet response
Example A-56 shows you how to read the response returned from the DSML
servlet.

Example: A-56 DSML Client - Get DSML servlet response

……
InputStreamReader ireader =
676 Understanding LDAP Design and Implementation

new InputStreamReader(httpConn.getInputStream());
…….

DSML Servlet - Parse DSML document
The steps to Parse a DSML document is shown in Example A-57 (using SAX).

Example: A-57 DSML Servlet - Parse DSML document

//create a new instance
SAXParserFactory myIns=SAXParserFactory.newInstance();
myIns.setNameSpaceAware(true);

// This is because SAX complains an expression error about the
// http://www.w3.org/2001/XMLSchema.xsd.

myIns.setValidating(false);

//create new SAX Parser
myParser=myIns.newSAXParser();

//Parse dsml file
SchemaXMLHandler myHandler = new SchemaXMLHandler();
MyParser.parse(dsmlfile, myHandler);

For detail method specification, please refer to:

http://java.sun.com/j2se/1.4.2/docs/api/javax/xml/parsers/SAXParser.html#pa
rse(java.io.File,%20org.xml.sax.helpers.DefaultHandler)

DSML Servlet - JNDI DSML search
In order to perform DSML Search operation in JNDI, you have to set the DSML
provider context factory, LDAP URL information that DSML Search operation is
querying, LDAP credentials (userid and password), and then retrieve search
return entries in DSML format. Example A-58 shows the java programming code
to do this.

Example: A-58 DSML Servlet - JNDI DSML search

……
// set DSML provider context factory
Hashtable DsmlEnv=new Hashtable();
DsmlEnv.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.dsml.DsmlCtxFactory");

// set LDAP URL and query base
DsmlEnv.put(Context.PROVIDER.URL, "ldap://localhost" + base + "?"

+ attrs + "?" + scope +"?" +filter);

// set LDAP credentials
 Appendix A. DSML Version 2 677

http://java.sun.com/j2se/1.4.2/docs/api/javax/xml/parsers/SAXParser.html#parse(java.io.File,%20org.xml.sax.helpers.DefaultHandler)

DsmlEnv.put(Context.SECURITY_PRINCIPAL, "cn=root");
DsmlEnv.put(Context.SECURITY_CREDENTIAL, "password");

//create DirContext object to retrieve query results
DirContext DsmlCtx=new InitialDirContext(DsmlEnv)
String DsmlResult=DsmlCtx.lookup("").toString();
DsmlCtx.close();

……

The DSML search result will be in dsml:directory-entries element as shown in
Example A-59, which contains multiple dsml:entry elements if there are multiple
entries returned in the query result.

Example: A-59 DSML search result in dsml:directory-entries

<dsml:directory-entries>
<dsml:entry dn="entry1">

<dsml:objectclass>
<dsml:oc-value>person</dsml:oc-value>
<dsml:oc-value>top</dsml:oc-value>

</dsml:objectclass>
<dsml:attr name="cn">

<dsml:value>entry1</dsml:value>
</dsml:attr>
......

</dsml:entry>
<dsml:entry dn="entry2">

<dsml:objectclass>
<dsml:oc-value>person</dsml:oc-value>
<dsml:oc-value>top</dsml:oc-value>

</dsml:objectclass>
<dsml:attr name="cn">

<dsml:value>entry2</dsml:value>
</dsml:attr>
......

</dsml:entry>
......

</dsml:directory-entries>

DAML Servlet - JNDI create DSML SOAP request
To use JNDI to create a DSML SOAP request is pretty much the same with the
previous JNDI DSML Search operation, the only difference is the context factory.
See Example A-60 for an example of using JNDI to create a DSML SOAP
Request. By defining the JNDI DSML SOAP context factory, any further JNDI
requests on the dirContext object would be performed in DSML instead of LDAP.
678 Understanding LDAP Design and Implementation

Example: A-60 DAML servlet - JNDI create DSML SOAP request

……
// set DSML provider context factory

Hashtable DsmlEnv=new Hashtable();
DsmlEnv.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.dsmlv2.soap.DsmlSoapCtxFactory");

// set LDAP URL and query base
DsmlEnv.put(Context.PROVIDER.URL, "ldap://localhost:8080");

//retrieve query results
DirContext dirContext=new InitialDirContext(DsmlEnv);
String DsmlResult=DsmlCtx.lookup("").toString();
DsmlCtx.close();

DSML Servlet - JNDI operations
Like the JNDI Search operation we explained above, other JNDI operations such
as modify, add can be performed in the similar way using corresponding
methods of DirContext object. For more information on DirContext object
methods and Context object methods, please refer to Sun's Web site located at:

http://java.sun.com/products/jndi/1.2/javadoc/javax/naming/directory/DirContext
.html

http://java.sun.com/products/jndi/1.2/javadoc/javax/naming/Context.html

References to the DSML official specifications
� ITDS 5.2 documentation

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

� Using LDAP for Directory Integration, SG-6163

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246163.h
tml?Open

� Implementation and Practical Use of LDAP on the IBM eServer iSeries
Server, SG24-6193

http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006
bb65f/219b250894a046e285256b11006da9d9?OpenDocument&Highlight=0,ldap

� DOM documentation

http://www.w3.org/DOM/

� JNDI documentation

http://java.sun.com/products/jndi/1.2/javadoc/
 Appendix A. DSML Version 2 679

http://java.sun.com/products/jndi/1.2/javadoc/javax/naming/directory/DirContext.html
http://java.sun.com/products/jndi/1.2/javadoc/javax/naming/Context.html
http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246163.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/219b250894a046e285256b11006da9d9?OpenDocument&Highlight=0,ldap
http://www.w3.org/DOM/
http://java.sun.com/products/jndi/1.2/javadoc/

� SAX

http://www.saxproject.org/
680 Understanding LDAP Design and Implementation

http://www.saxproject.org/

Appendix B. Directory Integration - IBM
Tivoli Directory Integrator

In this appendix we discuss the topic of directory integration and the IBM Tivoli
Directory Integrator (ITDI). ITDI is a toolkit that simplifies integration of directories
with a variety of other data stores. It includes "snap-in" components that support
connectivity to many types of data stores, protocols for the reliable and secure
transportation of data between them, and help automate the mapping of data
between them. ITDI includes "event handlers" to help systems integrators
automate data flows between data stores in near real time as data is changed or
based on defined schedules. The ITDI architecture includes a framework for
scripting business rules as data is exchanged between repositories. It even has
special "plug-ins" for a variety of directories that enable it to securely capture and
propagate passwords when they are changed. These include Active Directory,
the iPlanet directory, the IBM Directory Server, and the HTTP password on
Domino Servers.

Before we dive into how to use IBM Tivoli Directory Integrator for directory
integration, we need to clarify why the topic is a critical success factor in
enterprise directory projects so often that it deserves a chapter in this book. After
all, directories based on the LDAP standards are now available from many
vendors. They are embedded with modern operating systems, Internet security
systems and application servers. Why is a directory solution not complete after a
highly available LDAP directory service is in place with a well-designed directory
tree and a replication strategy that delivers high availability and performance?

B

© Copyright IBM Corp. 1998, 2004. All rights reserved. 681

Would the final step not be to enforce a corporate edict that all infrastructure
services and applications use that directory service to maintain and access the
identity and other data that it contains?
682 Understanding LDAP Design and Implementation

Why Directory Integration is important
Today nearly all modern network operating systems1, I/T infrastructure
components, and applications that require user identity data are directory
enabled "off the shelf." They can exploit an LDAP directory for user
authentication and access control as soon as they are installed and properly
configured. But the reality is that this technology has emerged only recently and
was standardized over just the last few years. In the not too distant past,
enterprise applications were often installed with their own application specific
repositories to maintain the identities of users, their preferences and permissions
to access application resources.

As the Internet was embraced to extend access to corporate IT resources and
applications to customers and business partners, security software and Web
application servers also needed a trusted repository for user identity data. As a
result, most enterprises have in place many legacy repositories of identity data.
Some of them may be based on modern standards and access protocols and
others may not. Some may contain only internal users while other databases
contain the data used to authenticate business partners and customers who
access corporate Web sites. But there is a considerable investment in business
processes and applications that keep these repositories populated with data and
their contents up to date as users are added and removed, or their business
roles change and affect access permissions to application functions and data.

The problem is not that most enterprises want another application specific
repository but that they have too many already with maintenance responsibilities
for them split between several departments with different, and sometimes
conflicting, business objectives. The investments enterprises have in Human
Resource (HR) systems, application databases, legacy application and LAN user
directories means that those systems are not easily replaced and will remain the
"authoritative sources" where the identity data for users of corporate applications
is maintained for some time. This is also the case for the basic identity data for
business partners and customers who use new Web-based applications to
access corporate resources. The result is that in most directory deployments,
corporate or enterprise LDAP directories do not immediately become the
"authoritative source" for most of the data they contain. They need to become
instead "trusted sources" that provide infrastructure components and
applications a standard mechanism to access identity and other shared data for
user authentication and access control. The data the corporate LDAP directory
contains will mostly originate and be maintained elsewhere and must be kept

1 While modern operating systems are directory enabled, they are not always installed and
configured to exploit an LDAP directory for user accounts. For example, Unix and Linux servers are
still configured to use flat files to maintain their user account and group information more often then
they are set up to store user account information in a directory.
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 683

up-to-date with several authoritative sources. These problems are shown in
Figure B-1.

Figure B-1 Cost, security policy, complexity, and schedules drive requirements for
directory integration

Directory Integration Services
So, by itself, the LDAP directory service installed with modern network operating
systems, security and reduced sign-on services, or Web services applications
will have limited business value to owners of legacy applications. Until it is
connected to existing repositories, the information the LDAP directory contains
about users and other IT resources will be stale, inaccurate, or inconsistent with
user accounts in operating systems, mail systems, and databases used by line of
business applications. The costs of revising legacy applications to exploit a new
directory service and changing the current administration applications and
procedures in several departments to maintain it is usually too high to offer a
satisfactory return on investment. The lengthy project schedules can mean the
directory services would be delivered too late to be of real value.

An alternative approach that extends the benefit of an enterprise directory
immediately is to use directory integration services2 to reduce the number of
application specific directories and the maintenance of redundant data stores. It
may not be possible to completely eliminate application specific repositories or

"I will never get to a single
directory...at least not soon...

So I must use technology to
consolidate them and integrate
the ones that remain."

Infrastructure

"Through 2007, 80 percent of midsize and
large enterprises will be unable to standardize
on a single directory or user repository for
enterprise applications and platforms (0.7
probability)"

Gartner

2 The term "directory integration services" is used to label various types of services that link
heterogeneous repositories and provide a consistent view of the information they contain. Another
popular label for these services is "metadirectory", which is a particular technology to accomplish this.
684 Understanding LDAP Design and Implementation

directories, but if they can be integrated and synchronized with each other, most
of the legacy investment in maintenance of user identity data can be preserved
and leveraged to populate and maintain an enterprise directory. The reduced
maintenance costs and elimination of security exposures that are obtained by
consolidating legacy directories3 and eliminating redundant data also offers a
compelling return on investment for directory integration projects.

User provisioning applications
User provisioning applications automate the management of user accounts for
employees, business partners, and customers. These have traditionally been
paper-based and process-intensive tasks that are often slow and error prone.
Provisioning applications provide administrative interfaces and support
workflows within the enterprise associated with provisioning and de-provisioning
user accounts on operating systems, email and other application directories.
They also manage the permissions individual users have to access corporate
resources and IT transactions. They streamline and automate these procedures,
ensuring that business policies are enforced and an audit trail is maintained.

Automated provisioning is often an objective of many corporate directory and
security projects for the reasons illustrated in Figure B-1 on page 684.
Information Week did a study where they interviewed 4500 security professionals
and asked them whom they suspected as the source of a security breach or
espionage. Six of the top eight suspects in this survey were people who were
actually granted accounts with the permissions needed to perform the activity by
the enterprise itself. The fact that 30–60 percent of the active accounts in an
enterprise may be orphans4 is obviously part of the problem. Perhaps the
account should never have been created; maybe the user left the company or
was promoted or transferred to a job with responsibilities that no longer require
the account. The user may even have been a contractor whose contract has
expired but who was never taken out of operating system or application
directories.

Enterprises gain control of identity data by deploying provisioning systems. The
security risks of orphan accounts are eliminated, and the business policies that
govern the access permissions granted to the accounts are enforced. Accounts
are turned on only for business purposes and are immediately turned off when
the business reason for them is no longer valid.

3 An internal study found IBM spends approximately $50 per user entry for each password directory it
maintains. In a company with 200,000 employees, that offers significant savings in ongoing costs for
each directory that can be consolidated or eliminated.
4 An orphan account is one that exists and is associated with access permissions but the individual
who owns the account is not known. Orphan accounts are obviously fertile ground for security
problems.
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 685

However, a provisioning system is dependent on an underlying directory service
or other database that is a trusted source of identity information about users and
their enterprise roles. This identity data governs account management and the
permissions that individual accounts are granted. The accuracy and currency of
this identity data is crucial to the effectiveness of automating and enforcing
enterprise account provisioning policies. You have to have a trusted source of
information about who the valid users are and the enterprise roles and
responsibilities they have before you can safely automate account provisioning
and the assignment of permissions to accounts to execute transactions and
access data5. A solid and well-integrated directory infrastructure is prerequisite
to deploying a provisioning system.

Directory Integration technologies
With this background in why the directory integration is a crucial aspect of nearly
every enterprise directory strategy, we should look at some of the different
methods and technologies that have emerged to accomplish it. One solution that
was used prior to the availability of tools better fitted to the purpose is to write
scripts or small applications that synchronize information in one repository with
another. This seems reasonable if all that is required is to synchronize a few data
elements, or attributes, in a new enterprise directory with a single legacy system.
No new infrastructure software need be purchased. If the synchronization does
not need to be done immediately, it is usually possible to extract a few attributes
from the source and periodically schedule a utility or application to update the
directory.

But requirements are rarely that simple, and this approach can result in a
solution that is error prone and difficult or impossible to maintain or extend over
time. If we look at the tasks that must be accomplished to integrate
heterogeneous repositories of data, it is easy to see why.

A robust directory synchronization strategy will usually require managing data
flows between several systems. The solution design must incorporate a large
amount of detail about bidirectional exchanges of information. The direction of
updates must be consistent with the authoritative sources, so that data flows only
from authoritative to non-authoritative sources. There are often requirements to
detect changes that are made by a non-authoritative source, log the event, and
possibly even rolling them back. Figure B-2 on page 687 illustrates many of the
details that need to be understood and handled.

5 A provisioning system that automates account creation and access permissions based on
erroneous user identity data may be worse and actually less secure than an inefficient manual one.
686 Understanding LDAP Design and Implementation

Figure B-2 Directory Integration requires handling many details

Data sources
Data sources are the systems and devices that are to communicate with each
other. Since a repository may be authoritative for only some of the data it
contains, and receive updates from other systems, the data flows are often
bidirectional. For example, an HR system is usually authoritative for basic
identity information of users such as name, address, the department to which an
employee is assigned and their manager. An email or network operating system
may receive information needed to create or delete accounts from the HR
system, but be authoritative for other data such as login IDs and the groups to
which users are assigned to provide access to network and other resources.

HR DB

Notes
NAB Active

Directory

Appl.
Specific
Directory

Enterprise directory

Emp No: 123456
Lastname: Kent
 First Name: Clark MI: S
Title: Reporter, Grade 3
Tel: 555-1234
Dept: Crime Beat
DOH: 7/28/47
Salary: $500.00/wk
Home Addr: 678-A
Phonebooth Ave,
City: Metropolis St: NY
Zip:12345
Medical Restrictions:
Allergic to Kryptonite
. . .

User Name: Clark
Kent/Metropolis
Short Name: Superman
Domain: DailyPlanet
Mail Server: DPMAIL03
Mail File: mail\superman
inet addr:
kent_c@dailyplanet.com
. . .

samAccountName: clarkk
Password: @5#*-^1
ServerID: NT03
memberOf: REPORTERS
. . .

ID: cskent
Password:
@5#*-^1
Server: NY0002
Lastlogin: 1/12/02
. . .

Surname: Kent
 given Name: Clark
MI: S
Title: Reporter, Grade 3
TelephoneNumber: 555-1234
Department: Crime Beat
manager: Perry White
alternate: Lois Lane
mail: Clark Kent@DailyPlanet
l: Metropolis
userPassword: @5#*-^1
. . .

Metadirectory
Services
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 687

Matching rules
The chief goal of directory integration is to associate and synchronize data
across various applications and data stores that use it. In doing so, the enterprise
separates the management of shared (or enterprise) data from applications that
work with it and maintain it. This is the essential first step in controlling identity
data as a valuable corporate asset. Applications and infrastructure components
such as security systems become consumers of corporate identity data, though
legacy applications may remain the authoritative sources of the enterprise data.

However, it is not always easy to match up and associate the entries in one
directory with those in another. For example, there may be no unique identifier,
such as an employee or customer number for each user within an enterprise. The
enterprise may have more than one HR system that assigns such numbers to
employees in different divisions that have been acquired over time. And even if
there is a unique identifier for each employee, it may not be currently stored as
an attribute of the employee's entry in each of the directories and databases, and
operating system platforms for which he or she has an account.

In Figure B-2 on page 687 for example, Clark Kent's key in the HR system is
employee Number 123456. In Active Directory, Clark is assigned the
sAMAccountName clarkk. He uses the shortName Superman in the corporate
email system. The application specific directory may simply list two or three
individuals with the name Clark Kent who have different user IDs. The only way
to distinguish between them may be to look at the department they currently
work in, or perhaps their office number or telephone numbers, and even this may
not be enough to reliably associate them with our super hero. And, as we saw in
the previous section if this is the organization's first directory project, there is a
high probability that each of these systems may contain "orphan" accounts that
cannot be matched with any individual or accounts in other repositories.

Entry and Attribute filtering and mapping
Each repository may contain information about many types of users or other
resources. Some of this information is application specific or sensitive
information that is stored in entries that business or privacy rules require should
never be propagated to other systems. Within individual entries, there may be
sensitive fields whose values should never be exposed while other attributes of
the same entry must be frequently propagated to multiple destinations. For
example, salary and medical information that is contained in the HR database
should never be propagated to other directories while first name, last name, and
department are propagated to several other systems. The requirements for
which fields are propagated change periodically as new applications are added
and business rules change, so the solution must be easy to re-configure to
adapt.
688 Understanding LDAP Design and Implementation

Attributes will often have different names and syntaxes in source and target
systems. In the figure for example, last name in HR is mapped to surname (sn) in
the enterprise directory. Some attribute values for a target system don't have a
direct mapping and may have to be computed from values in one or more source
systems, as when first name, middle initial, and last name in an HR system are
combined to create a cn (common name) attribute in an LDAP directory. This is a
very simple example, but attribute mapping rules can be much more complex.
For example, the users in LDAP directories are organized into a hierarchical
directory tree with a distinguished name (DN) that specifies the precise location
of their entry in the tree. When groups are synchronized between directories with
different tree structures the groups contain the DNs of users in a member
attribute. The DNs have to be mapped between the tree structures as the group
entries are copied or synchronized between the directories.

Mechanisms to transport data between systems
Various standard protocols are used to transport data from source systems to a
target systems. For some legacy systems, there is no standard protocol available
to access or update the data they contain, and the systems integrator must use
application specific programming interfaces or utilities provided by a vendor to
import and export data. The data flows must be reliable, so that information is not
lost due to system or network failures. Message queueing systems that
guarantee delivery may have to be exploited.

When source and target systems communicate
Sometimes the systems need only be synchronized periodically, such as once a
day or once an hour. This is often satisfactory when adding new hires into an
employee database that will not actually become active or need access to
systems right away. Other times, for example, when a user account must be
revoked because of a possible security breach, or a user changes their password
in the network operating system and it has to be propagated securely to other
directories or applications, the communication must occur in near real time.

Change detection
Many systems have built-in mechanisms an integration system can exploit to
detect changes. Directory servers have time stamps on the entries they contain.
They can be configured with change logs and most support event notification or
persistent search operations that enable a client application to register and
receive modified entries when they are changed. Databases support triggers and
stored procedures that can be exploited to detect and propagate changes. This is
not always the case with legacy systems. For example, if the Application Specific
Directory illustrated in the figure below is a spreadsheet or flat file, it is not so
straightforward to look at a new version of the file and determine what entries
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 689

have been added, deleted, or modified since the last version, and which have not
changed.

Logging and error handling
There are usually requirements to log certain transactions and events in system
logs and to interface with systems management tools when failures occur within
the integration solution. External systems or network failures may prevent
synchronization from occurring at the time changes are made in a source system
or when they are scheduled to be propagated. The integration solution must be
robust enough to find these changes and propagate them correctly when the
error is corrected and connectivity is restored. Failures may occur during a batch
process that synchronizes a large number of entries and checkpoint/restart
capabilities may be required.

Metadirectories and virtual directories
Due to the complexity of these requirements, custom scripting or application
development is not usually affordable or maintainable. It is viable only for
solutions that involve only a few point-to-point data flows with minimal
requirements for event handling, attribute mappings and minimal logging and
error handling capabilities. Metadirectories are tools that have emerged to
provide a complete set of services tailored to handling these issues. They enable
integrators to quickly develop, deploy and maintain and extend a solution for
integrating identity data for infrastructure components and applications.

A metadirectory is not another user directory. It is a toolkit that provides graphical
tools systems integrators use to work with information about where data is
located, how it can be accessed, how the entries in one store are linked with
entries in another, and how the data should flow between different directories
and databases. Metadirectory run-time services include connectors (agents) for
collecting information from many operating system and application specific
sources to integrate the data into a unified namespace. Metadirectories also
enforce business rules that specify the authoritative source for attribute values,
handle naming and schema discrepancies, and provide data synchronization
services between information sources. One of the benefits of a metadirectory is
that it can create and maintain a central repository consisting of entries and
attributes that are "joined" or aggregated from many other sources. However, a
central store for data other than the "metadata" is not required for a
metadirectory to provide synchronization services.6

6 Some metadirectory vendors require that a proprietary product or database be used to store the
metadata. This is not a characteristic of ITDI. ITDI stores its static metadata in XML configuration files
and can store dynamic metadata in an embedded java database.
690 Understanding LDAP Design and Implementation

Virtual directories vs. metadirectory technology
Virtual directories implement relatively new, but closely related and
complementary to metadirectory technology with similar services. They provide
applications with "virtual views" of the data contained in a variety of data stores.
These views can be tailored to the requirements of the application. An
application that prefers to use LDAP protocol to access its data can do so, even
though the data may be stored in a relational database. Virtual directories are
essentially brokers that enable a single query to reference information in multiple
data sources dynamically.

A virtual directory could assemble information from multiple sources, perhaps
using attributes in a directory as pointers, and then present it to a client
application in response to an LDAP query against a virtual directory tree that is
defined in the virtual directories "metadata". In Figure 3, a virtual directory could
receive a query for Clark Kent's data and assemble his phone number, e-mail
address, Active Directory and Lotus Domino account IDs, and his physical
address from the multiple directories to enable an application to present them on
a single screen for centralized administration. A virtual directory provides a layer
of abstraction between the applications accessing data and the various
repositories where it is stored and managed.

A potential advantage of a virtual directory over a metadirectory, when data
access is primarily read-only and there is no need to synchronize data at the
various sources, is that data is not moved between sources in order to compose
and permanently store an aggregate view. Instead, the data is aggregated as
required by the applications that access it. Virtual directories could be
appropriate when this is the fundamental requirement, rather than data
synchronization, especially for large amounts of data that is mostly read and
infrequently written.

In many situations the advantage of a virtual directory can be very difficult to
achieve. Directories and databases achieve high performance for portals and
security systems that must perform hundreds of authentications and other
queries on directory data per second by caching data. Since they control all
access to the data, the directory server or database engine can manage a cache
efficiently by discarding or replacing cached data when updates are made.
Virtual directories can also cache data, of course, but a highly efficient caching
strategy is more difficult for them because they do not see updates to the
underlying data stores by applications that bypass them and write directly to the
data store. When the virtual directory must store cached data persistently due to
memory limitations on the server hardware or to provide quick restarts of the
server, the distinction between virtual directories and metadirectories is blurred.
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 691

Since virtual directories synthesize views of information that can physically
reside in several stores with different schemas, they will include most of the
functionality of a metadirectory. For this reason, it is likely that metadirectories
will evolve to provide some virtual directory services over time. The IBM Tivoli
Directory Integrator may be an example of the very early stages of this trend. The
latest release of ITDI includes an LDAP server "event handler" that enables a
configuration to act as an LDAP server to a client application or infrastructure
component. An ITDI configuration can therefore be built to receive LDAP
requests and run assembly lines to perform operations such as looking up data
in various types of data sources and assembling a resulting view of data in
heterogeneous stores to a client using LDAP protocol.7 It is likely that over the
long term, both metadirectories and virtual directory approaches will have a role
in directory integration.

Overview of IBM Tivoli Directory Integrator
IBM Tivoli Directory Integrator synchronizes identity data residing in directories,
databases, and applications. By serving as a flexible, synchronization layer
between a company's sources of identity data, Directory Integrator can eliminate
the need for a centralized data store. For those enterprises that do need to
deploy an enterprise directory, Directory Integrator can connect it to the identity
data from various repositories throughout the organization to populate it and
keep it up-to-date.

With many built-in connectors for managing the flow of data and events, an
open-architecture Java development environment to extend or modify these
connectors, and tools to apply logic to data as data is processed, Directory
Integrator can be used for:

� Synchronizing and exchanging information between applications or directory
sources.

� Managing data across a variety of repositories providing the consistent
directory infrastructure needed for a wide variety of applications including
security and provisioning.

� Creating the authoritative data bases needed to expose only trustworthy data
to advanced software applications such as Web services.

� Building an Enterprise Directory that contains commonly used data about
users. This data store can become the authoritative data store for these data
elements for the enterprise.

The product architecture is illustrated in Figure B-3 on page 694. The key
concept to understand about ITDI is that it implements an assembly line model in

7 This is not yet a true virtual directory, of course. ITDI does not cache the virtual views created by
the assembly lines and does not include tools specifically designed to create them.
692 Understanding LDAP Design and Implementation

which components are configured to support data flows between data sources.
The product includes a GUI toolkit environment for creating and modifying
assembly lines and a run-time server with a management GUI for starting and
stopping assembly lines, examining log files, and other functions required to
support an infrastructure service.

The basic components used to compose ITDI assembly lines are described in
this section. Complete documentation, including a tutorial that guides the new
user through the creation and operation of a simple assembly line is available in
the on-line publications packaged with the product. The online documentation
also includes a number of sample configurations that illustrate the use of the
connectors and event handlers packaged with the product.

ITDI configurations are stored in XML files that contain all of the static metadata
about one or more assembly lines. There is no architectural limit to the number of
assembly lines that can be defined and managed by a single configuration file.
An ITDI server is started with a particular configuration file, so an instance of the
ITDI server can run several assembly lines concurrently. ITDI is a Java
application and does not have dependencies on other infrastructure services.8 It
is possible to start multiple instances of the ITDI server on a single system, each
with configuration files defining different sets of assembly lines.

8 This is an important point. Some metadirectories have dependencies on other services such as a
particular vendor's LDAP server or relational database being installed with it. With ITDI, the hardware
and software requirements to install and use it are lightweight and depend mainly on having
connectivity to the data sources it is used to integrate.
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 693

Figure B-3 IBM Tivoli Directory Integrator Product Architecture

Assembly lines
An assembly line collects information from connected information sources and
performs operations on the data. An assembly line can create new entries
altogether or update and delete entries in data sources. Assembly lines receive
information from various data sources, perform operations on the input, and then
map the collected information to other data sources. Assembly Lines work on
one item at a time, for example, one data record, directory entry, registry key,
and so forth. Multiple assembly lines may be running concurrently.

Connectors
Connectors support numerous protocols and access mechanisms. Many
connectors are included with the product and ITDI architecture includes a
framework that allows advanced users to create others. Connectors provide the
input and output of an Assembly Line. Each Connector is linked to a data source,
and is provides an environment specific to that type of source where data
transformation and aggregation operations are easy to configure.

EventHandlers
Enable the system to respond to
predefined events, thus enabling real-
time integration.

Connectors
Connect to a device, system or
application and perform actions on data
appropriately.

AssemblyLines
Execute data flows based on the configuration of
individual Connectors, EventHandlers, Parsers and the
business logic driving process.

Parsers
Interpret and transform
incoming data into the
desired format.

Event
Systems

LDIF File

RDBMS

Directory
694 Understanding LDAP Design and Implementation

ITID connectors can be configured in several modes that determine how they
operate. In iterator mode a connector is configured to read through the entries in
a data source9 and pass each entry down the assembly line. In lookup mode, a
connector is configured to find an entry in a data source based on search criteria
and retrieve data from it. In update mode, a connector is configured to lookup an
entry and may also update the entry after it has been located. In delete mode, a
connector is configured to find and remove an entry from a data source. In add
mode, a connector is configured to add entries to a data source.

In the current release the built-in connectors include:

� Btree Object DB Connector
� Command Line Connector
� Domino Users Connector
� File System
� FTP Client Connector
� Old HTTP Client Connector
� HTTP Client Connector
� Old HTTP Server Connector
� HTTP Server Connector
� IBM MQ Series (JMS)
� IBM Directory Changelog Connector
� JMS Connector
� JNDI
� LDAP
� Lotus Notes
� MailboxConnector Connector
� Memory Stream Connector
� Netscape/iPlanet Changelog Connector
� NT4
� Script Connector
� SNMP Connector
� TCP Connector (Generic)
� URL Connector (Generic)
� (runtime provided) Connector
� Web Service Connector

Event Handlers
ITDI includes an Event Handler framework that provides the integrator the ability
to wait for, recognize and react to specific events that take place in the
infrastructure. For example, changes in an LDAP or NOS directory, arriving
e-mails, records updated in certain databases, incoming HTML requests for
pages from a Web browser or Web services-based Simple Object Access

9 The iteration can be filtered. For example an LDAP or database connector in iterator mode can be
configured to read through all the entries returned by specific search criteria.
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 695

Protocol (SOAP) messages can trigger assembly lines to run or other operations.
The advanced user may also define new event handlers for site-specific
events10.

ITDI Event Handlers are configured through the configuration GUI to examine
the event11 and perform one or more actions based on the information received
about the event. An action can be simple such as running a particular assembly
line. More complex configurations for event handlers are also possible, such as
selecting an assembly line to run based on data associated with the event,
running a sequence of assembly lines, and executing scripts.

The built-in event handlers include:

� Active Directory Changelog.
� DSMLv2.
� Microsoft Exchange Changelog.
� HTTP.
� IBM Directory Server Changelog. This event handler is specifically designed

to work efficiently with the Tivoli IBM Directory Server's changelog and event
notification functionality.

� JMX.
� LDAP event handler for use with directories that support persistent search.
� LDAP server handler that enables ITDI to operate as an LDAP server to a

client.
� SNMP.
� TCP Port.
� Timer.
� Web Service.
� zOS LDAP Changelog.

Parsers
Parsers interpret and translate information from a byte stream into a structured
information object, where each piece of information is accessible by name. You
can also translate a structured information object into a byte stream. You can
select from the wide range of extensible parsers such as "comma separated
values", "fixed column", LDAP Data Interchange Format (LDIF), Extensible
Markup Language (XML), SOAP, and Directory Services Markup Language
(DSML), or even create a new parser from scratch.

10 For example, ITDI includes a script event handler that enables the integrator to write a script to
define a custom event.
11 As an example, ITDI includes LDAP changelog event handlers, which can react to changes in an
LDAP directory server. The event handler could be configured to run one or more assembly lines,
based on the DN of the entry that was changed and the type of change (add, modify, delete, rename).
696 Understanding LDAP Design and Implementation

Hooks
Hooks enable the integrator to script actions to be executed under specific
circumstances, or at desired points in the execution of the Assembly Line
process. JavaScript is the preferred scripting language for ITDI because it can be
used on every operating system platform for which ITDI is supported. Other
scripting languages such as Perl can be used on some platforms.

ITDI provides a complete framework for scripting that handles all the details of
invoking scripts at the appropriate point during assembly line operations and
providing access to ITDI Java objects and their methods. The product's online
documentation includes the complete set of APIs that users can call from scripts
to access methods for controlling assembly lines, accessing data about them,
calling the system utility functions provided with the product, and even executing
methods on connectors.12

Link Criteria
Link Criteria are the attribute matching rules that locate entries in a directory for
a connector to operate on when a connector is in lookup, update, or delete mode.
When a connector is in one of these modes, ITDI automatically includes hooks in
the scripting framework that enable the integrator to easily handle cases where
the link criteria do not find a match in a data source or when multiple potential
matches are found.

Link Criteria may be simple, such as linking two entries based on the value of a
single attribute such as employeeNumber. More complex criteria are also easy to
create by using scripts to perform data transformation if they are required for the
comparison or to create complex search criteria that are specific to the data
source. ITDI has built-in link comparison functions for the common "equals", "not
equals", "contains", "starts with", and "ends with" comparison operations.

Work Entry
Work Entries are internal variables used to temporarily store values from
directory entries. The values may be read directly from specific attributes, or may
be computed by a script that performs data manipulation or transformation
operations to compute a value for an attribute. Connectors are configured with
input and output attribute maps that specify the mapping between the names
and data types of attributes in the work object and the attribute values stored in a
data source. ITDI also includes APIs that the systems integrator can call from
scripts to create new attributes in the work entry and to examine and modify the
values of the attributes that it contains.

12 Since ITDI is 100% Java, all its public objects and methods are easily accessible from a scripting
language such as JavaScript. Documentation in Javadoc form is included in the online
documentation library.
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 697

Persistent store
The latest version of ITDI includes an embedded SQL database engine (IBM
Cloudscape™) for Java that is useful for storing persistent metadata (not shown
in the figure). Because of its lightweight, pure-Java, embeddable architecture
Cloudscape is an excellent database engine for tools like ITDI because the
database engine becomes part of the tool. The user never has to install or
manage it and the database becomes invisible. The persistent store enables the
integrator to persistently store information about data sources between runs of
assembly lines. The Cloudscape persistent store can be set up so that the
database is kept internal and accessible to only one ITDI configuration or put in a
network mode that enables multiple ITDI configurations to share it.

ITDI automatically generates and uses a persistent store when a connector in
iterator mode is configured to detect changes in a sequential file. When the file is
processed, ITDI manages a persistent store that retains a record of the entries in
the file that have been processed. This enables ITDI to recognize when new
entries have been added or old entries have been deleted and efficiently return
them to the connector with a flag indicating whether the entry is new, unchanged,
or deleted. Connectors using this change detection mechanism have the option
of indicating whether they want to receive unchanged entries, or only process
adds and deletes from the file.

Older versions of ITDI include a bTree connector that can be used to provide a
similar function. The bTree connector is retained in current versions, but the best
practice is to use the more functional and Cloudscape based persistent store that
relieves some constraints that affect the performance and scalability of the bTree
connector.

Configuration of ITDI assembly lines
Directory Integrator provides a powerful graphical user interface (GUI) to
configure the assembly lines and constituent connectors. Figure B-4 on
page 699 illustrates that a configuration file can contain many different assembly
lines that the system integrator can select to work with. In the figure, the
assembly line named ITIMSearch has been selected. The top of the right hand
panel provides a number of tabs the systems integrator may use to work with that
assembly line, and the data flow tab has been selected.
698 Understanding LDAP Design and Implementation

Figure B-4 ITDI Graphical Configuration Interface

The panel under the data flow tab is where the connectors in the ITIMSearch
assembly line are configured and it shows the work object that flows between
them. It has another row of tabs, and in the figure the input map tab has been
selected. The panels on the data flow tab are:

� Connectors. This panel lists each of the connectors in the order they will be
executed by the assembly line. In this example, the assembly line will run
AccountConnector first, followed by the remaining connectors in the
assembly line. Below the list of connectors are several icons to add or delete
connectors from the assembly line, control the order of the connectors in the
assembly line, and to add a configured connector to a connector library.
Connectors in the connector library are available from the Connectors folder
on the leftmost panel and can be selected and placed in other assembly lines.
This is a powerful mechanism for re-use after a connector has been
configured and tested.13
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 699

� Work Entry. This panel shows the contents of the work entry that flows
between each of the connectors in the assembly line. Each of the attributes of
the work entry is shown, along with the name of the connector that populates
the work entry with the attribute value.

� When one of the connectors in the assembly line is selected, the
configuration of that connector is displayed in the panel to the right of the
Connectors panel. It contains another row of tabs for configuring the
connector that has been selected.

In this example, the connector selected for configuration is in input mode and the
Input Map tab for it has been selected. The panel below the tab shows the
attributes that are available from the data source in the Available Connector
Attribute list. The integrator may drag and drop attributes from the list into the
Work Attribute list and control how they are mapped. For connectors in update or
add mode, ITDI will provide an Output Map to configure how attributes are
mapped from the work entry to the attributes available in the data source.

Notice the button labeled Inherit from: /Connectors/AccountConnector in the
figure that shows the attribute map is being inherited from a connector definition
in the Connectors folder. The integrator has the option of using this button to
break this inheritance if some aspect of the inherited connector configuration
needs to be handled in a specific way by selecting to inherit from another source,
or no inheritance at all. It is typical, and a best practice, for connectors to be
reused and extended in multiple assembly lines in ITDI deployments.14

Configuration of an ITDI Event Handler
ITDI Event Handlers are used to provide a framework to control how assembly
lines are run. This framework is particularly useful when an event, such as a
change event from an LDAP server, an HTTP message, or a JMS message is
received. The incoming event can trigger several different assembly lines to run
or other actions, depending on the content of the data received with the event.

Figure B-5 on page 702 illustrates how a typical ITDI event handler invokes an
assembly line to process an event. The event handler in the figure is the ITDS

13 ITDI implements inheritance of connector configurations. There are several aspects of connector
configuration, such as the location, account names and passwords used to connect to a data source,
the source attributes retrieved or written, and hooks that implement site-specific business logic during
connector processing, etc. Internally connectors are Java objects and each of these aspects can be
inherited, extended, or replaced when a connector is reused from the library.
14 It is possible to select a connector from the Connectors folder in the leftmost panel and perform the
configuration of a connector directly in the library. Once configured, the connectors in this folder can
be placed and used in several assembly lines. The advantage is that as the configuration is tested
and extended, changes made in the connector library can be inherited in each place the connector is
used.
700 Understanding LDAP Design and Implementation

changelog event handler. This event handler is configured on its configuration
tab (not shown) to receive notification from an ITDS server whenever a change
occurs in a part of the directory tree. The change notification event includes data
about the change, such as the target DN, and the type of change.

Figure B-5 on page 702 shows the Action Map tab for the event handler that
defines the processing that ITDI will perform each time a change event is
received. An action map item, named ChangeDetected has been defined. For
this item, two conditions based on the type of change received from the directory
server will be evaluated to determine if the change is either an "add" or a
"modify". The check box Match Any has been selected to indicate that if either of
these conditions is true, the action items defined in the bottom panel's Condition
True tab will be performed. In this case there are two action items. The first is to
write a simple message to the console log file. The second is to run an assembly
line named PropagatePwdChg. The Condition False tab may have action items
that are performed if neither condition is evaluated as true. An ITDI Action Map
may have multiple Action Items, each with their own set of conditions. They are
evaluated in order.
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 701

Figure B-5 ITDI Event Handler Action Map

A few Event Handlers have been pre-programmed to make things even easier.
The DSMLV2 event handler shown in Figure B-6 on page 703 is an example.
Here, the Configuration Tab contains all the information necessary to process
DSML V2 events. Each of the possible DSML V2 events that can be received by
the event handler are listed with a drop down list for selecting the particular
assembly line that will be called to process that event. In this example, the DSML
V2 compare and modify DN operations have not been associated with assembly
lines, so these operations will be ignored by the event handler.
702 Understanding LDAP Design and Implementation

Figure B-6 ITDI DSML V2 Event Handler

ITDI solution example
With this background in directory integration technology and how it is used, we
will take a look at a simplified, but typical corporate directory integration
requirement and illustrate how an ITDI solution would be designed to solve it.
This example has been taken from a few of the lab exercises for a training class
offered by IBM for ITDI. To provide an idea of how easily integration solutions
such as this can be implemented, in the training class students build all of the
assembly lines described in this chapter and unit test them on the first day of
class.

This solution is for an ITDI deployment to meet a mythical XYZ Company's
requirement to integrate employee identity data in their HR system with Active
Directory and Domino accounts. The initial objective is to load a new corporate
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 703

directory with employee data from Active Directory and Domino and keep their
user data synchronized. A future project will add business partners into the
corporate directory for an IBM Tivoli Access Manager for eBusiness (ITAMeB)
deployment to provide authentication and access control for WebSphere
applications. The IBM Tivoli Directory Server (ITDS) will be the user and group
registry for ITAMeB.

XYZ Company's initial requirements are to:

� Load a new ITDS enterprise directory with employee data from an extract
from an HR system. The HR data is merged with data from the company's
existing Active Directory and Domino servers. The initial loading of the
database implements a business rule configured into the ITDI assembly lines
to detect and report on "dirty" data that is discovered in the legacy Active
Directory and Domino servers.

� Keep the enterprise directory, Domino server, and Active Directory
synchronized with a daily extract of a simulated HR system.
– When a new user is added to the HR system, an Active Directory account

is created. A Domino account can also be created with an email database
and a Notes ID file for use with the Notes thick client. New Notes users are
also provisioned with an HTTP password so they can access email using
the Notes browser interface.

– When a user's status is changed from "Active" to "Inactive" in the
simulated HR system, the user's Active Directory account is disabled.
When a user's status is changed from "Inactive" to "Active" their existing
Active Directory account is enabled.

� No significant changes will be made to XYZ Company's current business
processes for maintaining identity data in the IT infrastructure. Current XYZ
Company business processes may be streamlined, but administrative
interfaces for managing user identities will not be modified or extended in this
design.

� All XYZ Company employees will have an entry in the new corporate LDAP
directory. They may also be given Active Directory and Domino accounts or
added to static groups in the LDAP directory, based on their job code.

� When an XYZ Company HR administrator creates a new employee record in
the HR system, the employee is assigned a unique employee User ID. The
employee User ID will be the ID the employee authenticates with in the LDAP
directory, Domino and Active Directory. Employees are never deleted from
the HR system. Their status is changed from active to inactive on their
termination date.

� User accounts will also be created in Active Directory, ITAMeB and Domino.
Which accounts are created is based on the employee's job code.
– Users with a Job Code greater than 9 are knowledge workers. Knowledge

workers always require Active Directory, ITAMeB, and Domino accounts.
704 Understanding LDAP Design and Implementation

– Users with a Job of 9 or less are production workers. Production workers
do not need Domino accounts for email or to access other Domino
applications. Production workers require an Active Directory account to
access time and attendance and other shop floor applications that run on
workstations or servers in the XYZ Company Windows domain. After the
future ITAMeB deployment, they will require an ITAMeB account to access
browser based HR applications from home, so they must also be in the
LDAP directory.

� The XYZ Company Active Directory and Domino servers already contain
entries for all current employees.

ITDI solution design
The ITDS LDAP directory is new at XYZ Company. It must be initially populated
from the set of currently active employees in the HR system. There may be some
"dirty" data in Domino and Active Directory. For example, employees that have
job codes that require Domino accounts that do not have them or employees
who do not have Active Directory accounts.

After the initial population of the LDAP directory, XYZ Company will use IDI to
add new employees to the LDAP directory when they are added to the HR
system. When employee information is changed in the HR system IDI will keep
the directory, Domino, and Active Directory data synchronized. IDI assembly
lines will support the following events.

� New Users. When new employees are added to HR, they must be added to
the LDAP directory and assigned a Windows user ID and password. If the
employee's job code is greater than 9, they are a knowledge worker, and a
Domino account will be created.

� Account Revocation. When an employee leaves XYZ Company, their
employee status is changed from an Active to Inactive in the HR system. ITDI
must deactivate their Windows accounts.

� Employee Status Changes. When a user's job code changes, an ITDI
assembly line must evaluate whether the employee needs a new Domino
account created. If so, one will be created.

HR System Extract
The authoritative source for most identity information is an extract from the HR
system. This extract is generated by a utility provided that produces a "comma
delimited" flat file and contains the following data for each employee. The first
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 705

record of the flat file is a header record containing the names of the fields in the
following records. There is one record for each employee that contains:

� User ID
� Street address
� State
� City
� Zip code
� First name
� MI (middle initials)
� Last name
� Office fax number
� Full name
� Job code
� Employee number
� Employee status
� Dept number
� Telephone number
� Organizational title

Active Directory
Active Directory users are stored in the cn=Users,dc=xyz,dc=com container.
The RDN is the cn attribute. XYZ Company has been using the full name as the
value of this attribute but this has caused problems. They have decided to use
the unique UID created by the HR system for new users. Active Directory will be
the authoritative source for UserPrincipalName. This attribute in Active Directory
will be the User ID@XYZ.com. For example, for the user with the ID jdoe, it will
be jdoe@xyz.com. It will be mapped to the description attribute in the IDS LDAP
directory.

Another important attribute in Active Directory is userAccountControl. This Active
Directory attribute controls the active or inactive status of a user account, among
other things. If the second low order bit of this attribute is set on, the account is
inactive.15

Domino
For the initial phase of the project the user's email address (the mail attribute)
will be retrieved from the Domino server to populate the LDAP directory. When
IDI creates new users in Domino, the basic attributes required by the Domino
User connector to register a new user will be given values.

15 See Microsoft documentation for a complete description of the userAccountControl attribute.
706 Understanding LDAP Design and Implementation

XYZ Company ITDS Directory Information Tree
The XYZ Company LDAP directory tree structure is illustrated in Figure B-7. The
suffix of the directory is dc=XYZ Company,dc=com. The Directory Information
Tree (DIT) is organized into a hierarchy of containers, or organizational units
(ou's).

Figure B-7 XYZ Company Directory Information Tree (DIT)

User and group containers
The ou=Internal container will store entries for employees. under ou=people,
dc=XYZ, dc=com. The subtree is flat to avoid embedding organizational
structure into the Distinguished Names in the directory. The Relative

DC=XYZ.com

applications

OU=internal OU=external

people

uid

uid

uid

CustomerID=

CustomerID=

VendorID=

Tivoli Access
Manager

Users
Application

Data

OU= OU=

Cn=employee

OU=Groups

CN=HR

etc

OU=Internal OU=External OU=Admin

CN=Directory
Admin

(Future)
(Future)

Ou=
portal

Ou=
ADsynch

uid

uid

(Future)
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 707

Distinguished Name (RDN) for entries in this container will be the uid attribute
that contains the user's Windows ID.

The ou=External container is reserved for future use. Only internal users
(employees and contractors) will be stored in the directory in this phase of the
XYZ Company directory integration solution. In the future, external users
(customers and vendors) can be added under the container ou=External.

The ou=Groups container will store groups of users under the subtree
ou=people, dc=XYZ,dc=com. The group subtree will be subdivided into
containers for groups of internal users, external users, and administrative users.
This enables the directory administrator to keep groups of administrators,
internal users, and external users.

The RDN of the group entries in the directory is the cn attribute (the common
name of the group). The three group containers are:

� ou=internal,ou=groups,ou=people,dc=xyz.com. ITAMeB will be deployed in
the future to control access to resources based on the groups to which users
belong. This container will contain the groups used by ITAMeB to control
access to the resources it protects. In the figure, for example, the members of
the group cn=employee, ou=internal, ou=groups, ou=people, dc=xyz,
dc=com will be given access to the XYZ employee portal by ITAMeB.

� ou=external,ou=groups,ou=people,dc=xyz.com. This subtree is reserved. In
the future groups containing external users may be defined in this subtree.

� ou=admin,ou=groups,ou=people,dc=xyz.com. This subtree contains
administrative groups whose members are users given administrative rights
for ITAMeB, applications, and the directory server.

Application container
Directory entries in the ou=Applications container will be used by directory
enabled XYZ Company infrastructure components and applications.

� ou=ADsynch, ou=Applications,dc=XYZ, dc=com. In the future, after ITAMeB
is installed, the ITDI Active Directory password interceptor will be installed on
the Active Directory Domain Controller to synchronize passwords in the ITDS
directory when users change their passwords in Active Directory. The ITDI
interceptor will securely store the public key encrypted new password in this
ITDS container. An ITDI assembly line will propagate new or changed values
for password to the entry with the same uid in the ou=Internal, ou=People,
dc=XYZ,dc=com container.

� ou=Portal, ou=Applications,dc=xyz.com. This container will be used in the
future by the WebSphere Portal Server and portal applications.
708 Understanding LDAP Design and Implementation

LDAP Schema
In this design the schema and indexing information in the tables in this section
are the default configuration of the IBM Directory Server "out of the box" after
installation. The following attributes will be populated in the directory:

� cn (Common Name) - This multivalued attribute will contain two values, the
user's full name in HR and the user's last name to facilitate LDAP directory
searches based on the last name.

� businessCategory - This attribute will contain the employee's job code from
HR.

� departmentNumber - From HR.

� description - This attribute will contain the userPrincipalName in Active
Directory.

� displayName - The user's full name from HR.

� employeeNumber - From HR.

� employeeType - Mapped to employee status in HR.

� facsimileTelephoneNumber - From office fax number in HR.

� givenName - From first name in HR.

� initials - From MI in HR.

� l (location) - From the city attribute in HR.

� mail - The email address from Domino.

� postalCode - From zip code in HR.

� sn - From last name from HR.

� st - From state in HR.

� street - From street address in HR.

� telephoneNumber - From telephone number in HR.

� title - From organizational title in HR.

� uid - From user ID in HR.

Groups will be created in the ou=Groups,ou=People,dc=XYZ,dc=com container
with the accessGroup objectclass. The future Access Manager deployment will
use groups in ACLs that control user access to the resources it protects.
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 709

Solution components
The components of the XYZ Company Directory and future ITAMeB deployment
are illustrated in Figure B-8.

Figure B-8 Solution architecture

Initial population of the LDAP Directory
This section describes how the LDAP directory will be initially loaded with entries
for current XYZ Company employees. Once populated, the LDAP directory will
be maintained by the procedures and ITDI assembly lines described in the next
section.

The initial entries loaded into the directory will contain attributes that are
populated from the XYZ Company HR System. The extract utility provided with
the HR system will be used to export user data into an XML file. An extract is
generated that contains the HR information for each current employee. The data
flow through the assembly line for initial population of the LDAP directory is
shown in Figure B-9 on page 711.16

16 In this and other data flow diagrams in this document, components, such as the HR Extract Utility
in this figure that are external to this system are shown as rectangles.

IDI/IDS Virtual Machine

HR – CSV
Daily Feed

Domino
Server

Active
Directory

Existing Users

ITDS
Server

Notes Thick
Client

Domino
Admin client ITDS

Admin

File Connector

ITDI

LDAP C
on

ne
cto

r

Domino User
Connector

LDAP Connector

Browser
(Domino

iNotes Thin Client)
710 Understanding LDAP Design and Implementation

Figure B-9 Initial Directory population data flow

This assembly line contains the following connectors:

� File System Connector - This connector will be configured in iterator mode to
read the XML data exported from the HR System. Into the ITDI work object. It
will pass the entry to the next connector.

� LDAP Connector (Domino) - This connector will be configured in Lookup
mode. It will be configured to look up the employee's email address in Domino
and add it to the work entry. Only employees with a job code of 10 or higher
should have an email address. If "dirty data" is found, a passive state
connector17 will be called to output an error message.

� LDAP Connector (Active Directory) - This connector will be configured in
Lookup mode. It will lookup the user's userPrincipalName in Active Directory.
If no Active Directory account information is found for an active employee, a
passive state connector will be called to output an error message. An SSL
connection will be configured to Active Directory in preparation for the
requirement to add active directory users and set their passwords.18

HR - CSV
Daily Feed

Active
Directory

File Connector LDAP Connector

Existing Users

Domino User
Connector

Domino
Server

ITDS
Server

Domino Admin
Client

Browser (Domino
iNotes Thin Client)

Notes Thick
Client

ITDS
Admin

IDI/IDS Virtual Machine

ITDI

LDAP Connector

17 A connector can be placed in an enabled, disabled, or passive state (see the drop down list for
these states in Figure B-4 on page 699). In passive state, the ITDI framework does not automatically
call the connector. The connector is typically called from a hook script when needed, such as in this
case when an error condition occurs.
18 Active Directory requires an SSL session be used when setting user passwords.
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 711

� LDAP Connector (ITDS ou=internal, ou=People container) - This connector
will be configured in Update mode. It will lookup the entry in the IDS directory
for the employee with the data from the HR system19. If found, the connector
will update the attributes in its attribute map with the values from the work
entry. If not found, the connector will add the entry.

The first time the assembly line runs, the entry will not be found, since the
LDAP directory is empty, and the connector will create a new entry from the
HR data, email address from Domino, and the userPrincipalName from Active
Directory. If the assembly line is run multiple times, the user entry will be
found if it was created by a previous run. The entry will be updated if the
current HR data differs from the data in the directory.

� File System Connector - This connector will be configured in passive state
with an XML parser. It will be called by other connectors to write errors to an
error log.

User Management
This section describes the IDI data flows that will keep the LDAP directory, and
Active Directory synchronized. These data flows are triggered by new or
changed entries in the HR system. The processes supporting these events are
shown in the data flow diagram in Figure B-10 on page 713.

19 It could also be configured in add mode, but existing entries need to be handled if the assembly
line is run multiple times during testing.
712 Understanding LDAP Design and Implementation

Figure B-10 User management data flow

This assembly line contains the following connectors:

� Flat file Connector - This connector will be configured in iterator mode to read
the XML data exported from the HR System.

� Domino User Connector - This connector will be configured in Update Mode.
If this is a potential new Domino user, and job code requires an email
account, it will create a new Domino account for the user. Otherwise, the
connector will update the entry if the HR Data has changed.

� LDAP Connector (Active Directory) - This connector will be configured in
update mode. It will lookup the user's userPrincipalName in Active Directory.
If no Active Directory account information is found for an active employee a
new account will be created. The employee status attribute from the HR file
will be mapped to the Active Directory userAccountControl attribute to enable
or disable the Active Directory account based on their current status.

� LDAP Connector (ITDS ou=internal, ou=People container) - This connector
will be configured in Update mode. It will lookup the entry in the ITDS
directory for the employee with the data from the HR system.

HR
Extact Utility

LDAP Directory

Add HR
Account

Accounts
in OU=Internat,ou=People

HR System Database

HR Employee
Data

Sequential XML
File of HR Data

HR Employee Data

HR Account Profiles

IDI Assembly Line to
Synchronize the LDAP

Directory

Domino

Domino Account
Information

Active
Directory

Active Directory
Account Information

Error Log

Error Messages
 Appendix B. Directory Integration - IBM Tivoli Directory Integrator 713

Summary
In this chapter we have reviewed the reasons why it is usually critical to address
directory integration requirements in any major directory deployment project. We
reviewed several methodologies for integrating directories with heterogeneous
legacy data stores and focused on metadirectories as currently providing the
most robust and stable technology. Metadirectories were compared to the
complementary technologies of provisioning systems and virtual directories.
Finally we provided an overview of a particular metadirectory, the IBM Tivoli
Directory Integrator and illustrated a solution design for deploying it to solve a set
of relatively simple but realistic and common integration requirements.
714 Understanding LDAP Design and Implementation

Appendix C. Moving RACF users to
TBDM

This appendix provides a sample program that can move RACF users into the
TDBM space as discussed in “Moving RACF users to the TDBM space” on
page 189.

C

© Copyright IBM Corp. 1998, 2004. All rights reserved. 715

Sample programs to move RACF users to TBDM
There are three pieces that are needed to convert RACF users to TDBM users.
They are used in a compound command line that is invoked by issuing the
following command:

search1 | xargs -i search2 {} | racf2person > output.ldif

The three pieces that are used in this example are seach1, search2, and
racf2person. The search1 command is a ldapsearch command that will return all
the RACF distinguished names and is shown in Example C-1.

Example: C-1 search1 command

ldapsearch -h 1.1.ibm.com:389 \
 -D racfid=root,profiletype=user,sysplex=testplex -w XXXXXX \
 -s one -b profiletype=user,sysplex=testplex "(racfid=A*)"

The search2 piece is a Perl program and will search for the RACF user attributes
and is shown in Example C-2.

Example: C-2 search2 Perl program

do a search
name=$1

ldapsearch -h 1.1.ibm.com:389 \
 -D racfid=root,profiletype=user,sysplex=testplex -w XXXXXX \
 -L -s base -b $name "(objectclass=*)"

echo ""

The racf2person piece is also a Perl program that will convert the RACF user
information (distinguished name from search1 and user attributes from search2)
into the LDIF format. The racf2person program is shown in Example C-3.

Example: C-3 racf2person Perl program

#!/usr/bin/perl
eval "exec perl -S $0 $*"
 if $running_under_some_shell;
#
<COPYRIGHT>
Copyright (c) 2003, International Business Machines Corporation
and others. All Rights Reserved.
#
For the full copyright information for this source code, refer to
the COPYRIGHT file in the root directory of the source code tree.
</COPYRIGHT>
716 Understanding LDAP Design and Implementation

#

#
\file
#
\version 1.0
#
This is the Makefile for the src/doc directory.

<PRE>
Change History
Date Name Description
--
2003/10/09 Tim Hahn Created this file
</PRE>
#

handle input parms
if ($#ARGV+1 < 2) {
 do Usage();
 exit(-1);
}
else {
 for ($i=0; $i<$#ARGV+1; $i++) {
 if ($ARGV[$i] eq "-b") {
 $suffixDN = $ARGV[$i+1];
 $i++;
 }
 else {
 do Usage();
 exit(-1);
 }
 }

 @ARGV=(); # clear the input parms
}

do ResetParms();

while (<>) {
 /^dn: .*/ && ($outputReady==1) && do { # signifies the start of another
user, print what we have

 if ($commonName eq "") { # if not set, use the uid value
 $commonName = $uid;
 $surName = $uid;
 }

 do PrintPerson();
 Appendix C. Moving RACF users to TBDM 717

 do ResetParms();
 };

 /^racfid: .*/ && do { # take the racfid and use it as uid and
ibm-nativeID
 $uid = $_;
 $uid =~ s/\n//; # remove the newline
 $uid =~ s/^racfid: //;
 $nativeID = $uid;

 $outputReady = 1;
 };

 /^racfprogrammername: .*/ && do { # take the racfprogrammername and use
it for cn and sn
 $commonName = $_;
 $commonName =~ s/\n//; # remove the newline
 $commonName =~ s/racfprogrammername: //;

 $surName = $commonName;
 $surName =~ s/^[^]* //; # remove the first name
 };
}

if ($outputReady == 1) {
 if ($commonName == "") { # if not set, use the uid value
 $commonName = $uid;
 $surName = $uid;
 }

 do PrintPerson();
}

sub Usage {
 print("Usage: racf2Person < -b <suffixDN> >\n");
}

sub PrintPerson {
 print ("dn: cn=", $commonName, ",", $suffixDN, "\n");
 print ("objectclass: person\n");
 print ("objectclass: inetorgPerson\n");
 print ("objectclass: ibm-nativeAuthentication\n");
 print ("cn: ", $commonName, "\n");
 print ("sn: ", $surName, "\n");
 print ("uid: ", $uid, "\n");
 print ("ibm-nativeID: ", $nativeID, "\n");
 print ("\n");
718 Understanding LDAP Design and Implementation

}

sub ResetParms {
 $outputReady=0;

 $uid="";
 $nativeID="";
 $commonName="";
 $surName="";
}

 Appendix C. Moving RACF users to TBDM 719

720 Understanding LDAP Design and Implementation

Appendix D. Schema changes that are
not allowed

This appendix provides a list of schema changes that are not allowed.

D

© Copyright IBM Corp. 1998, 2004. All rights reserved. 721

Operational attributes
These are the operational attributes that cannot be modified:

� aclEntry
� aclPropagate
� aclSource
� aliasedObjectName, aliasedentryName
� createTimestamp
� creatorsName
� entryOwner
� hasSubordinates
� ibm-allGroups
� ibm-allMembers
� ibm-capabilitiessubentry
� ibm-effectiveAcl
� ibm-entryChecksum
� ibm-entryChecksumOp
� ibm-entryUuid
� ibm-filterAclEntry
� ibm-filterAclInherit
� ibm-replicationChangeLDIF
� ibm-replicationIsQuiesced
� ibm-replicationLastActivationTime
� ibm-replicationLastChangeId
� ibm-replicationLastFinishTime
� ibm-replicationLastGlobalChangeId
� ibm-replicationLastResult
� ibm-replicationLastResultAdditional
� ibm-replicationNextTime
� ibm-replicationPendingChangeCount
� ibm-replicationPendingChanges
� ibm-replicationState
� ibm-replicationThisServerIsMaster
� modifiersName
� modifyTimestamp
� ownerPropagate
� ownerSource
� pwdAccountLockedTime
� pwdChangedTime
� pwdExpirationWarned
� pwdFailureTime
� pwdGraceUseTime
� pwdHistory
� pwdReset
722 Understanding LDAP Design and Implementation

� subschemaSubentry
� subtreeSpecification

Restricted attributes
These are the restricted attributes that cannot be modified:

� aclEntry
� aclPropagate
� entryOwner
� ibm-filterAclEntry
� ibm-filterAclInherit
� ownerPropagate

Root DSE attributes
These are the Root DSE attributes that cannot be modified:

� altServer
� ibm-effectiveReplicationModel
� ibm-enabledCapabilities
� ibm-serverId
� ibm-supportedCapabilities
� ibm-supportedReplicationModels
� namingContexts

Schema definition attributes
These are the Schema Definition attributes that cannot be modified:

� attributeTypes
� ditContentRules
� ditStructureRules
� IBMAttributeTypes
� ldapSyntaxes
� matchingRules
� matchingRuleUse
� nameForms
� objectClasses
� supportedExtension
� supportedLDAPVersion
� supportedSASLMechanisms
 Appendix D. Schema changes that are not allowed 723

Configuration attributes
These are the Configuration attributes that cannot be modified:

� ibm-audit
� ibm-auditAdd
� ibm-auditBind
� ibm-auditDelete
� ibm-auditExtOpEvent
� ibm-auditFailedOpOnly
� ibm-auditLog
� ibm-auditModify
� ibm-auditModifyDN
� ibm-auditSearch
� ibm-auditUnbind
� ibm-slapdAclCache
� ibm-slapdAclCacheSize
� ibm-slapdAdminDN
� ibm-slapdAdminPW
� ibm-slapdAuthIntegration
� ibm-slapdCLIErrors
� ibm-slapdDB2CP
� ibm-slapdDBAlias
� ibm-slapdDbConnections
� ibm-slapdDbInstance
� ibm-slapdDbLocation
� ibm-slapdDbName
� ibm-slapdDbUserID
� ibm-slapdDbUserPW
� ibm-slapdDerefAliases
� ibm-slapdDN
� ibm-slapdsupportedCapabilities
� ibm-slapdEnableEventNotification
� ibm-slapdEntryCacheSize
� ibm-slapdErrorLog
� ibm-slapdFilterCacheBypassLimit
� ibm-slapdFilterCacheSize
� ibm-slapdIdleTimeOut
� ibm-slapdIncludeSchema
� ibm-slapdIpAddress
� ibm-slapdKrbAdminDN
� ibm-slapdKrbEnable
� ibm-slapdKrbIdentityMap
� ibm-slapdKrbKeyTab
� ibm-slapdKrbRealm
724 Understanding LDAP Design and Implementation

� ibm-slapdLdapCrlHost
� ibm-slapdLdapCrlPassword
� ibm-slapdLdapCrlPort
� ibm-slapdLdapCrlUser
� ibm-slapdMasterDN
� ibm-slapdMasterPW
� ibm-slapdMasterReferral
� ibm-slapdMaxEventsPerConnection
� ibm-slapdMaxEventsTotal
� ibm-slapdMaxNumOfTransactions
� ibm-slapdMaxOpPerTransaction
� ibm-slapdMaxTimeLimitOfTransactions
� ibm-slapdMigrationInfo
� ibm-slapdPagedResAllowNonAdmin
� ibm-slapdPagedResLmt
� ibm-slapdPageSizeLmt
� ibm-slapdPlugin
� ibm-slapdPort
� ibm-slapdslapdPwEncryption
� ibm-slapdReadOnly
� ibm-slapdReferral
� ibm-slapdSchemaAdditions
� ibm-slapdSchemaCheck
� ibm-slapdSecurePort
� ibm-slapdSecurity
� ibm-slapdSetenv
� ibm-slapdSizeLimit
� ibm-slapdSortKeyLimit
� ibm-slapdSortSrchAllowNonAdmin
� ibm-slapdSslAuth
� ibm-slapdSslCertificate
� ibm-slapdSslCipherSpec
� ibm-slapSslCipherSpecs
� ibm-slapdSslKeyDatabase
� ibm-slapdSslKeyDatabasePW
� ibm-slapdSslKeyRingFile
� ibm-slapdSslKeyRingFilePW
� ibm-slapdSuffix
� ibm-slapdSupportedWebAdmVersion
� ibm-slapdSysLogLevel
� ibm-slapdTimeLimit
� ibm-slapdTraceEnabled
� ibm-slapdTraceMessageLevel
� ibm-slapdTraceMessageLog
� ibm-slapdTransactionEnable
 Appendix D. Schema changes that are not allowed 725

� ibm-slapdUseProcessIdPW
� ibm-slapdVersion
� replicaBindDN
� replicaBindMethod
� replicaCredentials, replicaBindCredentials
� replicaHost
� replicaPort
� replicaUpdateTimeInterval
� replicaUseSSL

User Application attributes
These are the User Application attributes that cannot be modified:

� businessCategory
� cn, commonName
� changeNumber
� changes
� changeTime
� changeType
� deleteOldRdn
� description
� dn, distinguishedName
� member
� name
� newSuperior
� o, organizationName, organization
� objectClass
� ou, organizationalUnit, organizationalUnitName
� owner
� ref
� seeAlso
� targetDN
726 Understanding LDAP Design and Implementation

acronyms
ACI Access Control
Interface

ACL Access Control List

ADSI Active Directory
Service Interface

AIX Advanced Interactive
Executive

ANSI American National
Standards Institute

API Application
Programming
Interface

ASCII American National
Standard Code for
Information
Interchange

BER Basic Encoding Rules

BNF Backus Naur Form

CA Certificate Authority

CCITT International
Consultative
Committee on
Telephony and
Telegraphy

CGI Computer Graphics
Interface

CIM Common Information
Model

CLI Command Line
Interface

CN Common Name

CPAN Comprehensive Perl
Archive Network

DAML Directory Access
Markup Language

DAP Directory Access
Protocol

Abbreviations and
© Copyright IBM Corp. 1998, 2004. All rights reserved
DARPA Defense Advanced
Research Projects
Agency

DAS Directory Assistance
Service

DCD Document Content
Description

DEN Directory-Enabled
Networks Initiative

DES Data Encryption
Service

DIT Directory Information
Tree

DMTF Desktop
Management Task
Force

DN Distinguished Name

DNS Domain Name
Service

DOS Denial Of Service

DSML Directory Services
Markup Language

EH Encrypted Header

FIPS Federal Information
Processing Standard

FTP File Transfer Protocol

GSKIT IBM Global Security
Toolkit

GUI Graphical User
Interface

HTML Hyper Text Markup
Language

HTTP Hyper Text Transfer
Protocol

HTTPS Hyper Text Transfer
Protocol over SSL
. 727

IAB Internet architecture
Board

IANA Internet Assigned
Numbers Authority

IBM International
Business Machines
Corporation

IETF Internet Engineering
Task Force

IMAP Internet Mail Access
Protocol

IP Internet Protocol

ISBN International
Standard Book
Number

ISI Information Sciences
Institute

ISO International
Standards
Organization

ITDI IBM Tivoli Directory
Integrator

ITDS IBM Tivoli Directory
Server

ITSO International
Technical Support
Organization

ITU International
Telecommunications
Union

ITU-T International
Telecommunications
Union -
Telecommunication
Standardization
Sector

JAR Jave Archive

JDBC Java Database
Connectivity

JDK Java Development Kit

JLDAP Java LDAP

JMS Java Message
Service

JNDI Java Naming and
Directory Interface

JPEG Joint Photographics
Expert Group

JRE Java Runtime
Environment

JSP Java Server Page

KDC Key Distribution
Center

LDAP Lightweight Directory
Access Protocol

LDIF LDAP Data
Interchange Format

LIPS Lightweight Internet
Person Schema

MAC Machine Address
Code

MIME Multipurpose Internet
Mail Extensions

OID Object Identifier

OS Operating System

OSI Open Systems
Interconnect

PDF Portable Document
Format

PID Process Identifier

RACF Resource Access
Control Facility

RAM Randon Access
Memory

RDBMS Relational Database
Management System

RDN Relative
Distinguished Name

RFC Request For
Comments

RPC Remote Procedure
Call
728 Understanding LDAP Design and Implementation

RSA Rivest-Shamir-Adlem
an algorithm

SASL Simple Authentication
and Security Layer

SDK Software
Development Kit

SHA Secure Hash
Algorithm

SMP Shared
Multi-Processor

SMTP Simple Mail Transfer
Protocol

SNMP Simple Network
Management
Protocol

SOAP Simple Object Access
Protocol

SPI Service Provider
Interface

SQL Stuctured Query
Language

SSL Secure Sockets
Layer

TCP Transmission Control
Protocol

TGT Ticket Granting Ticket

TLS Transport Layer
Security

TTY Teletypewriter

UID User Identification

URI Universal Resource
Identifier

URL Universal Resource
Locator

UUID Universal Unique
Identifier

VM Virtual Machine

XML eXtensible Markup
Language
 Abbreviations and acronyms 729

730 Understanding LDAP Design and Implementation

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 733. Note that some of the documents referenced here may be available
in softcopy only.

� Understanding LDAP, SG24-4986

� LDAP Implementation Cookbook, SG24-5110

� Using LDAP for Directory Integration, SG24-6163

Online resources
These Web sites and URLs are also relevant as further information sources:

� ADSI information:

http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/ad
silinks.asp

� Apache Directory Project:

http://incubator.apache.org/directory/subprojects/eve/index.html

� ASN.1 frequently asked questions:

http://asn1.elibel.tm.fr/oid/faq.htm

� Directory Interoperability Forum:

http://www.opengroup.org/dif/

� DirectoryMark:

http://www.mindcraft.com/directorymark/index.html

� DSML information:

http://www.dsmltools.org

� IBM DB2 Universal Database Product Documentation:

http://www.ibm.com/software/data/db2/library/
© Copyright IBM Corp. 1998, 2004. All rights reserved. 731

http://www.microsoft.com/windows2000/techinfo/howitworks/activedirectory/adsilinks.asp
http://incubator.apache.org/directory/subprojects/eve/index.html
http://asn1.elibel.tm.fr/oid/faq.htm
http://www.opengroup.org/dif/
http://www.mindcraft.com/directorymark/index.html
http://www.dsmltools.org
http://www.ibm.com/software/data/db2/library/

� IBM Tivoli Directory Server information:

http://www-306.ibm.com/software/tivoli/products/directory-server/

� IBM Tivoli Directory Server Product Documentation:

http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html

� IBM Tivoli Directory Server Schema information:

http://publib.boulder.ibm.com/tividd/td/IBMDS/IDSschema52/en_US/HTML/schema
.html

� International Standards Organization:

http://www.iso.ch/

� Internet Assigned Numbers Authority:

http://www.iana.org/cgi-bin/enterprise.pl

� Internet Engineering Task Force (IETF):

http://www.ietf.org/

� ITU:

http://www.itu.ch/

� Java LDAP browser:

http://www.iit.edu/~gawojar/ldap/index.html

� Java SDK 1.3.1:

http://www.alphaworks.ibm.com/aw.nsf/download/xml4j

� JNDI information:

http://java.sun.com/products/jndi/

� JXplorer:

http://pegacat.com/jxplorer/

� LDAPZone:

http://www.ldapzone.com/

� Mozilla:

http://www.mozilla.org/directory/

� NET::LDAP:

http://search.cpan.org/~gbarr/perl-ldap-0.31/

� OpenLDAP:

http://www.openldap.org

� Request for comments:

http://www.ietf.org/rfc/rfc.html
732 Understanding LDAP Design and Implementation

http://www-306.ibm.com/software/tivoli/products/directory-server/
http://publib.boulder.ibm.com/tividd/td/IBMDirectoryServer5.2.html
http://publib.boulder.ibm.com/tividd/td/IBMDS/IDSschema52/en_US/HTML/schema.html
http://www.iso.ch/
http://www.iana.org/cgi-bin/enterprise.pl
http://www.ietf.org/
http://www.itu.ch/
http://www.ietf.org/rfc/rfc.html
http://www.openldap.org
http://search.cpan.org/~gbarr/perl-ldap-0.31/
http://www.mozilla.org/directory/
http://www.ldapzone.com/
http://pegacat.com/jxplorer/
http://java.sun.com/products/jndi/
http://www.alphaworks.ibm.com/aw.nsf/download/xml4j
http://www.iit.edu/~gawojar/ldap/index.html

� SOAP 2.3:

http://xml.apache.org/dist/soap/version-2.3

� Understanding X.500 - The Directory:

http://www.isi.salford.ac.uk/staff/dwc/X500.htm

� Unicode Character Encoding:

http://www.unicode.org/

� University of Michigan LDAP Mailing List Archives:

http://listserver.itd.umich.edu/cgi-bin/lyris.pl?visit=ldap

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads:

ibm.com/support

IBM Global Services:

ibm.com/services
 Related publications 733

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://xml.apache.org/dist/soap/version-2.3
http://www.isi.salford.ac.uk/staff/dwc/X500.htm
http://www.unicode.org/
http://listserver.itd.umich.edu/cgi-bin/lyris.pl?visit=ldap

734 Understanding LDAP Design and Implementation

Index

A
A simple Directory Information Tree (DIT) 398
Abbreviations and acronyms 727
Access Control 395, 472
Access Control Attribute Syntax 401
Access Control Information 397
Access Evaluation 412
Access Target 407
accessGroup 296, 302–304, 310, 313, 709
access-id

cn=this 402
accessRole 296, 302–303, 310
Account is locked 448
ACI 397, 401, 406, 412–413, 426–429, 727
ACL 70–71, 87, 91, 215, 314, 321, 344, 354, 380,
396–403, 407, 412–413, 415–417, 419–424,
427–429, 451–452, 478, 482, 537, 557, 563, 594,
709, 727
ACL Model 397
ACL Structure for Web Content administration using
two groups 71
aclEntry 396–398, 400–401, 407–413, 415,
427–428, 722–723
Action 406
Active Directory 706
Add 652
Add a suffix 116, 146, 174
Add credential 347
Add daily schedule 382
Add Filter ACLs 423
Add or remove members 305
Add replica 351
Add replica message 354
Add replicated subtree 349
Add weekly schedule 384
Adding a server to the console 204
Adding a Suffix 115–116, 145–146, 173–174
Adding ACIs and Entry Owners 426
Adding an Attribute 294
Adding an Objectclass 293
Adding an Owner 425
Adding and Editing Access Rights 420, 422
Adding Members to the Administrative Group 210
© Copyright IBM Corp. 1998, 2004. All rights reserved
Adding members to the administrative group 210
Adding memory after installation on Solaris systems
532
Adding Supplier Information to the Replica 356
Adding, modifying, and removing servers in the con-
sole 204
Additional slapd and ibmslapd settings 488
Additional supplier agreements 366
Additional tab - Select credential 352
Administration 79
Administration daemon audit logging 222
Administration Daemon Error Log 218
Administration Daemon error log 218
Administration server 437
Advantages of using a directory 10
AIX 582
AIX data segments and LDAP process DB2 connec-
tions 532
AIX operating system tuning 529
AIX-specific process size limits 531
Allow anonymous bind 470
Alternative input format 267
Analyzing changelog 566
Analyzing log files 567
Anonymous authentication 433
API Flow when Searching a Directory 606
API Flow when Updaing A Directory Entry 612
API Flow when Updating A Directory Entry 612
Application Container 708
Application Control Heap Size configuration param-
eter - app_ctl_heap_sz 497
Application Heap Size configuration parameter - ap-
plheapsz 498
Application programming interfaces (APIs) 437
ASN.1 19, 30, 39–42, 637, 731
Attribute definition example 19
Attribute Definitions 41
Attribute Values After being Updated 613
Attributes 41
Attributes pertaining to connections 471
Attributes pertaining to the Emergency thread 472
Audit log 567
audit.log 534, 574, 592
Auth 648
. 735

Authentication 432
Authentication method 367
Authentication Operations 52
Authentication using SASL 434
Availability, scalability, and manageability require-
ments 72
Available Schema Files 290

B
Backing up the existing database 525
Basic Authentication 54, 433
Basic form of an LDIF entry 35
Become a published author xix
Beyond LDAPv3 15
bind 8, 53, 55, 69, 80, 187, 199, 222, 228, 239, 241,
243–246, 248–249, 253, 264–265, 281–282, 328,
330–333, 341–342, 346–349, 356–357, 362, 368,
370, 372, 381, 387, 389, 394, 405, 412–415,
433–435, 448, 450, 470, 498, 502, 538, 553–554,
558, 562, 573, 596, 605, 607, 610, 613–614, 616,
623, 625, 630, 656, 667
Bindings 655
Boolean Operators 51
Bootstrap/rmi port 233
Buttons available based on server status 199

C
Cascading Replication 77
Cascading replication topology 78
Change group membership 315
Change the Database Log Path config parameter -
newlogpath 513
changelog 119–120, 123, 149–150, 176–177,
485–487, 533–534, 543, 549, 556, 560, 566–567,
590, 696, 701
Changing a Directory Entry 628
Changing console administrator login 203
Changing the console administration password 204
Changing the console administrator login 203
Changing two replicas and the original master serv-
er into Peer Servers 334
Characteristics of data elements 62
Checking data differences between Replica and
Master 392
Checking Schema Between Replica and Master
server 393
Client programs 437
Client Tools 237

Clients 668
cn=monitor 90, 238, 480–481, 535–536, 541–543,
549, 552–553, 555, 561, 564–565, 585
cn=root 107, 137, 166, 182, 210–211, 213–214,
222, 227, 229, 251–252, 271, 282–285, 305–306,
309, 409, 428, 433–434, 446–449, 452–453, 465,
490, 533–534, 553, 572–573, 575, 610, 615, 623,
626, 628, 630, 671, 678
Code to Search a Directory using the C API 609
Code to Update a Directory using the C API 615
Combinatory Rule 414
Command Line for a Complex Replication 372
Comments welcome xx
Common LDAP Attributes 33
Compare 51, 654
Component management 207
Concurrent updates on Symmetric Multi-Processor
systems 529
Confents of the audit log 574
Configuration 666
Configuration Attributes 724
Configuration Final Confirmation 114, 144, 172
Configuration for Peer to Peer in IBM Directory 4.1
and below 328
Configuration of an ITDI Event Handler 700
Configuration of ITDI Assembly Lines 698
Configuration only mode 201
Configuration script 515
Configuring attribute caching 485
Configuring Replication Topologies 343
Configuring SSL security 460
Configuring the Administator DN and Password
106, 137, 166
Configuring the Administrator DN and Password
106, 137, 166
Configuring the Database 108, 138, 167
Configuring the LDAP server to use SSL 464
Connection reaping 470
Console layout 200
Contents of the admin daemon audit log 226
Contents of the admin daemon log 221
Contents of the audit log 574
Contents of the change log 566
Contents of the ibmslapd error log file 578
Controls and Extended Operations 52
Create a User ID for ITDS 102, 133, 162
Create file systems and directories on the target
disks 524
Creating a certificate signed by a trusted certificate
736 Understanding LDAP Design and Implementation

authority 461
Creating a daily schedule 381
Creating a self signed certificate 462
Creating a weekly schedule 383
Creating an Administrative Group 208
Creating an Administrative group 208
Creating Credentials 345
Creating Replication Schedules 381
Creating the Directory Context 625, 630
Creating the Master Server 344
Current Attributes Before being Updated 612

D
DAML Servlet - JNDI Create DSML SOAP Request
678
Data Design 60
Database Configuration - Choose DB2 Database
Name 111, 141, 169
Database configuration - choosing an install location
(AIX) 142
Database configuration - choosing an install location
(Windows) 112
Database Configuration - Choosing an Install Loca-
tions (Linux) 170
Database Configuration - Codepage Selection 113,
143, 171
Database Configuration - Configuring the Database
109, 139, 168
Database Configuration - Results Screen 173
Database configuration - results window 115, 145
Database Configuration - Setting the User ID and
Password for the Database 110, 140, 169
Database configuration - setting the user ID and
password for the database 110, 140
DB2 backup and restore 527
DB2 buffer pool tuning 493
DB2 error log 544, 579
DB2 error log file 600
DB2 log contents 581
DB2 log settings 580
DB2 Tuning 491
db2cli.log 544, 579, 581, 592
db2diag.log 496, 527, 544–545, 582, 591, 600–601
db2ldif 89, 188–189, 355, 412, 453, 527–528, 592
db2ldif on z/OS 188
db2profile 153, 183, 492
db2start 243, 493, 515
db2stop 153, 183–184, 493, 515

dbg.log 592
Debug categories 594
Debugging configuration problems 590
Debugging directory server related errors using log
files 592
Debugging IBM Tivoli Directory Server Related Is-
sues 589
Debugging problems 590
Default ports used by IBM WAS - Express 232
Defining directory requirements 60
Defining Directory Schema in DSML 641
Defining the directory content 60
Deleting an Attribute 295
Deleting an Objectclass 294
Demoting a master server 378
Designing your server and network infrastructure
72
Determining group membership 312
Developing “C” Based Applications 603
Developing JNDI Based Applications 619
DIAGLEVEL 545, 601
Diagnostics 249, 253, 270, 272, 286
Difference between DSML v1 and DSML v2 637
Difference between DSML v2 and LDAP 637
Directories 5
Directory Administration Daemon 216
Directory administration daemon 216
Directory Clients & Servers 8
Directory Clients and Servers 8
Directory Components 16
Directory Integration Services 684
Directory Integration Technologies 686
Directory Integration using IBM Tivoli Directory Inte-
grator 681, 715, 721
Directory Resources on the Web 23
Directory Security 53, 432
Directory security 432
Directory Size 516
Directory versus Database 5
Disabling anonymous access to the directory 404
Disabling the administration daemon audit log 225
Disallowed Schema Changes 296
Disconnection rules 555
Disk speed improvements 535
Display DB2 buffer pool size default settings 494
Distributed Directories 9
Distributing the database across multiple physical
disks 522
DLFM_LOG_LEVEL 545, 601
 Index 737

DN Syntax 44
Domino 706
DSE 52, 86, 122, 151, 178, 202, 247, 296, 346,
352, 403, 433, 466, 469, 723
DSML 15, 21, 635–647, 649–650, 652–653,
655–660, 662–679, 696, 702–703, 727, 731
DSML Attribute Types 641
DSML Client - Create the Connection 675
DSML Client - Generate DSML Document 676
DSML Client - Get DSML Servlet Response 676
DSML Client - Set the HTTP Parameters 675
DSML Communication Between ITDI and ITDS 657
DSML Object Classes 641
DSML Servlet - JNDI DSML Search 677
DSML Servlet - JNDI Operations 679
DSML Servlet - Parse DSML Document 677
DSML Version 1.0 636
DSML version 2 635
DSML Version 2 - IBM Implementation 638
DSML Version 2 Introduction 636
DSML Version 2 URN 636
DSML Version 2.0 636
dsml.htm 658
dsml.pdf 658
DsmlFileClient 640, 669
DSMLReadme.txt 658
DSMLRequest.xml 671
DsmlSoapClient 640, 668
DsmlValues 648
DSMLzip file 658
Dynamic groups 306
Dynamic Schema 299
Dynamic tracing 595
Dynamically view and clear Administration Daemon
Error Log 222

E
Edit ACL 416
Edit Default credentials and referral 357
Editing a server 377
Editing a Subtree 379
Editing access control lists 380
Editing an Agreement 377
Editing an Attribute 295
Editing an Objectclass 293
Editing supplier information 380
Effective ACLs 417
Effective owners 419

Emergency thread 469
Enabling and Disabling the Administrative Group
209
Enabling and Disabling the Change log 118, 148,
176
Enabling large files 529
Enabling Native Authentication 187
Enabling the Change Log 120, 150
Enabling the Change log 177
Enabling Webadmin to access servers via SSL 467
Entries, attributes and values 32
entryowner 71, 302, 426
EntryOwner Information 397
Environment Settings and their Descriptions 622
ePrinter object class 18
Error message when Additional is not used 352
Example of a Directory Information Tree (DIT) 17,
43
Example of object identifiers as defined by the ANSI
organization 20
Execution 668
Exporting the Schema 298
Extended Operation 254, 654
Extended operation for killing connections 468

F
Failures 644
Figure depicting the processes for regulating ibm-
diradm & ibmslapd 219
File Binding 656
File binding 668
File used for administrative group modification 209
File used to add user to administrative group 211
File used to modify an administrative group member
212
File used to remove a member of the administrative
group 213
Filter cache Bypass Limits 479
Filtered ACLs 399, 422
From the Command Line 298
Functional Model 47

G
GateWay Replication Topology (ITDS 5.2 and
above) 325
General options 254
General Replication Concepts 320
group
738 Understanding LDAP Design and Implementation

cn=anybody 403
cn=Authenticated 404

Group and Role Management 301
Group attribute types 316
Group object classes 316
groupOfNames 31, 37, 302, 310, 316, 426
groupOfUniqueNames 302, 310
Groups 302
gsk7ikm utility 459
GSKIT installation 458

H
Hardware tuning 535
Help from IBM 733
Hierarchy of groups and members 313
Hierarchy of the different object classes required in
replication 323
How Peer to Peer Works 327
How Replication Functions 322
How to get IBM Redbooks 733
How to start in configuration only mode 202
How to verify that the server is running in configura-
tion only mode 202
HP-UX 583
HR System Extract 705
HTTP and HTTPS Ports 233
Http Transport port 1 232
Http Transport port 2 232
Hybrid groups 311

I
IBM Directory Change and Audit Log 533
IBM Directory LDAP caches 477
IBM Directory tablespaces 522
IBM DSML LDAP Operations 646
IBM DSML Server 639
IBM DSML Version 2 Top-Level Structure 640
IBM Key Management tool 460
IBM Redbooks 731
IBM Tivoli Directory Server application components
477
IBM Tivoli Directory Server Distributed Administra-
tion 193
IBM Tivoli Directory Server Installation - IBM zSeries
185
IBM Tivoli Directory Server Overview 83
IBM’s Directory Enabled Offerings 21
IBMAttributetypes 292

IBMDEFAULTBP buffer pool size 494
ibmdiradm 85, 193, 199–200, 216–222, 224–225,
227, 256, 259, 262, 465, 596
ibmdirctl 193, 200, 202, 218, 220–221, 224–225,
227–229, 549–551
ibmslapd 85, 98, 100, 117, 121, 128, 130, 147, 151,
153, 158, 160, 175, 178, 182–183, 193, 200, 202,
214–215, 218–219, 222, 227–229, 239, 323, 342,
355, 358, 364, 372, 377, 469, 471, 476, 478,
481–482, 488, 490, 492, 525, 529, 531–532, 544,
549, 551, 575–579, 582–584, 590, 592–595,
598–599
ibmslapd bitmask values and descriptions 215
ibmslapd command parameters 214
ibmslapd Error log 575
ibmslapd error log settings 577
ibmslapd in debug mode 594
ibmslapd trace 544
ibmslapd.conf 98, 117, 128, 147, 158, 175, 323,
342, 355, 358, 364, 372, 377, 471, 478, 488, 490,
532, 544, 590, 592
ibmslapd.log 469, 544, 576, 579, 592
ibm-slapdDbConnections and ibm-slapdSetEnv
488
ibm-slapdSizeLimit 488
IBM-specific OIDs 39
imask 323, 442, 449, 452–454
Implementation 450
Importing the Schema 299
Increasing the operating system process memory
size limits 531
Indexes 521
Indexing 297
Inheritance 292
Input format 267
Install Application Server (WAS) 658
Install Component Selection Screen 165
Install component selection window 105, 136
Install DSML into WAS 662
Install Java SDK 1.3.1 659
Install SOAP 659
Installable Components 97, 127, 157
Installation 658
Installation and Configuration Checklist 98, 128,
158
Installing in WebSphere version 5.0 or higher 234
Installing ITDS 5.2 on Intel Linux Quick & Dirty with
minimal GUI interaction 180
Installing ITDS with the Installshield GUI 103, 134,
 Index 739

164
Installing LDAP on z/OS 186
Installing the Server 102, 133, 162
Introduction to LDAP 3
ITDI DSML Client to ITDS DSML Server 657
ITDI Solution Design 705
ITDI Solution Example 703
ITDS 5.2 87
ITDS Application Components 477
ITDS Client 99, 129, 159
ITDS DSML Client to ITDI DSML Service 657
ITDS DSML Request Structure 647
ITDS DSML Service Deployment 657
ITDS DSML Version 2 Support 638
ITDS high-level overview 84
ITDS Installation & Basic Configuration - AIX 125
ITDS Installation & Basic Configuration - Windows
95
ITDS Installation & Basic Configuration on Intel
Linux 155
ITDS LDAP caches 477
ITDS Server (including client) 100, 130, 160

J
Java Application using JNDI that Performs a Direc-
tory Search 623
Java Application using JNDI to Change a Directory
Entry 628
Java Programming Examples on DSML 674
JAVA_DEBUG 591
JDBC 24, 728
JNDI 9, 25, 80, 91, 464, 619–623, 625–626, 628,
630, 657, 668, 674–675, 677–679, 695, 728, 732
JNDI Introduction 674
JNDI packages that are Imported 625

K
Kerberos 53, 69–70, 86, 98, 128, 158, 194, 201,
208, 210–212, 264–265, 348, 357, 436–437, 473
Key distribution center 437

L
LDAP

Protocol or Directory? 7
LDAP ACL Cache 482
LDAP Attribute Cache (only on 5.2 and higher) 484
LDAP Caches 478

LDAP Concepts and Architecture 27
LDAP Distinguished name syntax (DNs) 43
LDAP Distinquished name syntax (DNs) 43
LDAP Entry Cache 480
LDAP Filter Cache 479
LDAP History and Standards 12
LDAP object definition 37
LDAP Schema 37, 709
LDAP Standards 20
ldap.profile 186
LDAP_DBG 591–592, 595
ldap_first_attribute 605, 607–609, 611
ldap_first_entry 605, 607–609, 611
ldap_get_values 605, 608, 611
ldap_init 242, 246–247, 605–610, 613–616
ldap_modify_s 299–300, 614–615, 617
ldap_next_attribute 608
ldap_next_entry 605, 608–609, 611
ldap_search_s 605, 607, 610–611, 613
ldap_simple_bind_s 248–249, 394, 607, 610,
613–614, 616
ldap_unbind_s 609, 612, 615, 617
ldapadd 99, 129, 159, 187, 211, 238, 265–266,
269, 286, 303, 309, 406, 426–427, 520
LDAPBP buffer pool size 494
ldapcfg 181–182, 590–591
ldapchangepwd 99, 129, 159, 238–239, 242–247,
253–254, 263, 266, 272, 286, 448, 451, 605
ldapcnf 185–186
ldapcompare 406
ldapdb2 103, 133, 153, 162–163, 180–184, 243,
492–493, 497, 502, 505, 508, 513, 515, 517–519,
522–528, 591
ldapdelete 99, 129, 159, 213, 238, 249–252, 286,
406, 605
ldapdiff 385–386, 392–393
LDAPDIFF Diagnostics 394
ldapexop 99, 129, 159, 210–211, 213–214, 222,
227, 238, 253–257, 259–260, 262–263, 286,
454–455, 549, 556, 574–575, 578–582
ldapexop command clearing the log 222
ldapexop command to clear the administration audit
log 227
ldapexop command to view the administration audit
log 227
ldapexop command viewing the log 222
ldapmodify 80, 99, 129, 159, 187–189, 209, 212,
220, 224–225, 238, 265–269, 286, 293–295, 299,
305–306, 406, 427–428, 446–447, 450, 454–455,
740 Understanding LDAP Design and Implementation

483, 486, 522, 570, 572, 577, 580, 605
ldapmodify, ldapadd 265
ldapmodrdn 99, 129, 159, 238, 270–271, 286, 406,
605
ldapsearch 80, 99, 122–123, 129, 151, 153, 159,
178, 180, 187, 202, 238, 242, 245, 247, 251–252,
258, 272–276, 279–286, 292–294, 298, 304–307,
309, 314–315, 403, 405–406, 409–412, 428,
433–434, 446–450, 452–453, 465, 481, 488, 490,
533–535, 541–543, 549, 551–552, 555, 561,
564–565, 567, 605, 716
ldapsearch with "cn=changelog,cn=monitor" 543
ldapsearch with "cn=connections,cn=monitor" 542
ldapsearch with "cn=monitor" 535
ldapsearch with "cn=workers,cn=monitor" 542
ldaptrace 564, 594, 596, 600
ldapucfg 153, 183–184, 533, 590–591
ldapxcfg 85, 100, 117, 119, 130, 147, 149, 160,
174, 176, 323, 517, 533, 590–591
LDIF 21–22, 35–36, 76, 187–190, 202, 239, 251,
267, 274, 280, 292, 295, 298–299, 303, 313–314,
330, 335–336, 355, 361, 372, 386–387, 397, 401,
426, 446–447, 527, 549, 623, 639, 655–656, 696,
716, 728
LDIF file for complex replication setup 372
ldif2db 89, 335, 355, 361, 520, 527–528, 592
ldtrc 215, 544, 593–598, 600
Lightweight Access to X.500 14
Linux 582
Loading the Schema 187
Logging 666
Logging in as console administrator 197
Logging off the console 198
Logging on to the console as a member of the ad-
ministrative group or as an LDAP user 198
Logging on to the console as the console adminis-
trator 196
Logging on to the console as the server administra-
tor 197

M
Major Replication Topologies 324
Manage console properties 207
Manage console servers 205
Manage queues 371
Manage queues for Win2k2 supplier 371
Manage queues on the master server 358
Manage queues Select Replica 359

Manage queues showing both subtrees replication
working 361
Manage replication properties 356
Manage replication properties on master server
370
Manage topology 350, 369
Managing console properties 206
Managing Queues 384
Managing the console 203
Managing Topology 377
Manual Installation of IBM WAS - Express 230
Manual Installation of WebSphere Application Serv-
er - Express 230
Manually installing the Web Administration Tool
230
Manually uninstalling the Web Administration Tool
231
Master-forwarder replica topology 325
Master-Forwarder-Replica Topology (IDTDS 5.2
and above) 324
Master-Forwarder-Replica Topology (ITDS 5.2 and
above) 324
Master-Replica Replication 76
Master-replica replication topology (multiple con-
sumers) 77
Master-replica replication topology (single consum-
er) 77
masterreplica.ldif File 362
Maximum Percent of Lock List Before Escalation
config parameter - maxlocks 506
Measuring Filter and Entry cache sizes 481
Member listing of a nested group 311
Members evaluated against an LDAP URL 309
metadirectories 691–693, 714
Metadirectories and Virtual Directories 690
metadirectory 684, 690–692, 714
Migrating Data to LDAP on z/OS 188
Migrating LDAP server contents to z/OS 188
Migrating the Schema 298
Minimum requirements for configuration only mode
202
Modify 649
ModifyDN 653
Modifying a server in the console 205
Modifying ACI and entryOwner Values 427
Modifying administration daemon error log settings
219
Modifying an Administrative Group Member 211
Modifying an administrative group member 211
 Index 741

Modifying Replication Properties 380
Modifying the Schema 292
Monitor Examples 541
Monitoring IBM Tivoli Directory Server 547
Monitoring performance 535
Monitoring Tools 549
More DB2 configuration settings 496
Move message 366
Move server 365
Moving RACF Users to TBDM 715
Moving RACF users to the TDBM space 189
Multiple peer LDAP flow 330

N
Namespace design 64
Naming Style 67
NativeAuthentication.ldif 187
nativeupdate.ldif 188
Nested groups 310
New ACLs specified 421
No Authentication 54
Non-blocking sockets 468
Non-filtered ACLS 398
Non-filtered ACLs 419
Number of Primary Log Files config parameter -
logprimary 509
Number of Secondary Log Files config parameter -
logsecond 512

O
Object Classes and Required Attributes 34
Object Filter 405
Objectclasses 37
OID 291
Online resources 731
Operating system commands for monitoring ITDS
582
Operational Attributes 722
Optimization 516
Optimization and organization 516
Options 216, 239, 250, 254, 266, 270, 273, 386
Options for a replication consumer 389
Organizing your directory 63
Original LDAP flow 329
OSI 12–14, 728
OSI and the Internet 12
Other DB2 configuration parameters 496
Overview of API used for updating a directory entry

612
Overview of APIs used for searching a directory
606
Overview of IBM Tivoli Directory Integrator 692
Overview of LDAP Architecture 28
Overview of SASL 434
Overview of SSL 456
Overview of TLS 455
Owners of an entry 425

P
Package Cache Size configuration parameter - pck-
cachesz 504
Panel to enable/disable the audit log 570
Parallel Processing 645
Password change service 437
Password encryption 451
Password policy enforcement 437
Password policy replication 451
Peer Replication 326
Peer to Peer Replication 78
Peer-to-Peer replication topology 79, 342
Peer-to-Peer Replication Topology for ITDS 5.1 and
above 341
Perform a redirected restore of the database 525
Performance Tuning 475
Performing a reorg 518
Performing a reorgchk 518
Performing the Modification 630
Performing the Search 626
Permissions 406
Permissions needed to perform LDAP operations
406
Planning Your Directory 57
Policy pertaining to password reset 450
Portion of the panel for making attributes access
controlled 424
Portion of the panel showing the server’s connec-
tions 554
Procedure to perform a reorganization using the re-
org command 519
Processing the Search Results 627
Program Examples 675
Promoting a Replica to Peer/Master 364
Propagation 409
Protection against DoS attacks 468
Pseudo DNs 402
742 Understanding LDAP Design and Implementation

Q
Query 48
Querying the Root DSE 122, 151, 178
Queue details 359, 385
Queue details Pending changes 360
Queue status last attempted details 360
Quick Installation of ITDS 5.2 on Intel (minimal GUI)
180
Quiescing the subtree 380

R
Recycle the IBM Directory server 490
Redbooks Web site 733

Contact us xx
References to the DSML Official Specifications 679
Referrals and Continuation References 49
Related Data 62
Related publications 731
Removing a member from the administrative group
213
Removing a server from the console 206
Removing a subtree 379
Removing a suffix 116, 146, 174
Removing ACLs 421, 424
Removing all vestiges of an ITDS 5.2 Install on Intel
Linux 183
Removing an owner 425
Removing or Reconfiguring a Database 117, 147,
174
Removing supplier information 381
reorg 476, 491, 517–520
reorgchk 476, 491, 516–520, 527–528
reorgchk and reorg 517
Reorgchk output showing a table that needs to be
reorganized 519
Reorgchk output showing an index that needs to be
reorganized 519
Repairing replication differences between replica’s
385
Repairing replication differences between replicas
385
Replicating a subtree 378
Replication 319
Replication agreements 342
Replication Design 75
Replication schedule and capabilities 353
Replication topology with gateway servers 326
Request and Response Association 642

Resources on ITDS 92
Restricted Attributes 723
Resuming on Error 645
Rights 405
Roles 317
Root DSE Attributes 723
Running the MVS Jobs 186

S
Sample ACL attribute entry 71
Sample Code to Search a Directory 609
Sample Code to Update a Directory Entry 615
Sample programs to move RACF users to TBDM
716
Sample Schema 289
SASL 15, 20, 30, 52–55, 69, 86, 88, 201, 241, 247,
432, 434–435, 473, 626, 630, 729
Schema 15, 19–20, 22, 29, 31, 34, 37, 63–64, 98,
128, 158, 187, 201, 207, 263, 287–293, 296,
298–299, 386, 393, 521, 641, 709, 721, 723, 728,
732
Schema Changes that are not Allowed 721
Schema Definition Attributes 723
Schema Design 63
Schema Files 290
Schema Management 287
Schema Support 291
schema.IBM.ldif 187
schema.user.ldif 187
Schema2LDIF Utility 299
Search 650
Search Filter Options 50
Search Filter Syntax 50
Searching the Directory 623
Securing directory entries 68
Securing the Directory 431
Security Model 53
security.xml file 233
Select credential 367–368
Server 668
Server debug mode 214
Set of attributes pertaining to Password lockout 444
Set of attributes pertaining to Password policy 442
Set of attributes pertaining to Password validation
445
Setting buffer pool sizes 495
Setting MALLOCMULTIHEAP 529
Setting MALLOCTYPE 530
 Index 743

Setting other environment variables 530
Setting other LDAP cache configuration variables
482
Setting the Administrator DN and Password 167
Setting the Administrator DN and password 138
Setting the administrator DN and password 108
Setting the SLAPD_OCHANDLERS environment
variable on Windows 533
Setting up the console 203
Settings for the admin daemon audit log 224
Settings for the admin daemon log 220
Several applications using attributes of the same en-
try 11
SHA-1 452, 454
Show topology 350, 365
Showing defined indexes 521
Simple bind 347, 368
Simple master-replica scenario 324
Simple Master-Replica Topology 324, 343
Size of Log Files configuration parameter - logfilsiz
507
slapd 23, 98, 123, 128, 153, 158, 180, 186, 256,
259, 262, 323, 327–328, 335–336, 476, 478, 481,
488, 490, 492, 525, 531–532, 544, 576–577, 579
slapd.errors 327–328, 336, 544
SLAPD_OCHANDLERS variable on Windows 533
slapd32.conf 328, 330, 332–333, 335–336, 478,
488, 490, 532, 544
slurpd 23
SOAP Binding 655
SOAP binding 668
SOAP connector port 233
Solaris 582
Solution Components 710
Some ITDS object class definitions 38
Some of the Attribute Syntaxes 33
Sort Heap Size configuration parameter - sortheap
498
Sort Heap Threshold configuration parameter -
sheapthres 501
Sources for data 61
Specificity Rule 413
SSL 21, 25, 53, 55–56, 69–70, 80, 86–87, 90,
97–98, 121, 127–128, 151, 157–158, 178, 182, 194,
201, 204–206, 216–218, 222, 233, 240–242,
244–245, 248–249, 253, 263–265, 269, 272, 286,
330–334, 342, 349, 351, 357, 377, 387–394, 404,
432–433, 435–436, 455–458, 460–462, 464–467,
473, 539, 542, 554, 556–557, 561, 573, 576–577,

596, 598–600, 605–606, 612, 623, 665–667, 670,
673, 711, 727, 729
SSL & TLS 55
SSL Utilities 458
SSL utilities 458
SSL with DSML 665
SSL, TLS notes 248, 253, 269, 272, 286
SSL, TLS notes for ldapdiff 393
SSL/TLS support 455
Starting and stopping the server 198
Starting ITDS 120, 150, 177
Starting LDAP in Configuration Only Mode 202
Starting the Directory Administration Daemon 217
Starting the directory administration daemon 217
Starting the Directory Server 121, 151, 178
Starting the Web Administration Tool 195
Statement Heap Size configuration parameter - st-
mtheap 502
Static groups 302
Statistics Heap Size configuration parameter -
stat_heap_sz 505
Stopping the administration daemon 217
Stopping the Directory Administration Daemon 218
String Form 46
Subject 402
Suffix 98, 115, 128, 145, 158, 173–174, 450
Suffixes 489
Summary of ITDS Related Chapters 92
Supplier credentials 370
Synopsis 216, 239, 249, 253, 266, 270, 272, 386
Syntax Errors 643
System and Software Requirements 99, 129, 159

T
Terminology 320
The ASCII Encoding of an RDN surname (example)
46
The current status of the worker threads 552
The Informational Model 32
The JNDI 621
The Naming Model 42
The team that wrote this redbook xvii
Throughput example 541
TLS 53, 55–56, 88, 97–98, 127–128, 157–158,
194, 240, 242, 247–249, 253, 263–265, 269, 272,
286, 393–394, 432, 435–436, 455–456, 470, 473,
539, 542, 554, 556–557, 561, 596, 598–599, 729
TLS handshake protocol 455
744 Understanding LDAP Design and Implementation

TLS record protocol 455
Topology after the add 354
Topology Design 73
Topology for o=ibm,c=de 371
Transaction and Event Notification 487
Troubleshooting 672
Troubleshooting error files 543
Tune the IBM Directory Server configuration file
488
Tuning process memory size limits 530
Typical API Usage 605
Typical DSML Transaction 638

U
ulimit 500, 524, 531–533, 583
Unconfiguring the DB2 Database associated with
ITDS 175
Unconfiguring the DB2 database associated with
ITDS 118, 148
Uninstalling ITDS 153, 183
Update Conflict Prevention in Peer Configurations
327
Update Operations 51
URL Form 47
User and Group Containers 707
User Application Attributes 726
User Provisioning Applications 685
Using Command Line Utilities to Manage ACLs 426
Using Server Administration 213
Using server debug modes 592
Using the command line or Windows Services icon
200
Utility Heap Size configuration parameter -
util_heap_sz 496

V
V3.modifiedschema 291
V3.user.at 291
V3.user.oc 291
Verify suffix order 490
Verifying process data segment usage 532
Verifying the Server is in Configuration Only Mode
202
Viewing connections information 553
Viewing other general information about the directo-
ry server 556
Viewing server state 549
Viewing status of worker threads 551

Viewing the administration daemon audit log 226
Viewing the administration daemon error log 221
Viewing the changelog using ldapsearch 567
Viewing the changelog using the Web Administra-
tion console 566
Viewing the server status via Web administration
tool 550
Virtual Directories vs. Metadirectory Technology
691

W
Warning about MINCOMMIT 496
Warning when IBM Directory server is running 492
Warning while observing the status of the worker
threads 552
Warnings about buffer pool memory usage 495
Web Admin Tool - Manage credentials 345
Web Administration Tasks for Managing Replication
377
Web Administration Tool graphical user interface
194
What is the Schema 288
When to configure the LDAP audit log 534
When to configure the LDAP change log 533
Why Directory Integration is Important 683
Windows 583
Working With ACLs 415
Working with Attributes 294
Working with Objectclasses 293
Workload example 541

X
X.500 xviii, 8, 13–15, 20, 22, 27–31, 34, 39, 41, 60,
64–65, 67, 107, 137, 166, 733
X.500 The Directory Server Standard 13
XYZ Company ITDS Directory Information Tree
707
 Index 745

746 Understanding LDAP Design and Implementation

Understanding LDAP
Design and Im

plem
entation

®

SG24-4986-01 ISBN 073849786X

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Understanding LDAP
Design and
Implementation

LDAP concepts and
architecture

Designing and
maintaining LDAP

Step-by-step
approach for
directory
implementation

The implementation and exploitation of centralized,
corporate-wide directories are among the top priority projects
in most organizations. The need for a centralized directory
emerges as organizations realize the overhead and cost
involved in managing the many distributed micro and macro
directories introduced in the past decade with decentralized
client/server applications and network operating systems.

Directories are key for successful IT operation and e-business
application deployments in medium and large environments.
IBM understands this requirement and supports it by
providing directory implementations based on industry
standards at no additional cost on all its major platforms and
even important non-IBM platforms. The IBM Directory Server
implements the Lightweight Directory Access Protocol (LDAP)
standard that has emerged quickly in the past years as a
result of the demand for such a standard.

This IBM Redbook will help you create a foundation of LDAP
skills, as well as install and configure the IBM Directory
Server. It is targeted at security architects and specialists who
need to know the concepts and the detailed instructions for a
successful LDAP implementation.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Summary of changes
	June 2004, Second Edition

	Part 1 Directories and LDAP
	Chapter 1. Introduction to LDAP
	1.1 Directories
	1.1.1 Directory versus database
	1.1.2 LDAP: Protocol or directory
	1.1.3 Directory clients and servers
	1.1.4 Distributed directories

	1.2 Advantages of using a directory
	1.3 LDAP history and standards
	1.3.1 OSI and the Internet
	1.3.2 X.500 the Directory Server Standard
	1.3.3 Lightweight Access to X.500
	1.3.4 Beyond LDAPv3

	1.4 Directory components
	1.5 LDAP standards
	1.6 IBM’s Directory-enabled offerings
	1.7 Directory resources on the Web

	Chapter 2. LDAP concepts and architecture
	2.1 Overview of LDAP architecture
	2.2 The informational model
	2.2.1 LDIF
	2.2.2 LDAP schema

	2.3 The naming model
	2.3.1 LDAP distinguished name syntax (DNs)
	2.3.2 String form
	2.3.3 URL form

	2.4 Functional model
	2.4.1 Query
	2.4.2 Referrals and continuation references
	2.4.3 Search filter syntax
	2.4.4 Compare
	2.4.5 Update operations
	2.4.6 Authentication operations
	2.4.7 Controls and extended operations

	2.5 Security model
	2.6 Directory security
	2.6.1 No authentication
	2.6.2 Basic authentication
	2.6.3 SASL
	2.6.4 SSL and TLS

	Chapter 3. Planning your directory
	3.1 Defining the directory content
	3.1.1 Defining directory requirements

	3.2 Data design
	3.2.1 Sources for data
	3.2.2 Characteristics of data elements
	3.2.3 Related data

	3.3 Organizing your directory
	3.3.1 Schema design
	3.3.2 Namespace design
	3.3.3 Naming style

	3.4 Securing directory entries
	3.4.1 Purpose
	3.4.2 Analysis of security requirements
	3.4.3 Design overview
	3.4.4 Authentication design
	3.4.5 Authorization design
	3.4.6 Non-directory security considerations

	3.5 Designing your server and network infrastructure
	3.5.1 Availability, scalability, and manageability requirements
	3.5.2 Topology design
	3.5.3 Replication design
	3.5.4 Administration

	Part 2 IBM Tivoli Directory Server overview and installation
	Chapter 4. IBM Tivoli Directory Server overview
	4.1 Definition of ITDS
	4.2 ITDS 5.2
	4.3 Resources on ITDS
	4.4 Summary of ITDS-related chapters

	Chapter 5. ITDS installation and basic configuration - Windows
	5.1 Installable components
	5.2 Installation and configuration checklist
	5.3 System and software requirements
	5.3.1 ITDS Client
	5.3.2 ITDS Server (including client)
	5.3.3 Web Administration Tool

	5.4 Installing the server
	5.4.1 Create a user ID for ITDS
	5.4.2 Installing ITDS with the Installshield GUI
	5.4.3 Configuring the Administrator DN and password
	5.4.4 Configuring the database
	5.4.5 Adding a suffix
	5.4.6 Removing or reconfiguring a database
	5.4.7 Enabling and disabling the change log

	5.5 Starting ITDS

	Chapter 6. ITDS installation and basic configuration - AIX
	6.1 Installable components
	6.2 Installation and configuration checklist
	6.3 System and software requirements
	6.3.1 ITDS Client
	6.3.2 ITDS Server (including client)
	6.3.3 Web Administration Tool

	6.4 Installing the server
	6.4.1 Create a user ID for ITDS
	6.4.2 Installing ITDS with the Installshield GUI
	6.4.3 Configuring the Administrator DN and password
	6.4.4 Configuring the database
	6.4.5 Adding a suffix
	6.4.6 Removing or reconfiguring a database
	6.4.7 Enabling and disabling the change log

	6.5 Starting ITDS
	6.6 Uninstalling ITDS

	Chapter 7. ITDS installation and basic configuration on Intel Linux
	7.1 Installable components
	7.2 Installation and configuration checklist
	7.3 System and software requirements
	7.3.1 ITDS Client
	7.3.2 ITDS Server (including client)
	7.3.3 Web Administration Tool

	7.4 Installing the server
	7.4.1 Create a user ID for ITDS
	7.4.2 Installing ITDS with the Installshield GUI
	7.4.3 Configuring the Administrator DN and password
	7.4.4 Configuring the database
	7.4.5 Adding a suffix
	7.4.6 Removing or reconfiguring a database
	7.4.7 Enabling and disabling the change log

	7.5 Starting ITDS
	7.6 Quick installation of ITDS 5.2 on Intel (minimal GUI)
	7.7 Uninstalling ITDS
	7.8 Removing all vestiges of an ITDS 5.2 Install on Intel Linux

	Chapter 8. IBM Tivoli Directory Server installation - IBM zSeries
	8.1 Installing LDAP on z/OS
	8.1.1 Using the ldapcnf utility
	8.1.2 Running the MVS jobs
	8.1.3 Loading the schema
	8.1.4 Enabling Native Authentication

	8.2 Migrating data to LDAP on z/OS
	8.2.1 Migrating LDAP server contents to z/OS
	8.2.2 Moving RACF users to the TDBM space

	Part 3 In-depth configuration and tuning
	Chapter 9. IBM Tivoli Directory Server Distributed Administration
	9.1 Web Administration Tool graphical user interface
	9.2 Starting the Web Administration Tool
	9.3 Logging on to the console as the console administrator
	9.4 Logging on to the console as the server administrator
	9.5 Logging on as member of administrative group or as LDAP user
	9.6 Logging off the console
	9.7 Starting and stopping the server
	9.7.1 Using Web Administration
	9.7.2 Using the command line or Windows Services icon

	9.8 Console layout
	9.9 Configuration only mode
	9.9.1 Minimum requirements for configuration-only mode
	9.9.2 Starting LDAP in configuration-only mode
	9.9.3 Verifying the server is in configuration-only mode

	9.10 Setting up the console
	9.10.1 Managing the console
	9.10.2 Creating an administrative group
	9.10.3 Enabling and disabling the administrative group
	9.10.4 Adding members to the administrative group
	9.10.5 Modifying an administrative group member
	9.10.6 Removing a member from the administrative group

	9.11 ibmslapd command parameters
	9.12 Directory administration daemon
	9.12.1 The ibmdiradm command
	9.12.2 Starting the directory administration daemon
	9.12.3 Stopping the directory administration daemon
	9.12.4 Administration daemon error log

	9.13 The ibmdirctl command
	9.14 Manual installation of IBM WAS - Express
	9.14.1 Manually installing the Web Administration Tool
	9.14.2 Manually uninstalling the Web Administration Tool
	9.14.3 Default ports used by IBM WAS - Express

	9.15 Installing in WebSphere Version 5.0 or later

	Chapter 10. Client tools
	10.1 The ldapchangepwd command
	10.1.1 Synopsis
	10.1.2 Options
	10.1.3 Examples
	10.1.4 SSL, TLS notes
	10.1.5 Diagnostics

	10.2 The ldapdelete command
	10.2.1 Synopsis
	10.2.2 Description
	10.2.3 Options
	10.2.4 Examples
	10.2.5 SSL, TLS notes
	10.2.6 Diagnostics

	10.3 The ldapexop command
	10.3.1 Synopsis
	10.3.2 Description
	10.3.3 Options

	10.4 The ldapmodify and ldapadd commands
	10.4.1 Synopsis
	10.4.2 Description
	10.4.3 Options
	10.4.4 Examples
	10.4.5 SSL, TLS notes
	10.4.6 Diagnostics

	10.5 The ldapmodrdn command
	10.5.1 Synopsis
	10.5.2 Description
	10.5.3 Options
	10.5.4 Examples
	10.5.5 SSL, TLS notes
	10.5.6 Diagnostics

	10.6 The ldapsearch command
	10.6.1 Synopsis
	10.6.2 Description
	10.6.3 Options
	10.6.4 Examples
	10.6.5 SSL, TLS notes
	10.6.6 Diagnostics

	10.7 Summary

	Chapter 11. Schema management
	11.1 What is the schema
	11.1.1 Available schema files
	11.1.2 Schema support
	11.1.3 OID
	11.1.4 Inheritance

	11.2 Modifying the schema
	11.2.1 IBMAttributetypes
	11.2.2 Working with objectclasses
	11.2.3 Working with attributes
	11.2.4 Disallowed schema changes

	11.3 Indexing
	11.4 Migrating the schema
	11.4.1 Exporting the schema
	11.4.2 Importing the schema

	11.5 Dynamic schema

	Chapter 12. Group and role management
	12.1 Groups
	12.1.1 Static groups
	12.1.2 Dynamic groups
	12.1.3 Nested groups
	12.1.4 Hybrid groups
	12.1.5 Determining group membership
	12.1.6 Group object classes
	12.1.7 Group attribute types

	12.2 Roles
	12.3 Summary

	Chapter 13. Replication
	13.1 General replication concepts
	13.1.1 Terminology
	13.1.2 How replication functions

	13.2 Major replication topologies
	13.2.1 Simple master-replica topology
	13.2.2 Master-forwarder-replica topology (ITDS 5.2 and later)
	13.2.3 GateWay Replication Topology (ITDS 5.2 and later)
	13.2.4 Peer replication

	13.3 Replication agreements
	13.4 Configuring replication topologies
	13.4.1 Simple master-replica topology
	13.4.2 Using the command line
	13.4.3 Promoting a replica to peer/master
	13.4.4 Command line for a complex replication

	13.5 Web administration tasks for managing replication
	13.5.1 Managing topology
	13.5.2 Modifying replication properties
	13.5.3 Creating replication schedules
	13.5.4 Managing queues

	13.6 Repairing replication differences between replicas
	13.6.1 The ldapdiff command tool

	Chapter 14. Access control
	14.1 Overview
	14.2 ACL model
	14.2.1 EntryOwner information
	14.2.2 Access Control information

	14.3 Access control attribute syntax
	14.3.1 Subject
	14.3.2 Pseudo DNs
	14.3.3 Object filter
	14.3.4 Rights
	14.3.5 Propagation
	14.3.6 Access evaluation
	14.3.7 Working with ACLs

	14.4 Summary

	Chapter 15. Securing the directory
	15.1 Directory security
	15.2 Authentication
	15.2.1 Anonymous authentication
	15.2.2 Basic authentication
	15.2.3 Authentication using SASL
	15.2.4 Kerberos

	15.3 Password policy enforcement
	15.3.1 Overview

	15.4 Password encryption
	15.5 SSL/TLS support
	15.5.1 Overview of TLS
	15.5.2 Overview of SSL
	15.5.3 SSL utilities
	15.5.4 Configuring SSL security

	15.6 Protection against DoS attacks
	15.6.1 Non-blocking sockets
	15.6.2 Extended operation for killing connections
	15.6.3 Emergency thread
	15.6.4 Connection reaping
	15.6.5 Allow anonymous bind

	15.7 Access control
	15.8 Summary

	Chapter 16. Performance Tuning
	16.1 ITDS application components
	16.2 ITDS LDAP caches
	16.2.1 LDAP caches
	16.2.2 LDAP filter cache
	16.2.3 Filter cache bypass limits
	16.2.4 LDAP entry cache
	16.2.5 Measuring filter and entry cache sizes
	16.2.6 LDAP ACL Cache
	16.2.7 Setting other LDAP cache configuration variables
	16.2.8 LDAP Attribute Cache (only on 5.2 and later)
	16.2.9 Configuring attribute caching

	16.3 Transaction and Event Notification
	16.4 Additional slapd and ibmslapd settings
	16.4.1 Tune the IBM Directory Server configuration file
	16.4.2 Suffixes
	16.4.3 Recycle the IBM Directory Server
	16.4.4 Verify suffix order

	16.5 DB2 tuning
	16.5.1 Warning when IBM Directory Server is running
	16.5.2 DB2 buffer pool tuning
	16.5.3 LDAPBP buffer pool size
	16.5.4 IBMDEFAULTBP buffer pool size
	16.5.5 Setting buffer pool sizes
	16.5.6 Warnings about buffer pool memory usage
	16.5.7 Other DB2 configuration parameters
	16.5.8 Warning about MINCOMMIT
	16.5.9 More DB2 configuration settings
	16.5.10 Configuration script

	16.6 Directory size
	16.7 Optimization and organization
	16.7.1 Optimization
	16.7.2 reorgchk and reorg
	16.7.3 Indexes
	16.7.4 Distributing the database across multiple physical disks
	16.7.5 Create file systems and directories on the target disks
	16.7.6 Backing up the existing database
	16.7.7 Perform a redirected restore of the database

	16.8 DB2 backup and restore
	16.9 Concurrent updates on Symmetric Multi-Processor systems
	16.10 AIX operating system tuning
	16.10.1 Enabling large files
	16.10.2 Tuning process memory size limits
	16.10.3 AIX-specific process size limits
	16.10.4 AIX data segments and LDAP process DB2 connections
	16.10.5 Verifying process data segment usage

	16.11 Adding memory after installation on Solaris systems
	16.12 SLAPD_OCHANDLERS variable on Windows
	16.13 IBM Directory Change and Audit Log
	16.13.1 When to configure the LDAP change log
	16.13.2 When to configure the LDAP audit log

	16.14 Hardware tuning
	16.14.1 Disk speed improvements

	16.15 Monitoring performance
	16.15.1 ldapsearch with "cn=monitor"
	16.15.2 Monitor examples

	16.16 Troubleshooting error files

	Chapter 17. Monitoring IBM Tivoli Directory Server
	17.1 Overview
	17.2 Monitoring tools
	17.2.1 Viewing server state
	17.2.2 Viewing status of worker threads
	17.2.3 Viewing connections information
	17.2.4 Viewing other general information about the directory server
	17.2.5 Analyzing changelog
	17.2.6 Analyzing log files

	17.3 Operating system commands for monitoring ITDS
	17.4 Summary

	Part 4 Developing directory-enabled applications
	Chapter 18. Debugging IBM Tivoli Directory Server related issues
	18.1 Overview
	18.2 Debugging problems
	18.2.1 Debugging configuration problems
	18.2.2 Debugging directory server related errors using log files
	18.2.3 Using server debug modes
	18.2.4 DB2 error log file

	18.3 Summary

	Chapter 19. Developing C-based applications
	19.1 Overview
	19.2 Typical API usage
	19.3 API flow when searching a directory
	19.3.1 ldap_init()
	19.3.2 ldap_simple_bind_s()
	19.3.3 ldap_search_s()
	19.3.4 ldap_first_entry()
	19.3.5 ldap_first_attribute()
	19.3.6 ldap_get_values()
	19.3.7 ldap_next_attribute()
	19.3.8 ldap_get_values()
	19.3.9 ldap_next_entry()
	19.3.10 ldap_unbind_s()

	19.4 Sample code to search a directory
	19.5 API flow when updating a directory entry
	19.5.1 ldap_init()
	19.5.2 ldap_simple_bind_s()
	19.5.3 ldap_modify_s()
	19.5.4 ldap_unbind_s()

	19.6 Sample code to update a directory entry

	Chapter 20. Developing JNDI-based applications
	20.1 The JNDI
	20.2 Searching the directory
	20.2.1 Creating the directory context
	20.2.2 Performing the search
	20.2.3 Processing the search results

	20.3 Changing a directory entry
	20.3.1 Creating the directory context
	20.3.2 Performing the modification

	Part 5 Appendixes
	Appendix A. DSML Version 2
	DSML Version 2 Introduction
	DSML
	DSML Version 1.0
	DSML Version 2.0
	Difference between DSML v1 and DSML v2
	Difference between DSML v2 and LDAP
	Typical DSML Transaction

	DSML Version 2 - IBM implementation
	ITDS DSML Version 2 support
	IBM DSML Version 2 top-level structure
	IBM DSML LDAP Operations
	Bindings
	DSML communication between ITDI and ITDS

	ITDS DSML Service Deployment
	Installation
	Configuration
	Execution
	Troubleshooting

	Java programming examples on DSML
	JNDI introduction
	Program examples

	References to the DSML official specifications

	Appendix B. Directory Integration - IBM Tivoli Directory Integrator
	Why Directory Integration is important
	Directory Integration Services
	User provisioning applications
	Directory Integration technologies
	Metadirectories and virtual directories

	Virtual directories vs. metadirectory technology
	Overview of IBM Tivoli Directory Integrator
	Configuration of ITDI assembly lines
	Configuration of an ITDI Event Handler
	ITDI solution example
	ITDI solution design
	HR System Extract
	Active Directory
	Domino
	XYZ Company ITDS Directory Information Tree
	User and group containers
	Application container
	LDAP Schema

	Solution components
	Summary

	Appendix C. Moving RACF users to TBDM
	Sample programs to move RACF users to TBDM

	Appendix D. Schema changes that are not allowed
	Operational attributes
	Restricted attributes
	Root DSE attributes
	Schema definition attributes
	Configuration attributes
	User Application attributes

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

